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CHAPTER 3

MAIN RESULTS

In this chapter we consider controlling chaos and synchronization of per-

turbed Lü chaotic dynamical system.

3.1 The Perturbed Lü Chaotic Dynamical System

We will study the perturbed Lü chaotic dynamical system that is de-

scribed by system of ordinary differential equations

ẋ = a(y − x)

ẏ = −xz + cy (3.1)

ż = xy − bz + dx2

where

x, y and z are the state variables.

a, b, c and d are positive real constants.

The equilibrium points of the system (3.1) are

E1 = (0, 0, 0), E2 = (β, β, c), E3 = (−β,−β, c)

where β =

√
bc

1 + d
.

Theorem 3.1.1 The equilibrium point E1 = (0, 0, 0) is

(i) asymptotically stable if a > c and b > c.

(ii) unstable if a > c and b < c.

Proof The Jacobian matrix of the system (3.1) at the equilibrium point E1 =

(0, 0, 0) is given by
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J1 =




−a a 0

0 c 0

0 0 −b


 .

The characteristic equation of the Jacobian J1 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c

a2 = ab− ac− bc

a3 = −abc

a1a2 − a3 = (a + b)(a− c)(b− c).

We see that a1 and a1a2− a3 satisfy the Routh-Hurwitz criteria when a > c

and b > c. Thus, if a > c and b > c, then the equilibrium point E1 = (0, 0, 0) is

asymptotically stable.

On the other hand, when a > c and b < c, we have a1a2−a3 < 0 which does

not satisfy the Routh-Hurwitz criteria and so the equilibrium point E1 = (0, 0, 0)

is unstable. ¤

Theorem 3.1.2 The equilibrium point E2 = (β, β, c) is

(i) asymptotically stable if a > 4c.

(ii) unstable if 2c > a, c > b and a + b > c.

Proof The Jacobian matrix of the system (3.1) at the equilibrium point E2 =

(β, β, c) is given by

J2 =




−a a 0

−c c −β

β + 2dβ β −b


 .
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The characteristic equation of the Jacobian matrix J2 is

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c

a2 = ab− bc + β2

a3 = 2abc

a1a2 − a3 =
b2d(a− c) + ab(a− 3c) + abd(a− 4c) + ab2 + bc2d

(1 + d)
.

We see that a1 and a1a2−a3 satisfy the Routh-Hurwitz criteria when a > 4c.

Thus, if a > 4c, then the equilibrium point E2 = (β, β, c) is asymptotically

stable.

On the other hand, when 2c > a,c > b and a + b > c, we have a1a2 − a3 < 0

which does not satisfy the Routh-Hurwitz criteria and so the equilibrium point

E2 = (β, β, c) is unstable. ¤

Theorem 3.1.3 The equilibrium point E3 = (−β,−β, c) is

(i) asymptotically stable if a > 4c.

(ii) unstable if 2c > a, c > b and a + b > c.

Proof The Jacobian matrix of the system (3.1) at the equilibrium point E3 =

(−β,−β, c) is given by

J3 =




−a a 0

−c c β

−β − 2dβ −β −b


 .

The characteristic equation of the Jacobian matrix J3 has the form

λ3 + a1λ
2 + a2λ + a3 = 0
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where

a1 = a + b− c

a2 = ab− bc + β2

a3 = 2abc

a1a2 − a3 =
b2d(a− c) + ab(a− 3c) + abd(a− 4c) + ab2 + bc2d

(1 + d)
.

We see that a1 and a1a2−a3 satisfy the Routh-Hurwitz criteria when a > 4c.

Thus, if a > 4c, then the equilibrium point E3 = (−β,−β, c) is asymptotically

stable.

On the other hand, when 2c > a, c > b and a+ b > c, we have a1a2− a3 < 0

which does not satisfy the Routh-Hurwitz criteria and so the equilibrium point

E3 = (−β,−β, c) is unstable. ¤

Next we study the perturbed Lü chaotic dynamical system that is described

by system of ordinary differential equations

ẋ = a(y − x)

ẏ = −xz + cy (3.2)

ż = xy − bz + dsin(x)

where

x, y and z are the state variables.

a, b, c and d are positive real constants.

The equilibrium points of the system (3.2) are

E1 = (0, 0, 0), E2 = (x1, x1, c), E3 = (x2, x2, c)

where x1 is negative real root of g(x), x2 is positive real root of g(x), where

g(x) = x2 + dsin(x)− bc.
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Theorem 3.1.4 The equilibrium point E1 = (0, 0, 0) of (3.2) is

(i) asymptotically stable if a > c and b > c.

(ii) unstable if a > c and b < c.

