12

CHAPTER 3
MAIN RESULTS

In this chapter we consider controlling chaos and synchronization of per-

turbed Li chaotic dynamical system.

3.1 The Perturbed Lu Chaotic Dynamical System

We will study the perturbed Liu chaotic dynamical system that is de-

scribed by system of ordinary differential equations

i = a(y—z)
y = —zz+cy

i = zy— bz + da?

where
x, y and z are the state variables.
a, b, c and d are positive real constants.

The equilibrium points of the system (3.1) are

El — (07070)a E2 = (57556)7 E3 =~ (_ﬁ7

be

where 3 = 5 d

Theorem 3.1.1 The equilibrium point Ey = (0,0,0) s
(i) asymptotically stable if a > ¢ and b > c.

(ii) unstable if a > ¢ and b < c.

(3.1)

—ﬁ,C)

Proof The Jacobian matrix of the system (3.1) at the equilibrium point F; =

(0,0,0) is given by
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—a a O
J1 = 0 ¢ 0
0 0 —=b

The characteristic equation of the Jacobian J; has the form
)\3+a1)\2+a2)\+a3 :0

where

ap = a+b—c
ays = ab—ac— be
a3 = —abc

ajas —az = (a+b)(a—-c)(b—c).

We see that a; and aqas — a3 satisfy the Routh-Hurwitz criteria when a > ¢
and b > c¢. Thus, if @ > ¢ and b > ¢, then the equilibrium point £; = (0,0, 0) is
asymptotically stable.

On the other hand, when a > ¢ and b < ¢, we have a;as —az < 0 which does
not satisfy the Routh-Hurwitz criteria and so the equilibrium point £; = (0,0, 0)

is unstable. O

Theorem 3.1.2 The equilibrium point Ey = (5,3, ¢) is
(i) asymptotically stable if a > 4ec.

(i1) unstable if 2¢ > a, ¢ > b and a + b > c.

Proof The Jacobian matrix of the system (3.1) at the equilibrium point Ey =
(8, 6,¢) is given by

J2

I
|
o
o
|
=<

B+2d3 B —b
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The characteristic equation of the Jacobian matrix J, is

N4+ a N+ a)+as3=0

where
ag = a+b—c
as = ab—bc+ >
as = 2abc
b*d(a — ¢) + ab(a — 3¢) + abd(a — 4¢) + ab* + bc*d
ajag — as = .

(1+4d)

We see that a; and a;as —ag satisfy the Routh-Hurwitz criteria when a > 4c.
Thus, if @ > 4¢, then the equilibrium point Ey = (0,3, ¢) is asymptotically
stable.

On the other hand, when 2¢ > a,c > b and a + b > ¢, we have aja; — a3z < 0
which does not satisfy the Routh-Hurwitz criteria and so the equilibrium point

Ey = (B, 5, ¢) is unstable. O

Theorem 3.1.3 The equilibrium point Es = (=3, —f3,¢) is
(i) asymptotically stable if a > 4c.

(ii) unstable if 2¢ > a, ¢ > b and a + b > c.

Proof The Jacobian matrix of the system (3.1) at the equilibrium point E5 =
(—8,—,c) is given by

—a a
J3 = —c c 0
—06—=2d6 -0 —b

The characteristic equation of the Jacobian matrix J3 has the form

N4+ a N+ a)+as3=0
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where
ag = a+b—c
as = ab—bc+ >

a3 = 2abc
b’d(a — ¢) + ab(a — 3¢) + abd(a — 4c) + ab® + bc*d
(1+d) '

10 —az =

We see that a; and ajas — as satisfy the Routh-Hurwitz criteria when a > 4c.
Thus, if a > 4c, then the equilibrium point E5 = (=, —[, ¢) is asymptotically
stable.

On the other hand, when 2¢ > a, ¢ > b and a+b > ¢, we have ajas —az < 0

which does not satisfy the Routh-Hurwitz criteria and so the equilibrium point

Es = (—f,—/,¢) is unstable. O

Next we study the perturbed Li chaotic dynamical system that is described

by system of ordinary differential equations
& = a(y—z)
y = —zz+cy (3.2)
Z = xy— bz +dsin(z)
where
x, y and z are the state variables.

a, b, c and d are positive real constants.

The equilibrium points of the system (3.2) are
El O (07070)7 E2 - (xlvxlac)v E3 - ($2,$2,C)

where 7 is negative real root of g(x), x5 is positive real root of g(x), where

g(z) = 2? + dsin(zx) — be.
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Theorem 3.1.4 The equilibrium point Ey = (0,0,0) of (3.2) is
(i) asymptotically stable if a > ¢ and b > c.

(ii) unstable if a > ¢ and b < c.

Proof The Jacobian matrix of the system (3.2) at the equilibrium point E; =
(0,0,0) is given by

—a a 0
Ji = 0O ¢ 0
0O 0 -b

The characteristic equation of the Jacobian matrix J; has the form
N4+ a N +a)+as3=0

where

ag = a+b—c
ay = ab— ac— bc
a3 = —abc

ajas —az = (a+0b)(a—c)(b—c).

We see that a; and ajas — ag satisfy the Routh-Hurwitz criteria when a > ¢
and b > ¢. Thus, if a > ¢ and b > ¢, then the equilibrium point £; = (0,0, 0) is
asymptotically stable.

On the other hand, when a > ¢ and b < ¢,we have aya, — ag < 0 which does
not satisfy the Routh-Hurwitz criteria and so the equilibrium point £, = (0,0, 0)

is unstable. [l

Theorem 3.1.5 The equilibrium point Ey = (x1, 21, ¢) is

(i) asymptotically stable if a > 2¢, b > \/x? + x1dcos(x1) and b > c.

(ii) unstable if 2¢ > a, b < \/x? + z1dcos(z,) and b < c.
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Proof The Jacobian matrix of the system (3.2) at the equilibrium point Fy =

(21,21, c¢) is given by

—a a 0
J2 — —C c —XI
x1 +dcos(xy) x —b

The characteristic equation of the Jacobian matrix J, has the form
AN+ N+ a)+a3 =0
where

ag = at+b—c
ag = ab—bc+ 23
az = 27+ zydcos(x)

aay —az = ab(a—2¢) + a(b? — 23 — x1dcos(zy)) + (b — ¢)(x] — be).

We see that a; and a;as — as satisfy the Routh-Hurwitz criteria when a > 2c,

b > \/x? + x1dcos(r,) and b > e. Thus, if a > 2¢, b > /2?2 + x1dcos(z;) and

b > ¢, then the equilibrium point Fy = (21, x1,¢) is asymptotically stable.

On the other hand, when 2¢ > a, b < \/2? 4+ z1dcos(x1) and b < ¢, we have
ajas — az < 0 which does not satisfy the Routh-Hurwitz criteria and so the

equilibrium point Fy = (x1, 1, ¢) is unstable. O

Theorem 3.1.6 The equilibrium point E3 = (xq,x2,¢) is

(i) asymptotically stable if a > 2¢, b > /a3 + xadcos(x2) and b < c.

(ii) unstable if 2a > ¢, b < \/x3 + zadcos(xs), a < Vbc and b < c.

Proof The Jacobian matrix of the system (3.2) at the equilibrium point F3 =

(29, T2, ¢) is given by
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—a a 0
J3 = —c c —I
To +dcos(xzy) x2 —b

The characteristic equation of the Jacobian matrix J; has the form
)\3+a1)\2—|—a2/\+a3 =0
where

ag = a+b—c
ag = ab—bc+ a5
as = 2x5+ zodcos(wy)

ayay —az = ab(a —2c) + a(b® — x5 — wadcos(zs)) + (c — b)(be — x3).

We see that a; and ayas —ag satisfy the Routh-Hurwitz criteria when a > 2c,

b > /23 + x3dcos(xz) and b < . Thus, if a > 2¢, b > /2% + zadcos(z2) and

b < ¢, then the equilibrium point E3 = (z3, z9, ¢) is asymptotically stable.

On the other hand, when 2a > ¢, b < /22 + xadcos(zs), a < Vbc and b < ¢,
we have ajas —az < 0 which does not satisfy the Routh-Hurwitz criteria and so

the equilibrium point E3 = (x4, 25, ¢) is unstable. O

3.1.1 Numerical Simulations

Numerical experiments are carried out to investigate perturbed Lu
chaotic dynamical system by using fourth-order Runge-Kutta method with time
step 0.001. In Fig. 3.1-3.3, the parameters a, b, ¢ and d are chosen as a = 36,

=3, ¢ = 20 and d = 1. The initial states are taken as x = 10, y = 1 and
z = 8. Fig. 3.1 shows the behavior of the states x, y and z of the system (3.1)

with time in xy-plane. Fig. 3.2 shows the behavior of the states x, y and 2
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of the system (3.1) with time in zz-plane. Fig. 3.3 shows the behavior of the
states x, y and z of the system (3.1) with time in yz-plane. In Fig. 3.4-3.6, the
parameters a, b, ¢ and d are chosen as a = 40, b = 0.1, ¢ = 40 — 10sin(2) and
d = 1. The initial states are taken as r = 10, y = 1 and z = 8. Fig. 3.4 shows
the behavior of the states z, y and z of the system (3.2) with time in xy-plane.
Fig. 3.5 shows the behavior of the states x, y and z of the system (3.2) with
time in zz-plane. Fig. 3.6 shows the behavior of the states x, y and z of the

system (3.2) with time in yz-plane. In Fig. 3.7-3.9, the parameters a, b, ¢ and

4—sin(2)

“~ and d = 1. The initial states are

d are chosen as a = 1.2, b= 1.5, ¢ =
taken as x = 10, y = 1 and z = 8. Fig. 3.7 shows the behavior of the states x, y
and z of the system (3.2) with time in zy-plane. Fig. 3.8 shows the behavior of
the states x, y and z of the system (3.2) with time in xz-plane. Fig. 3.9 shows
the behavior of the states z, y and z of the system (3.2) with time in yz-plane.