Proof The Jacobian matrix of the system (3.2) at the equilibrium point E1 =

(0, 0, 0) is given by

J1 =




−a a 0

0 c 0

0 0 −b


 .

The characteristic equation of the Jacobian matrix J1 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c

a2 = ab− ac− bc

a3 = −abc

a1a2 − a3 = (a + b)(a− c)(b− c).

We see that a1 and a1a2− a3 satisfy the Routh-Hurwitz criteria when a > c

and b > c. Thus, if a > c and b > c, then the equilibrium point E1 = (0, 0, 0) is

asymptotically stable.

On the other hand, when a > c and b < c,we have a1a2− a3 < 0 which does

not satisfy the Routh-Hurwitz criteria and so the equilibrium point E1 = (0, 0, 0)

is unstable. ¤

Theorem 3.1.5 The equilibrium point E2 = (x1, x1, c) is

(i) asymptotically stable if a > 2c, b >
√

x2
1 + x1dcos(x1) and b > c.

(ii) unstable if 2c > a, b <
√

x2
1 + x1dcos(x1) and b < c.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



17

Proof The Jacobian matrix of the system (3.2) at the equilibrium point E2 =

(x1, x1, c) is given by

J2 =




−a a 0

−c c −x1

x1 + dcos(x1) x1 −b


 .

The characteristic equation of the Jacobian matrix J2 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c

a2 = ab− bc + x2
1

a3 = 2x2
1 + x1dcos(x1)

a1a2 − a3 = ab(a− 2c) + a(b2 − x2
1 − x1dcos(x1)) + (b− c)(x2

1 − bc).

We see that a1 and a1a2−a3 satisfy the Routh-Hurwitz criteria when a > 2c,

b >
√

x2
1 + x1dcos(x1) and b > c. Thus, if a > 2c, b >

√
x2

1 + x1dcos(x1) and

b > c, then the equilibrium point E2 = (x1, x1, c) is asymptotically stable.

On the other hand, when 2c > a, b <
√

x2
1 + x1dcos(x1) and b < c, we have

a1a2 − a3 < 0 which does not satisfy the Routh-Hurwitz criteria and so the

equilibrium point E2 = (x1, x1, c) is unstable. ¤

Theorem 3.1.6 The equilibrium point E3 = (x2, x2, c) is

(i) asymptotically stable if a > 2c, b >
√

x2
2 + x2dcos(x2) and b < c.

(ii) unstable if 2a > c, b <
√

x2
2 + x2dcos(x2), a <

√
bc and b < c.

Proof The Jacobian matrix of the system (3.2) at the equilibrium point E3 =

(x2, x2, c) is given by
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J3 =




−a a 0

−c c −x2

x2 + dcos(x2) x2 −b


 .

The characteristic equation of the Jacobian matrix J3 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c

a2 = ab− bc + x2
2

a3 = 2x2
2 + x2dcos(x2)

a1a2 − a3 = ab(a− 2c) + a(b2 − x2
2 − x2dcos(x2)) + (c− b)(bc− x2

2).

We see that a1 and a1a2−a3 satisfy the Routh-Hurwitz criteria when a > 2c,

b >
√

x2
2 + x2dcos(x2) and b < c. Thus, if a > 2c, b >

√
x2

2 + x2dcos(x2) and

b < c, then the equilibrium point E3 = (x2, x2, c) is asymptotically stable.

On the other hand, when 2a > c, b <
√

x2
2 + x2dcos(x2), a <

√
bc and b < c,

we have a1a2− a3 < 0 which does not satisfy the Routh-Hurwitz criteria and so

the equilibrium point E3 = (x2, x2, c) is unstable. ¤

3.1.1 Numerical Simulations

Numerical experiments are carried out to investigate perturbed Lü

chaotic dynamical system by using fourth-order Runge-Kutta method with time

step 0.001. In Fig. 3.1-3.3, the parameters a, b, c and d are chosen as a = 36,

b = 3, c = 20 and d = 1. The initial states are taken as x = 10, y = 1 and

z = 8. Fig. 3.1 shows the behavior of the states x, y and z of the system (3.1)

with time in xy-plane. Fig. 3.2 shows the behavior of the states x, y and z

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



19

of the system (3.1) with time in xz-plane. Fig. 3.3 shows the behavior of the

states x, y and z of the system (3.1) with time in yz-plane. In Fig. 3.4-3.6, the

parameters a, b, c and d are chosen as a = 40, b = 0.1, c = 40 − 10sin(2) and

d = 1. The initial states are taken as x = 10, y = 1 and z = 8. Fig. 3.4 shows

the behavior of the states x, y and z of the system (3.2) with time in xy-plane.