20

15

10

Figure 3.1: The chaotic attractor of perturbed Li chaotic dynamical system

(3.1) in the zy-plane where a = 36, b = 3, ¢ = 20 and d = 1.
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Figure 3.2: The chaotic attractor of perturbed Li chaotic dynamical system

(3.1) in the zz-plane where a = 36, b =3, ¢ =20 and d = 1.

45

40

351

301

251

20

151

101

20

Figure 3.3: The chaotic attractor of perturbed Li chaotic dynamical system

(3.1) in the yz-plane where a = 36, b = 3, ¢ = 20 and d = 1.
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Figure 3.4: The chaotic attractor of perturbed Li chaotic dynamical system

(3.2) in the zy-plane where a = 40, b = 0.1, ¢ = 40 — 10sin(2) and d = 1.
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Figure 3.5: The chaotic attractor of perturbed Li chaotic dynamical system

(3.2) in the zz-plane where a = 40, b = 0.1, ¢ = 40 — 10sin(2) and d = 1.
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Figure 3.6: The chaotic attractor of perturbed Li chaotic dynamical system

(3.2) in the yz-plane where a = 40, b = 0.1, ¢ = 40 — 10sin(2) and d = 1.
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Figure 3.7: The chaotic attractor of perturbed Li chaotic dynamical system

. a o _ 4—sin(2) 1 4
(3.2) in the xy-plane where a = 1.2, b= 1.5, c= — ¢~ and d = 1.
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Figure 3.8: The chaotic attractor of perturbed Li chaotic dynamical system

(3.2) in the zz-plane where a = 1.2, b = 1.5, ¢ = 47‘?2(2) and d = 1.
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Figure 3.9: The chaotic attractor of perturbed Li chaotic dynamical system

(3.2) in the yz-plane where a = 1.2, b = 1.5, ¢ = 47‘?’:7;(2) and d = 1.
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3.2 Controlling Chaos of Perturbed Lu System to
Equilibrium Point

In this section, the chaos of system (3.1) and system (3.2) are controlled
to one of three equilibrium points of the system. Feedback and bounded feed-
back controls are applied to achieve this goal. We shall study the case when

equilibrium points of (3.1) and (3.2) are unstable.

3.2.1 Feedback Control Method

The goal of linear feedback control is to control the chaotic behavior of
the system (3.1) and system (3.2) to one of three unstable equilibrium points
(E1, Ey or Ej3). For system (3.1), we assume that the controlled system is given
by

T = aly—x)+u
Yy = —xz+cy+us
3 = axy— bz +dx® + us,

where uq, us and ug are controllers that satisfy the following control law

t = aly—x)—kn(z—2)
y = —xz+cy—koly—17) (3.3)

5 = ay— bz +da® — kss(z — 2),
where £ = (7,9, Z) is an equilibrium point of system (3.1).

Stability of the Equilibrium Point F; = (0,0,0)

In this case ' = FE; and the controlled system (3.3) is in the form of
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T = aly—=x)—knz
y = —wz+(c—kn)y (3.4)

2 = zy—bz+dr?— kg2

Theorem 3.2.1 The equilibrium point Ey = (0,0,0) is asymptotically stable if

kll =0, k’gg > 0 and k‘zg > C.

Proof The Jacobian matrix of the system (3.4) at the equilibrium point F; =
(0,0,0) is given by

—a a 0
Jl . 0 C — kQQ 0
0 0 —b — ka3

The characteristic equation of the Jacobian matrix J; has the form
N+ @\ +agh+ a3 =0
where

ap = a+b—c+ ko + ka3
as = (a+b+ ks3)(kea —c) + ab+ akss
az = (ab+ aks3)(ka — )
ajag —az = (b+ (koo — ) + k3z)((a + b+ ksz)(kao — ¢) + ab + akss)

= +CL2(]€22 — C) —f- CL2b + CL2]€33.

We see that a; and ajas — a3 satisfy the Routh-Hurwitz criteria when ki = 0,
k33 > 0 and koo > c¢. Thus, if ki1 = 0, k33 > 0 and kyy > ¢, then the equilibrium

point Ey = (0,0,0) is asymptotically stable. O
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Stability of the Equilibrium Point F, = (5, 3, ¢)
In this case E' = FE» and the controlled system (3.3) is in the form of
t = aly—x)—kn(x—p0)

gy = —xz+cy—knly—7F) (3.5)

i = wy—bz+dr® — kss(z—c).

Theorem 3.2.2 The equilibrium point Ey = (3, 3, ¢) is asymptotically stable if

]{?11, ]{333 >0 and ]CQQ > C.

Proof The Jacobian matrix of the system (3.5) at the equilibrium point E, =
(8, 8,c) is given by

—a — kll a 0
JZ = —C C— k’gz —ﬁ
B+ 243 B —b — k33

The characteristic equation of the Jacobian matrix J, has the form

A+ AN+ a)+a3=0

where
a; = a+b—c+ky+ ko + ki3
az = (b+ ki + ksz)(kas — ¢) + a(b + koo + ks3) + b(k11 + ko) + k11kss + 32
ag = (kog —c)(bk11 + ki1ks3) + a(bkas + kaokss) + (2a + 2ad + kll)ﬂ2

ajas —az = [(a+b—c+ ko +ks3)(b+ ki + ksz) + ki) + ab+ (a(b + kaa + k33)

- +b<l€11 + k’QQ) -+ /{Jnkgg + 62)](1@2 -+ C) S ab(a - C) + kn(ab + CLk’QQ -+ Clkgg
i +bk11 + bk’gg + ]fllk‘?,g) + (Z(ak‘gg + (1]{533 + bkll + k11k33) + b(ab + Clkgg

= +bkyy + bkay + ki1kss + 52) + kss(ab + akss + b1y + bkag + k11kss + 52)-
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We see that a; and ajas — as satisfy the Routh-Hurwitz criteria when
kll,kgg > O, and ko > c. ThUS, if kll,kgg > O, and koy > c, then the equi—

librium point Fy = (3, 3, ¢) is asymptotically stable. O

Stability of the Equilibrium Point E5 = (-3, —f, ¢)

In this case £ = FEj3 and the controlled system (3.3) is in the form of

t = aly—x)—ku(z+0)
y = —xz+cy—kan(y+0) (3.6)

5 = ay— bz +dr* — kss(z —c).

Theorem 3.2.3 The equilibrium point E3 = (=3, —[,c) is asymptotically stable

Zf kll; k’gg >0 and k‘gg > cC.

Proof The Jacobian matrix of the system (3.6) at the equilibrium point E5 =
(5,0, ¢) is given by

—a — kll a 0
JB = —C Cc— ]{722 ﬁ
=245 =5  —b—ks
The characteristic equation of the Jacobian matrix J; has the form
N+ a X+ a4 a3 =0

where

a; = a+b—c+ kyy+ koo + k33
az = (b4 ki1 + kaz)(kaa — ¢) + a(b + koo + ks3) + b(k11 + ka2) + ki1kss + 32
as = (ko —c)(bky + k11kss) + a(bkag + kaokss) + (2a + 2ad + k1) 3

ajas —az = [(a+b—c+kay+ks3)(b+ ki + ksz) + ki) + ab+ (a(b + koo + ks3)

= +b(l€11 + kgz) -+ k11k33 + ﬁ2)](k’22 — C) + ab(a — C) + lﬁl(ab + akgg + akgg
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= +bkyy + bka + ki1kss) + a(akes + akss + bkiy + ki1kss) + b(ab + akss

= +bkyy + bkas + ki1kss + 52) + kss(ab + akss + bk1y + bkag + k11kss + ﬁQ)'

We see that a; and ajas — as satisfy the Routh-Hurwitz criteria when
kll,kgg > O, and ko > c. ThUS, if kll,kgg > O, and koy > c, then the equi—

librium point E3 = (—f, =0, ¢) is asymptotically stable. O

For system (3.2), we assume that the controlled system is given by

t = aly—z)+w
Yy = —xz+cy+us

Z = xy—bz+dsin(z) + us,
where uq, us and uz are controllers that satisfy the following control law

T = aly—x) — ki(x — )
y = —xz+cy—kaoly—y) (3.7)

Z = zy—bz+dsin(x) — kss(z — 2),

where E = (z,9, z) is an equilibrium point of system (3.2).

Stability of the Equilibrium Point £; = (0,0, 0)
In this case E = FE; and the controlled system (3.7) is in the form of
t = aly—x)— knx

gy = —zz+ (c—ka)y (3.8)

Z = ay—bz+dsin(x) — kszz.