Fig. 3.5 shows the behavior of the states x, y and z of the system (3.2) with

time in xz-plane. Fig. 3.6 shows the behavior of the states x, y and z of the

system (3.2) with time in yz-plane. In Fig. 3.7-3.9, the parameters a, b, c and

d are chosen as a = 1.2, b = 1.5, c = 4−sin(2)
1.5

and d = 1. The initial states are

taken as x = 10, y = 1 and z = 8. Fig. 3.7 shows the behavior of the states x, y

and z of the system (3.2) with time in xy-plane. Fig. 3.8 shows the behavior of

the states x, y and z of the system (3.2) with time in xz-plane. Fig. 3.9 shows

the behavior of the states x, y and z of the system (3.2) with time in yz-plane.
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Figure 3.1: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.1) in the xy-plane where a = 36, b = 3, c = 20 and d = 1.
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Figure 3.2: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.1) in the xz-plane where a = 36, b = 3, c = 20 and d = 1.
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Figure 3.3: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.1) in the yz-plane where a = 36, b = 3, c = 20 and d = 1.
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Figure 3.4: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.2) in the xy-plane where a = 40, b = 0.1, c = 40− 10sin(2) and d = 1.
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Figure 3.5: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.2) in the xz-plane where a = 40, b = 0.1, c = 40− 10sin(2) and d = 1.
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Figure 3.6: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.2) in the yz-plane where a = 40, b = 0.1, c = 40− 10sin(2) and d = 1.
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Figure 3.7: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.2) in the xy-plane where a = 1.2, b = 1.5, c = 4−sin(2)
1.5

and d = 1.
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Figure 3.8: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.2) in the xz-plane where a = 1.2, b = 1.5, c = 4−sin(2)
1.5

and d = 1.
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Figure 3.9: The chaotic attractor of perturbed Lü chaotic dynamical system

(3.2) in the yz-plane where a = 1.2, b = 1.5, c = 4−sin(2)
1.5

and d = 1.
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3.2 Controlling Chaos of Perturbed Lü System to

Equilibrium Point

In this section, the chaos of system (3.1) and system (3.2) are controlled

to one of three equilibrium points of the system. Feedback and bounded feed-

back controls are applied to achieve this goal. We shall study the case when

equilibrium points of (3.1) and (3.2) are unstable.

3.2.1 Feedback Control Method

The goal of linear feedback control is to control the chaotic behavior of

the system (3.1) and system (3.2) to one of three unstable equilibrium points

(E1, E2 or E3). For system (3.1), we assume that the controlled system is given

by

ẋ = a(y − x) + u1

ẏ = −xz + cy + u2

ż = xy − bz + dx2 + u3,

where u1, u2 and u3 are controllers that satisfy the following control law

ẋ = a(y − x)− k11(x− x̄)

ẏ = −xz + cy − k22(y − ȳ) (3.3)

ż = xy − bz + dx2 − k33(z − z̄),

where E = (x̄, ȳ, z̄) is an equilibrium point of system (3.1).

Stability of the Equilibrium Point E1 = (0, 0, 0)

In this case E = E1 and the controlled system (3.3) is in the form of
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ẋ = a(y − x)− k11x

ẏ = −xz + (c− k22)y (3.4)

ż = xy − bz + dx2 − k33z.

Theorem 3.2.1 The equilibrium point E1 = (0, 0, 0) is asymptotically stable if

k11 = 0, k33 > 0 and k22 > c.

Proof The Jacobian matrix of the system (3.4) at the equilibrium point E1 =

(0, 0, 0) is given by

J1 =




−a a 0

0 c− k22 0

0 0 −b− k33


 .

The characteristic equation of the Jacobian matrix J1 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + k22 + k33

a2 = (a + b + k33)(k22 − c) + ab + ak33

a3 = (ab + ak33)(k22 − c)

a1a2 − a3 = (b + (k22 − c) + k33)((a + b + k33)(k22 − c) + ab + ak33)

= +a2(k22 − c) + a2b + a2k33.

We see that a1 and a1a2 − a3 satisfy the Routh-Hurwitz criteria when k11 = 0,

k33 > 0 and k22 > c. Thus, if k11 = 0, k33 > 0 and k22 > c, then the equilibrium

point E1 = (0, 0, 0) is asymptotically stable. ¤
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Stability of the Equilibrium Point E2 = (β, β, c)

In this case E = E2 and the controlled system (3.3) is in the form of

ẋ = a(y − x)− k11(x− β)

ẏ = −xz + cy − k22(y − β) (3.5)

ż = xy − bz + dx2 − k33(z − c).

Theorem 3.2.2 The equilibrium point E2 = (β, β, c) is asymptotically stable if

k11, k33 > 0 and k22 > c.