Theorem 3.2.4 The equilibrium point Ey = (0,0,0) is asymptotically stable if

ki1 = O, kaz > 0 and koy > c.
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Proof The Jacobian matrix of the system (3.8) at the equilibrium point F; =
(0,0,0) is given by

—a a 0
Jl X 0 Cc — k22 0
0 0 —b — k33

The characteristic equation of the Jacobian matrix J; has the form
AN+ N+ a)+a3=0
where

ap = a+b—c+ ko + ka3
as = (a+b+ ks3)(ke —c) + ab+ akss
as = (ab+ aks3)(kyw — )
ajag —as = (b4 (kag —¢) 4+ ks3)((a + b+ kss) (koo — ¢) + ab + akss)

= +CL2(]{522 — C) + CL2b + CL2]€33.

We see that a; and ajas — ag satisfy the Routh-Hurwitz criteria when k;; = 0,
ksz > 0 and koy > c. Thus, if k11 = 0, k33 > 0 and kg > ¢, then the equilibrium

point F; = (0,0,0) is asymptotically stable. O
Stability of the Equilibrium Point Fy = (z1,z1,¢)
In this case E = F» and the controlled system (3.7) is in the form of

T = aly—x) —kn(x —z1)
gy = —xz+cy— kan(y— 1) (3.9)

Z = xy—bz+dsin(z) — kss3(z — ¢).



30

Theorem 3.2.5 The equilibrium point Fy = (x1,21,c¢) is asymptotically stable

Zf kll; ksz > 0 and koy > c.

Proof The Jacobian matrix of the system (3.9) at the equilibrium point Ey =

(21,21, c¢) is given by

—a — kll a 0
J2 = —C C — k’gg —X
x1 + dcos(z1) 1 —b — k33
The characteristic equation of the Jacobian matrix J; has the form
N4+ a N+ a)+as3=0

where

a1 = a+b—c+ ki + koo + k33

as = (b+ ki1 + ks3)(kaz — ¢) + a(b+ koo + ks3) + b(k11 + ko) + k11kss + 93%

as = (ko — c)(bkyy + ki1kss) + a(bkay + kaokss) + (227 + z1dcos(z1))a + ka3

araz —az = [(@+b—c+ ko +ks3)(b+ kit + ksz) + K3y + (a(b+ koo + ks3)
= +b(k11 + kog) + kiikss + 23)](kag — ¢) + a(ab — 227) + a(bkyy — x1dcos(x1))
= +ki1(ab+ aky + akss + bkyy + bkao + k11kss) + a(akas + akss + bkyy
= +kiikss) + blab+ aksz + bkyy + bloy + kirkss + 27) + ksz(ab + akss + by
= +bkoo + ki1kss + 27).
We see that a; and ajas — a3 satisfy the Routh-Hurwitz criteria when

k11,ksz > 0, and kg > c. Thus, if ki1, k33 > 0, and kys > ¢, then the equi-

librium point Fy = (21,21, ¢) is asymptotically stable. O

Stability of the Equilibrium Point F3 = (x9, 29, ¢)

In this case F = E5 and the controlled system (3.7) is in the form of
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T = aly—x) — ki(x — z9)
Yy = —xz+cy— kan(y— z2) (3.10)
Z = zy—bz+dsin(r) — ks3(z —c).

Theorem 3.2.6 The equilibrium point Es = (xq, 2, ¢) is asymptotically stable

Zf ]{?11, kﬁgg >0 and k‘zg > C.

Proof The Jacobian matrix of the system (3.10) at the equilibrium point E3 =

(x9, mo, €) is given by

—a — ]{?11 a 0
J3 = —C Cc— ]{522 —T9
Zo + dcos(z2) T —b — ks

The characteristic equation of the Jacobian matrix J3 has the form
N4+ a N +a)+a3=0
where

a; = a+b—c+ ki + koo + kss

ay = (b + ]{711 + k?33)(k522 — C) -+ CL(b + k?gz + k’gg) -+ b(k’ll + k?Qg) + k11k33 —+ l‘g

as = (k’gg — C) (bkn -+ k11k33) + (I(kaQ + k22]€33) o (QLU% -+ l’gdCOS((L’l))(Z + ]{711%%

ajao —az = [(CL -+ b—c —+ k22 + kgg)(b -+ kll + k33) + k%l + (CL(b —+ k22 + k‘gg)

= —|—b(k’11 + ]{?22) + ]{511]{’33 + {Eg)](k’gg — C) + a(ab - 21’%) + a(bk‘gg - IQdCOS(,IQ))

= +ki1(ab+ akyy + aksz + bk1y + bkao + ki1ks3) + a(akas + akss + bk

= +l€11]€33) -+ b(ab + OJ/{Z33 -+ bk‘n + bk22 -+ k11k33 + x%) -+ kgg(@b + ak33 + bkn

= +bkoy + ki1k33 + .CE%)

We see that a; and ajas — as satisfy the Routh-Hurwitz criteria when
k11, kss > 0, and key > c. Thus, if ki1, k33 > 0, and kyy > ¢, then the equi-

librium point F3 = (23, x9, ¢) is asymptotically stable. O
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Numerical Simulations

Numerical experiments are carried out to investigate controlled systems
by using fourth-order Runge-Kutta method with time step 0.001. In Fig. 3.10-
3.12, the parameters a, b, ¢ and d are chosen as a =36, b=3,c=20and d =1
to ensure the existence of chaos in the absence of control. The initial states are
taken as © = 10, y = 1 and z = 8. The equilibrium point E; = (0,0,0) of the
system (3.1) is stabilized for k13 = 0, koo = 25 and k33 = 1. Fig. 3.10 shows
the behavior of the states z, y and z of the controlled system (3.4) with time.
The control is active at ¢ = 10. The equilibrium point Ey = (\/%, V30, 20) of
the system (3.1) is stabilized for k3 = 1, koo = 22 and k33 = 3. Fig. 3.11 shows
the behavior of the states x,y and z of the controlled system (3.5) with time.
The control is active at ¢ = 10. The equilibrium point E5 = (—/30, —v/30, 20)
of the system (3.1) is stabilized for k1; = 1, koo = 22 and k33 = 3. Fig. 3.12
shows the behavior of the states x,y and z of the controlled system (3.6) with
time. The control is active at ¢ = 10. In Fig. 3.13, the parameters a, b, c
and d are chosen as a = 40, b = 0.1, ¢ = 40 — 10sin(2) and d = 1 to ensure
the existence of chaos in the absence of control. The initial states are taken as
x =10, y = 1 and z = 8. The equilibrium point Fy = (—2,—2,40 — 10sin(2))
of the system (3.2) is stabilized for k13 = 1, koo = 32 and k33 = 2. Fig. 3.13
shows the behavior of the states z, y and z of the controlled system (3.9) with

time. The control is active at t = 10. In Fig. 3.14, the parameters a, b, ¢ and d

4—sin(2)

% and d = 1 to ensure the existence of

are chosen asa =12, b=1.5, c =

chaos in the absence of control. The initial states are taken as z = 0.1, y = 0.2

and z = 0.3. The equilibrium point E3 = (x9, 2, 4_8112(2)) of the system (3.2)
is stabilized for ky; = 1, koo = 4 and k33 = 2 where x5 is positive real root of
g(z), where g(z) = 2 + sin(x) — 4 + sin(2). Fig. 3.14 shows the behavior of
the states =, y and z of the controlled system (3.10) with time. The control is

active at t = 10.
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Figure 3.10: The time responses for the states x, y and z of the controlled system
(3.4) before and after control activation with time. The control is activated at

175 10, ku = 0, k’zg = 25 and ]{?33 = 1.
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Figure 3.11: The time responses for the states z, y and z of the controlled system
(3.5) before and after control activation with time. The control is activated at

t= 10, /{511 = 1, ]{322 = 22 and ]{?33 = 3.
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Figure 3.12: The time responses for the states x, y and z of the controlled system
(3.6) before and after control activation with time. The control is activated at

175 10, ku = 1, k’gg = 22 and ]{?33 = 3.
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Figure 3.13: The time responses for the states z, y and z of the controlled system
(3.9) before and after control activation with time. The control is activated at

t= ].0, /{511 = 1, k22 = 32 and ]{733 = 2.
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Figure 3.14: The time responses for the states z, y and z of the controlled system
(3.10) before and after control activation with time. The control is activated at

t= 10, ku = 1, k’zg =4 and k33 = 2.

3.2.2 Bounded Feedback Control Method

In this section, we control chaos with bounded controller that vanishes

after the stabilization is achieved.

Stability of the Equilibrium Point F; = (0,0, 0)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.1) as follows:

& = aly—x)
y = —xz+cy+u(t) (3.11)

i = xy— bz + da?
where u(t) = —kay, k > 0.

Theorem 3.2.7 The equilibrium point Ey = (0,0,0) is asymptotically stable if
k>
a
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Proof The Jacobian matrix of the system (3.11) at the equilibrium point E; =
(0,0,0) is given by

—a a 0
Ji = 0 ¢c—ka O
0 0 —b

The characteristic equation of the Jacobian matrix J; has the form
N+ a X+ ad+ a3 =0
where
ap = a+b+ (ka—c)
ay = (ka—c)(a+0b)+ab
a3z = ab(ka—c)

aras —az = (a+b)(ab+ (a+b)(ka—c)+ (ka — c)?).

We see that a; and aias — a3 satisfy the Routh-Hurwitz criteria when & > <.
Thus, if & > £, then the equilibrium point £; = (0,0,0) is asymptotically
stable. 0

Stability of the Equilibrium Point £y = (3, 3, ¢)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.1) as follows:

& = aly—x)
gy = —zz+cy+u(t) (3.12)

i = zy— bz + da?

where u(t) = —k(a(y — 3)),k > 0.
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Theorem 3.2.8 The equilibrium point Fy = (3, 3, c) is asymptotically stable if

k> 2.