Proof The Jacobian matrix of the system (3.5) at the equilibrium point E2 =

(β, β, c) is given by

J2 =




−a− k11 a 0

−c c− k22 −β

β + 2dβ β −b− k33


 .

The characteristic equation of the Jacobian matrix J2 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + k11 + k22 + k33

a2 = (b + k11 + k33)(k22 − c) + a(b + k22 + k33) + b(k11 + k22) + k11k33 + β2

a3 = (k22 − c)(bk11 + k11k33) + a(bk22 + k22k33) + (2a + 2ad + k11)β
2

a1a2 − a3 = [(a + b− c + k22 + k33)(b + k11 + k33) + k2
11 + ab + (a(b + k22 + k33)

= +b(k11 + k22) + k11k33 + β2)](k22 − c) + ab(a− c) + k11(ab + ak22 + ak33

= +bk11 + bk22 + k11k33) + a(ak22 + ak33 + bk11 + k11k33) + b(ab + ak33

= +bk11 + bk22 + k11k33 + β2) + k33(ab + ak33 + bk11 + bk22 + k11k33 + β2).

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



27

We see that a1 and a1a2 − a3 satisfy the Routh-Hurwitz criteria when

k11, k33 > 0, and k22 > c. Thus, if k11, k33 > 0, and k22 > c, then the equi-

librium point E2 = (β, β, c) is asymptotically stable. ¤

Stability of the Equilibrium Point E3 = (−β,−β, c)

In this case E = E3 and the controlled system (3.3) is in the form of

ẋ = a(y − x)− k11(x + β)

ẏ = −xz + cy − k22(y + β) (3.6)

ż = xy − bz + dx2 − k33(z − c).

Theorem 3.2.3 The equilibrium point E3 = (−β,−β, c) is asymptotically stable

if k11, k33 > 0 and k22 > c.

Proof The Jacobian matrix of the system (3.6) at the equilibrium point E3 =

(−β,−β, c) is given by

J3 =




−a− k11 a 0

−c c− k22 β

−β − 2dβ −β −b− k33


 .

The characteristic equation of the Jacobian matrix J3 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + k11 + k22 + k33

a2 = (b + k11 + k33)(k22 − c) + a(b + k22 + k33) + b(k11 + k22) + k11k33 + β2

a3 = (k22 − c)(bk11 + k11k33) + a(bk22 + k22k33) + (2a + 2ad + k11)β
2

a1a2 − a3 = [(a + b− c + k22 + k33)(b + k11 + k33) + k2
11 + ab + (a(b + k22 + k33)

= +b(k11 + k22) + k11k33 + β2)](k22 − c) + ab(a− c) + k11(ab + ak22 + ak33
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= +bk11 + bk22 + k11k33) + a(ak22 + ak33 + bk11 + k11k33) + b(ab + ak33

= +bk11 + bk22 + k11k33 + β2) + k33(ab + ak33 + bk11 + bk22 + k11k33 + β2).

We see that a1 and a1a2 − a3 satisfy the Routh-Hurwitz criteria when

k11, k33 > 0, and k22 > c. Thus, if k11, k33 > 0, and k22 > c, then the equi-

librium point E3 = (−β,−β, c) is asymptotically stable. ¤

For system (3.2), we assume that the controlled system is given by

ẋ = a(y − x) + u1

ẏ = −xz + cy + u2

ż = xy − bz + dsin(x) + u3,

where u1, u2 and u3 are controllers that satisfy the following control law

ẋ = a(y − x)− k11(x− x̄)

ẏ = −xz + cy − k22(y − ȳ) (3.7)

ż = xy − bz + dsin(x)− k33(z − z̄),

where E = (x̄, ȳ, z̄) is an equilibrium point of system (3.2).

Stability of the Equilibrium Point E1 = (0, 0, 0)

In this case E = E1 and the controlled system (3.7) is in the form of

ẋ = a(y − x)− k11x

ẏ = −xz + (c− k22)y (3.8)

ż = xy − bz + dsin(x)− k33z.

Theorem 3.2.4 The equilibrium point E1 = (0, 0, 0) is asymptotically stable if

k11 = 0, k33 > 0 and k22 > c.
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Proof The Jacobian matrix of the system (3.8) at the equilibrium point E1 =

(0, 0, 0) is given by

J1 =




−a a 0

0 c− k22 0

0 0 −b− k33


 .

The characteristic equation of the Jacobian matrix J1 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + k22 + k33

a2 = (a + b + k33)(k22 − c) + ab + ak33

a3 = (ab + ak33)(k22 − c)

a1a2 − a3 = (b + (k22 − c) + k33)((a + b + k33)(k22 − c) + ab + ak33)

= +a2(k22 − c) + a2b + a2k33.

We see that a1 and a1a2 − a3 satisfy the Routh-Hurwitz criteria when k11 = 0,

k33 > 0 and k22 > c. Thus, if k11 = 0, k33 > 0 and k22 > c, then the equilibrium

point E1 = (0, 0, 0) is asymptotically stable. ¤

Stability of the Equilibrium Point E2 = (x1, x1, c)

In this case E = E2 and the controlled system (3.7) is in the form of

ẋ = a(y − x)− k11(x− x1)

ẏ = −xz + cy − k22(y − x1) (3.9)

ż = xy − bz + dsin(x)− k33(z − c).

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



30

Theorem 3.2.5 The equilibrium point E2 = (x1, x1, c) is asymptotically stable

if k11, k33 > 0 and k22 > c.

Proof The Jacobian matrix of the system (3.9) at the equilibrium point E2 =

(x1, x1, c) is given by

J2 =




−a− k11 a 0

−c c− k22 −x1

x1 + dcos(x1) x1 −b− k33


 .

The characteristic equation of the Jacobian matrix J2 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + k11 + k22 + k33

a2 = (b + k11 + k33)(k22 − c) + a(b + k22 + k33) + b(k11 + k22) + k11k33 + x2
1

a3 = (k22 − c)(bk11 + k11k33) + a(bk22 + k22k33) + (2x2
1 + x1dcos(x1))a + k11x

2
1

a1a2 − a3 = [(a + b− c + k22 + k33)(b + k11 + k33) + k2
11 + (a(b + k22 + k33)

= +b(k11 + k22) + k11k33 + x2
1)](k22 − c) + a(ab− 2x2

1) + a(bk22 − x1dcos(x1))

= +k11(ab + ak22 + ak33 + bk11 + bk22 + k11k33) + a(ak22 + ak33 + bk11

= +k11k33) + b(ab + ak33 + bk11 + bk22 + k11k33 + x2
1) + k33(ab + ak33 + bk11

= +bk22 + k11k33 + x2
1).

We see that a1 and a1a2 − a3 satisfy the Routh-Hurwitz criteria when

k11, k33 > 0, and k22 > c. Thus, if k11, k33 > 0, and k22 > c, then the equi-

librium point E2 = (x1, x1, c) is asymptotically stable. ¤

Stability of the Equilibrium Point E3 = (x2, x2, c)

In this case E = E3 and the controlled system (3.7) is in the form of
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ẋ = a(y − x)− k11(x− x2)

ẏ = −xz + cy − k22(y − x2) (3.10)

ż = xy − bz + dsin(x)− k33(z − c).

Theorem 3.2.6 The equilibrium point E3 = (x2, x2, c) is asymptotically stable

if k11, k33 > 0 and k22 > c.

Proof The Jacobian matrix of the system (3.10) at the equilibrium point E3 =

(x2, x2, c) is given by

J3 =




−a− k11 a 0

−c c− k22 −x2

x2 + dcos(x2) x2 −b− k33


 .

The characteristic equation of the Jacobian matrix J3 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + k11 + k22 + k33

a2 = (b + k11 + k33)(k22 − c) + a(b + k22 + k33) + b(k11 + k22) + k11k33 + x2
2

a3 = (k22 − c)(bk11 + k11k33) + a(bk22 + k22k33) + (2x2
2 + x2dcos(x1))a + k11x

2
2

a1a2 − a3 = [(a + b− c + k22 + k33)(b + k11 + k33) + k2
11 + (a(b + k22 + k33)

= +b(k11 + k22) + k11k33 + x2
2)](k22 − c) + a(ab− 2x2

2) + a(bk22 − x2dcos(x2))

= +k11(ab + ak22 + ak33 + bk11 + bk22 + k11k33) + a(ak22 + ak33 + bk11

= +k11k33) + b(ab + ak33 + bk11 + bk22 + k11k33 + x2
2) + k33(ab + ak33 + bk11

= +bk22 + k11k33 + x2
2).

We see that a1 and a1a2 − a3 satisfy the Routh-Hurwitz criteria when

k11, k33 > 0, and k22 > c. Thus, if k11, k33 > 0, and k22 > c, then the equi-

librium point E3 = (x2, x2, c) is asymptotically stable. ¤
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Numerical Simulations

Numerical experiments are carried out to investigate controlled systems

by using fourth-order Runge-Kutta method with time step 0.001. In Fig. 3.10-

3.12, the parameters a, b, c and d are chosen as a = 36, b = 3, c = 20 and d = 1

to ensure the existence of chaos in the absence of control. The initial states are

taken as x = 10, y = 1 and z = 8. The equilibrium point E1 = (0, 0, 0) of the

system (3.1) is stabilized for k11 = 0, k22 = 25 and k33 = 1. Fig. 3.10 shows

the behavior of the states x, y and z of the controlled system (3.4) with time.