Proof The Jacobian matrix of the system (3.12) at the equilibrium point Ey =
(B3, B, c) is given by

—a a 0
Jy = —c c—ka =0
8428 B —b

The characteristic equation of the Jacobian matrix J, has the form

where
aq
a2
as
19 — Qg

A+ N+ as)+a3 =0

a+b—c+ka

ab — be + 3* + kab + ka®

2abc + ka*b

be(e —b) + (ka® + 2kab)(a — c) + ab(k*a — 4¢) + a*b + (a + b — )3

+k%a® + ab®(1 + k) + ka3*.

We see that a; and a;as — a3 satisfy the Routh-Hurwitz criteria when k& > 2.

Thus, if £ > 2, then the equilibrium point Ey = (3,0, ¢) is asymptotically

stable.

O

Stability of the Equilibrium Point F5 = (=3, —f, ¢)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.1) as follows:

& = aly—x)
y = —xz+cy+u(t) (3.13)

3 = xy—bz+da?
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where u(t) = —k(a(y + 5)), k > 0.

Theorem 3.2.9 The equilibrium point E3 = (—f3, =, ¢) is asymptotically stable
if k> 2.

Proof The Jacobian matrix of the system (3.13) at the equilibrium point E3 =
(=B, —p,c) is given by

—a a 0
J3 = —c c—ka [
—6—=2d6 —-pB —b

The characteristic equation of the Jacobian matrix J3 has the form
N4+ a N+ a)+a3=0
where

a; = a+b—c+ka
ag = ab—bc+ B*+ kab + ka®
as = 2abc+ ka®b
ajay —az = be(c—b) + (ka* + 2kab)(a — ¢) + ab(k*a — 4c) + a*b + (a + b — ¢)3?

= +k*a® 4 ab®(1 + k) + kaB>.

We see that a; and ajas — ag satisfy the Routh-Hurwitz criteria when k > 2.
Thus, if & > 2, then the equilibrium point E3 = (—f, —f3, ¢) is asymptotically
stable. O

Stability of the Equilibrium Point F; = (0,0,0)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.2) as follows:
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& = aly—z)
y = —xz+cy+ u(t) (3.14)

Z = zy—bz+dsin(x)
where u(t) = —kay, k > 0.

Theorem 3.2.10 The equilibrium point Ey = (0,0,0) is asymptotically stable if

C
k> —.
a

Proof The Jacobian matrix of the system (3.14) at the equilibrium point E; =
(0,0,0) is given by

—a a 0
Ji=1 0 c—ka 0
0 0 —b

The characteristic equation of the Jacobian matrix J; has the form
AN+ A+ a)+a3=0
where

ap = a+b+ (ka—c)
az = (ka—c)(a+b)+ab
a3 = ab(ka—c)

aay —az = (a+b)(ab+ (a+b)(ka—c)+ (ka —c)?).

We see that a; and ajas — as satisty the Routh-Hurwitz criteria when £ > <.
Thus, if & > £, then the equilibrium point £, = (0,0,0) is asymptotically
stable. 0
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Stability of the Equilibrium Point F, = (z1, 1, ¢)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.2) as follows:

& = a(y—x)
y = —xz+cy+u(t) (3.15)
Z = zy—bz+dsin(x)

where u(t) = —k(a(y — 1)),k > 0.

Theorem 3.2.11 The equilibrium point Ey = (x1,x1,¢) is asymptotically stable
if k> Zmutdeos(@y)

Proof The Jacobian matrix of the system (3.15) at the equilibrium point Fy =

(21,21, c) is given by

—a a 0
J2 = —C c—ka —X1
x1 + dcos(xq) 1 —b

The characteristic equation of the Jacobian matrix J, has the form
N+ arN +ad+ a3 =0
where
ay = a+b—c+ka
ag = ab—bc+ 27 + kab+ ka®

ag = 2x° + xydcos(x1) + ka®b

ajas —az = be(c—0b) + (ka® + 2kab)(a — ¢) + ab(k*a — 2¢) + a(ka? — 227 — x1dcos(z1))

= +k%a® +ab’(1+ k) + z7(a +b—c) + a®b.

We see that a; and ajas — ag satisfy the Routh-Hurwitz criteria when k& >

Zotdeos(@y) - Thyg if > 220E40s(@) then the equilibrium point By = (1,71, C)
1 x1

is asymptotically stable. 0
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Stability of the Equilibrium Point F5 = (29, 22, ¢)

In order to stabilize this equilibrium point by bounded feedback control,

the control is chosen for system (3.2) as follows:

& = a(y—x)
y = —xz+cy+u(t) (3.16)
Z = zy—bz+dsin(x)

where u(t) = —k(a(y — 22)),k > 0.