The control is active at t = 10. The equilibrium point E2 = (
√

30,
√

30, 20) of

the system (3.1) is stabilized for k11 = 1, k22 = 22 and k33 = 3. Fig. 3.11 shows

the behavior of the states x,y and z of the controlled system (3.5) with time.

The control is active at t = 10. The equilibrium point E3 = (−√30,−√30, 20)

of the system (3.1) is stabilized for k11 = 1, k22 = 22 and k33 = 3. Fig. 3.12

shows the behavior of the states x, y and z of the controlled system (3.6) with

time. The control is active at t = 10. In Fig. 3.13, the parameters a, b, c

and d are chosen as a = 40, b = 0.1, c = 40 − 10sin(2) and d = 1 to ensure

the existence of chaos in the absence of control. The initial states are taken as

x = 10, y = 1 and z = 8. The equilibrium point E2 = (−2,−2, 40 − 10sin(2))

of the system (3.2) is stabilized for k11 = 1, k22 = 32 and k33 = 2. Fig. 3.13

shows the behavior of the states x, y and z of the controlled system (3.9) with

time. The control is active at t = 10. In Fig. 3.14, the parameters a, b, c and d

are chosen as a = 1.2, b = 1.5, c = 4−sin(2)
1.5

and d = 1 to ensure the existence of

chaos in the absence of control. The initial states are taken as x = 0.1, y = 0.2

and z = 0.3. The equilibrium point E3 = (x2, x2,
4−sin(2)

1.5
) of the system (3.2)

is stabilized for k11 = 1, k22 = 4 and k33 = 2 where x2 is positive real root of

g(x), where g(x) = x2 + sin(x) − 4 + sin(2). Fig. 3.14 shows the behavior of

the states x, y and z of the controlled system (3.10) with time. The control is

active at t = 10.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



33

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

30

40

50

x,y 

z 

Figure 3.10: The time responses for the states x, y and z of the controlled system

(3.4) before and after control activation with time. The control is activated at

t = 10, k11 = 0, k22 = 25 and k33 = 1.
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Figure 3.11: The time responses for the states x, y and z of the controlled system

(3.5) before and after control activation with time. The control is activated at

t = 10, k11 = 1, k22 = 22 and k33 = 3.
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Figure 3.12: The time responses for the states x, y and z of the controlled system

(3.6) before and after control activation with time. The control is activated at

t = 10, k11 = 1, k22 = 22 and k33 = 3.
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Figure 3.13: The time responses for the states x, y and z of the controlled system

(3.9) before and after control activation with time. The control is activated at

t = 10, k11 = 1, k22 = 32 and k33 = 2.
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Figure 3.14: The time responses for the states x, y and z of the controlled system

(3.10) before and after control activation with time. The control is activated at

t = 10, k11 = 1, k22 = 4 and k33 = 2.

3.2.2 Bounded Feedback Control Method

In this section, we control chaos with bounded controller that vanishes

after the stabilization is achieved.

Stability of the Equilibrium Point E1 = (0, 0, 0)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.1) as follows:

ẋ = a(y − x)

ẏ = −xz + cy + u(t) (3.11)

ż = xy − bz + dx2

where u(t) = −kay, k > 0.

Theorem 3.2.7 The equilibrium point E1 = (0, 0, 0) is asymptotically stable if

k >
c

a
.
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Proof The Jacobian matrix of the system (3.11) at the equilibrium point E1 =

(0, 0, 0) is given by

J1 =




−a a 0

0 c− ka 0

0 0 −b


 .

The characteristic equation of the Jacobian matrix J1 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b + (ka− c)

a2 = (ka− c)(a + b) + ab

a3 = ab(ka− c)

a1a2 − a3 = (a + b)(ab + (a + b)(ka− c) + (ka− c)2).

We see that a1 and a1a2−a3 satisfy the Routh-Hurwitz criteria when k > c
a
.

Thus, if k > c
a
, then the equilibrium point E1 = (0, 0, 0) is asymptotically

stable. ¤

Stability of the Equilibrium Point E2 = (β, β, c)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.1) as follows:

ẋ = a(y − x)

ẏ = −xz + cy + u(t) (3.12)

ż = xy − bz + dx2

where u(t) = −k(a(y − β)), k > 0.
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Theorem 3.2.8 The equilibrium point E2 = (β, β, c) is asymptotically stable if

k > 2.

Proof The Jacobian matrix of the system (3.12) at the equilibrium point E2 =

(β, β, c) is given by

J2 =




−a a 0

−c c− ka −β

β + 2dβ β −b


 .

The characteristic equation of the Jacobian matrix J2 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + ka

a2 = ab− bc + β2 + kab + ka2

a3 = 2abc + ka2b

a1a2 − a3 = bc(c− b) + (ka2 + 2kab)(a− c) + ab(k2a− 4c) + a2b + (a + b− c)β2

= +k2a3 + ab2(1 + k) + kaβ2.

We see that a1 and a1a2−a3 satisfy the Routh-Hurwitz criteria when k > 2.

Thus, if k > 2, then the equilibrium point E2 = (β, β, c) is asymptotically

stable. ¤

Stability of the Equilibrium Point E3 = (−β,−β, c)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.1) as follows:

ẋ = a(y − x)

ẏ = −xz + cy + u(t) (3.13)

ż = xy − bz + dx2
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where u(t) = −k(a(y + β)), k > 0.

Theorem 3.2.9 The equilibrium point E3 = (−β,−β, c) is asymptotically stable

if k > 2.

Proof The Jacobian matrix of the system (3.13) at the equilibrium point E3 =

(−β,−β, c) is given by

J3 =




−a a 0

−c c− ka β

−β − 2dβ −β −b


 .

The characteristic equation of the Jacobian matrix J3 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + ka

a2 = ab− bc + β2 + kab + ka2

a3 = 2abc + ka2b

a1a2 − a3 = bc(c− b) + (ka2 + 2kab)(a− c) + ab(k2a− 4c) + a2b + (a + b− c)β2

= +k2a3 + ab2(1 + k) + kaβ2.

We see that a1 and a1a2−a3 satisfy the Routh-Hurwitz criteria when k > 2.

Thus, if k > 2, then the equilibrium point E3 = (−β,−β, c) is asymptotically

stable. ¤

Stability of the Equilibrium Point E1 = (0, 0, 0)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.2) as follows:
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ẋ = a(y − x)

ẏ = −xz + cy + u(t) (3.14)

ż = xy − bz + dsin(x)

where u(t) = −kay, k > 0.

Theorem 3.2.10 The equilibrium point E1 = (0, 0, 0) is asymptotically stable if

k >
c

a
.

Proof The Jacobian matrix of the system (3.14) at the equilibrium point E1 =

(0, 0, 0) is given by

J1 =




−a a 0

0 c− ka 0

0 0 −b


 .

The characteristic equation of the Jacobian matrix J1 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b + (ka− c)

a2 = (ka− c)(a + b) + ab

a3 = ab(ka− c)

a1a2 − a3 = (a + b)(ab + (a + b)(ka− c) + (ka− c)2).

We see that a1 and a1a2−a3 satisfy the Routh-Hurwitz criteria when k > c
a
.

Thus, if k > c
a
, then the equilibrium point E1 = (0, 0, 0) is asymptotically

stable. ¤
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Stability of the Equilibrium Point E2 = (x1, x1, c)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.2) as follows:

ẋ = a(y − x)

ẏ = −xz + cy + u(t) (3.15)

ż = xy − bz + dsin(x)

where u(t) = −k(a(y − x1)), k > 0.

Theorem 3.2.11 The equilibrium point E2 = (x1, x1, c) is asymptotically stable

if k > 2x1+dcos(x1)
x1

.

Proof The Jacobian matrix of the system (3.15) at the equilibrium point E2 =

(x1, x1, c) is given by

J2 =




−a a 0

−c c− ka −x1

x1 + dcos(x1) x1 −b


 .

The characteristic equation of the Jacobian matrix J2 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + ka

a2 = ab− bc + x2
1 + kab + ka2

a3 = 2x2
1 + x1dcos(x1) + ka2b

a1a2 − a3 = bc(c− b) + (ka2 + 2kab)(a− c) + ab(k2a− 2c) + a(kx2
1 − 2x2

1 − x1dcos(x1))

= +k2a3 + ab2(1 + k) + x2
1(a + b− c) + a2b.

We see that a1 and a1a2 − a3 satisfy the Routh-Hurwitz criteria when k >

2x1+dcos(x1)
x1

. Thus, if k > 2x1+dcos(x1)
x1

, then the equilibrium point E2 = (x1, x1, c)

is asymptotically stable. ¤
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Stability of the Equilibrium Point E3 = (x2, x2, c)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.2) as follows:

ẋ = a(y − x)

ẏ = −xz + cy + u(t) (3.16)

ż = xy − bz + dsin(x)

where u(t) = −k(a(y − x2)), k > 0.