Theorem 3.2.12 The equilibrium point E3 = (x4, x2,c) is asymptotically stable
if k> Zzatdeos(@y)

x2
Proof The Jacobian matrix of the system (3.16) at the equilibrium point F5 =

(22,22, ¢) is given by

—a a 0
J3 = —c c—ka —xo
xo + dcos(xs) Ty —b

The characteristic equation of the Jacobian matrix J3 has the form
N+ arN +ad+ a3 =0
where
ay = a+b—c+ka
a; = ab—bc+ x5+ kab+ ka®

as = 2x3+ xodcos(zy) + ka’b

ajas —az = be(c—0b) + (ka® + 2kab)(a — ¢) + ab(k*a — 2¢) + a(ka3 — 213 — wodcos(x2))

= +k%a® +ab’(1+ k) + z3(a + b — ) + a®b.

We see that a; and ajas — ag satisfy the Routh-Hurwitz criteria when k& >

Zepdeos(wy) Ty if k> 222840s(@2) then the equilibrium point By = (T2, T3, C)
o x2

is asymptotically stable. 0
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Numerical Simulations

We will show a series of numerical experiments by using the fourth-order
Runge-Kutta method with step size 0.001. In Fig. 3.15-3.23, the parameters
a, b, ¢c and d are chosen as a = 36, b = 3, ¢ = 20 and d = 1. The control
is active at t = 10 for all simulations. In the first numerical experiment, we
intend to control the chaos to equilibrium point E; = (0,0,0) of system (3.1).
Fig. 3.15-3.17 shows the time response of the states =, y and z of system (3.11)
time for £ = 1. The initial condition are x = 10, ¥y = 1 and z = 8. In the
second numerical experiment, we intend to control the chaos to equilibrium
point E, = (+/30,v/30,20) of system (3.1). Fig. 3.18-3.20 shows the time
response of the states z, y and z of system (3.12) with time for £k = 3. The
initial condition are x = 10, y = 1 and z = 8. In the third numerical experiment,
we intend to control the chaos to equilibrium point F3 = (—\/%, —/30, 20) of
system (3.1). Fig. 3.21-3.23 shows the time response of the states z, y and z of
system (3.13) with time for £ = 3. The initial condition are z = 10, y = 1 and
z = 8. In the fourth numerical experiment, we intend to control the chaos to
equilibrium point Ey = (—2,—2,40 — 10sin(2)) of system (3.2). Fig. 3.24-3.26
shows the time response of the states x, y and z of system (3.15) with time for
k = 3. In Fig. 3.24-3.26, the parameters a, b, ¢ and d are chosen as a = 40,
b=0.1, ¢ = 40 — 10sin(2) and d = 1. The control is active at ¢ = 10 for
all simulations. The initial condition are x = 10, y = 1 and z = 8. In the

fiftth numerical experiment, we intend to control the chaos to equilibrium point

4—sin(2)
1.5

Es = (x9, 9, ) of system (3.2) where x5 is positive real root of g(z),
where g(z) = 2% + sin(z) — 4 + sin(2). Fig. 3.27-3.29 shows the time response
of the states z, y and z of system (3.16) with time for £ = 3. In Fig. 3.27-3.29,
the parameters a, b, ¢ and d are chosen as a = 1.2, b = 1.5, ¢ = % and
d = 1. The control is active at ¢ = 10 for all simulations. The initial condition

are x = 0.5,y =1 and z = 1.5.
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Figure 3.15: The state x of the controlled system (3.11) responses with time

before and after control activation. The control is activated at t = 10, k = 1.
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Figure 3.16: The state y of the controlled system (3.11) responses with time

before and after control activation. The control is activated at ¢ = 10, k = 1.
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Figure 3.17: The state z of the controlled system (3.11) responses with time

before and after control activation. The control is activated at t = 10, k = 1.
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Figure 3.18: The state x of the controlled system (3.12) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.19: The state y of the controlled system (3.12) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.20: The state z of the controlled system (3.12) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.21: The state x of the controlled system (3.13) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.22: The state y of the controlled system (3.13) responses with time

before and after control activation. The control is activated at ¢ = 10, k = 3.
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Figure 3.23: The state z of the controlled system (3.13) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.24: The state x of the controlled system (3.15) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.25: The state y of the controlled system (3.15) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.26: The state z of the controlled system (3.15) responses with time

before and after control activation. The control is activated at ¢ = 10, k = 3.
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Figure 3.27: The state x of the controlled system (3.16) responses with time

before and after control activation. The control is activated at t = 10, k = 3.
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Figure 3.28: The state y of the controlled system (3.16) responses with time

before and after control activation. The control is activated at ¢ = 10, k = 3.
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Figure 3.29: The state z of the controlled system (3.16) responses with time

before and after control activation. The control is activated at t = 10, k = 3.