Theorem 3.2.12 The equilibrium point E3 = (x2, x2, c) is asymptotically stable

if k > 2x2+dcos(x2)
x2

.

Proof The Jacobian matrix of the system (3.16) at the equilibrium point E3 =

(x2, x2, c) is given by

J3 =




−a a 0

−c c− ka −x2

x2 + dcos(x2) x2 −b


 .

The characteristic equation of the Jacobian matrix J3 has the form

λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = a + b− c + ka

a2 = ab− bc + x2
2 + kab + ka2

a3 = 2x2
2 + x2dcos(x2) + ka2b

a1a2 − a3 = bc(c− b) + (ka2 + 2kab)(a− c) + ab(k2a− 2c) + a(kx2
2 − 2x2

2 − x2dcos(x2))

= +k2a3 + ab2(1 + k) + x2
2(a + b− c) + a2b.

We see that a1 and a1a2 − a3 satisfy the Routh-Hurwitz criteria when k >

2x2+dcos(x2)
x2

. Thus, if k > 2x2+dcos(x2)
x2

, then the equilibrium point E3 = (x2, x2, c)

is asymptotically stable. ¤
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Numerical Simulations

We will show a series of numerical experiments by using the fourth-order

Runge-Kutta method with step size 0.001. In Fig. 3.15-3.23, the parameters

a, b, c and d are chosen as a = 36, b = 3, c = 20 and d = 1. The control

is active at t = 10 for all simulations. In the first numerical experiment, we

intend to control the chaos to equilibrium point E1 = (0, 0, 0) of system (3.1).

Fig. 3.15-3.17 shows the time response of the states x, y and z of system (3.11)

time for k = 1. The initial condition are x = 10, y = 1 and z = 8. In the

second numerical experiment, we intend to control the chaos to equilibrium

point E2 = (
√

30,
√

30, 20) of system (3.1). Fig. 3.18-3.20 shows the time

response of the states x, y and z of system (3.12) with time for k = 3. The

initial condition are x = 10, y = 1 and z = 8. In the third numerical experiment,

we intend to control the chaos to equilibrium point E3 = (−√30,−√30, 20) of

system (3.1). Fig. 3.21-3.23 shows the time response of the states x, y and z of

system (3.13) with time for k = 3. The initial condition are x = 10, y = 1 and

z = 8. In the fourth numerical experiment, we intend to control the chaos to

equilibrium point E2 = (−2,−2, 40− 10sin(2)) of system (3.2). Fig. 3.24-3.26

shows the time response of the states x, y and z of system (3.15) with time for

k = 3. In Fig. 3.24-3.26, the parameters a, b, c and d are chosen as a = 40,

b = 0.1, c = 40 − 10sin(2) and d = 1. The control is active at t = 10 for

all simulations. The initial condition are x = 10, y = 1 and z = 8. In the

fifth numerical experiment, we intend to control the chaos to equilibrium point

E3 = (x2, x2,
4−sin(2)

1.5
) of system (3.2) where x2 is positive real root of g(x),

where g(x) = x2 + sin(x)− 4 + sin(2). Fig. 3.27-3.29 shows the time response

of the states x, y and z of system (3.16) with time for k = 3. In Fig. 3.27-3.29,

the parameters a, b, c and d are chosen as a = 1.2, b = 1.5, c = 4−sin(2)
1.5

and

d = 1. The control is active at t = 10 for all simulations. The initial condition

are x = 0.5, y = 1 and z = 1.5.
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Figure 3.15: The state x of the controlled system (3.11) responses with time

before and after control activation. The control is activated at t = 10, k = 1.
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Figure 3.16: The state y of the controlled system (3.11) responses with time

before and after control activation. The control is activated at t = 10, k = 1.
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Figure 3.17: The state z of the controlled system (3.11) responses with time

before and after control activation. The control is activated at t = 10, k = 1.
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Figure 3.18: The state x of the controlled system (3.12) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.19: The state y of the controlled system (3.12) responses with time

before and after control activation. The control is activated at t = 10, k = 3.

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

Figure 3.20: The state z of the controlled system (3.12) responses with time

before and after control activation. The control is activated at t = 10, k = 3.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



46

0 2 4 6 8 10 12 14 16 18 20
−20

−15

−10

−5

0

5

10

Figure 3.21: The state x of the controlled system (3.13) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.22: The state y of the controlled system (3.13) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.23: The state z of the controlled system (3.13) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.24: The state x of the controlled system (3.15) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.25: The state y of the controlled system (3.15) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.26: The state z of the controlled system (3.15) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.27: The state x of the controlled system (3.16) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.28: The state y of the controlled system (3.16) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.29: The state z of the controlled system (3.16) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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