
CHAPTER 4

Synchronization of Perturbed Lü Chaotic

Dynamical System

To begin with, the definition of chaos synchronization used in this thesis is

given below.

For two nonlinear chaotic systems:

ẋ = f(t, x) (4.1)

ẏ = g(t, y) + u(t, x, y) (4.2)

where x, y ∈ Rn, f, g ∈ Cr[R+ × Rn,Rn], u ∈ Cr[R+ × Rn × Rn,Rn], r ≥ 1,

R+ is the set of non-negative real numbers.

Assume that (4.1) is the drive system, and (4.2) is the response system,

u(t, x, y) is the control vector. Response system and drive system are said to be

synchronic if for

∀x(t0), y(t0) ∈ Rn,

lim
t→∞

‖ x(t)− y(t) ‖= 0.
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4.1 Adaptive Synchronization of Perturbed Lü Chaotic

Dynamical System

In this section we consider adaptive synchronization of perturbed Lü sys-

tem. This approach can synchronize the chaotic systems with fully unmatched

parameters. The synchronization problem of perturbed Lü systems with fully

unknown parameters will be studied in which the adaptive controller will be

introduced.

The drive system is described by

ẋ = a(y − x)

ẏ = −xz + cy (4.3)

ż = xy − bz + f(x)

Suppose that the parameters of the system (4.3) are unknown or uncertain,

then the response system is given by

˙̃x = â(ỹ − x̃)− u1

˙̃y = −x̃z̃ + ĉỹ − u2 (4.4)

˙̃z = x̃ỹ − b̂z̃ + f(x̃)− u3

where â, b̂ and ĉ are parameters of the response system which need to be esti-

mated. Suppose that

u1 = k1ex

u2 = (k2 + c)ey (4.5)

u3 = k3ez + f(x̃)− f(x)

where ex = x̃− x, ey = ỹ − y and ez = z̃ − z and
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˙̂a = fa = −γβ(ỹ − x̃)ex

˙̂
b = fb = θz̃ez (4.6)

˙̂c = fc = −αỹey

where k1, k2, k3 ≥ 0 and γ, θ, β, α > 0 are constants.

Theorem 4.1.1 Suppose that |x| ≤ S < +∞, |y| ≤ S < +∞, |z| ≤ S < +∞,

γ, θ, β, α are positive constants. When k1, k2 and k3 ≥ 0 are properly chosen

so that the following matrix inequality holds,

P =




β(k1 + a) −1
2
(βa− S) −S

−1
2
(βa− S) k2 0

−S 0 k3 + b


 > 0 (4.7)

or k1, k2 and k3 can be chosen so that the following inequalities hold:

(i) A = β(k1 + a)k2 − 1

4
(βa− S)2 > 0

(ii) B = A(k3 + b)− k2S
2 > 0, (4.8)

then the two perturbed Lü systems (4.3) and (4.4) can be synchronized under

the adaptive control of (4.5) and (4.6).

Proof It is easy to see from (4.3) and (4.4) that the error dynamics can be

obtained as follows

ėx = â(ỹ − x̃)− a(y − x)− u1

ėy = ĉỹ − cy − x̃z̃ + xz − u2 (4.9)

ėz = −b̂z̃ + bz + x̃ỹ − xy + f(x̃)− f(x)− u3

Let ea = â− a, eb = b̂− b, ec = ĉ− c. Choose the following Lyapunov function:

V (ex, ey, ez) =
1

2
(βe2

x + e2
y + e2

z +
1

γ
e2

a +
1

θ
e2

b +
1

α
e2

c) (4.10)
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in which the differentiation of V along trajectories of (4.9) gives

V̇ = βexėx + eyėy + ez ėz +
1

γ
eaėa +

1

θ
ebėb +

1

α
ecėc

= βex[ea(ỹ − x̃) + a(ey − ex)− u1] + ey[ecỹ + cey − x̃ez − zex − u2]

+ez[x̃ey + yex − z̃eb − bez + f(x̃)− f(x)− u3] +
1

γ
eafa +

1

θ
ebfb +

1

α
ecfc

= βexea(ỹ − x̃) + βaex(ey − ex)− βexu1 + eyecỹ + ce2
y − zexey − eyu2 + yexez

−z̃ebez − be2
z + (f(x̃)− f(x))ez − ezu3 +

1

γ
eafa +

1

θ
ebfb +

1

α
ecfc

= βexea(ỹ − x̃) + βaexey − βae2
x − βk1e

2
x + eyecỹ + ce2

y − zexey − (k2 + c)e2
y + yexez

−z̃ebez − be2
z + (f(x̃)− f(x))ez − (k3ez + f(x̃)− f(x))ez +

1

γ
eafa +

1

θ
ebfb +

1

α
ecfc

= −β(k1 + a)e2
x − k2e

2
y − (k3 + b)e2

z + (βa− z)exey + yexez

+ea(
1

γ
fa + (ỹ − x̃)βex) + eb[

1

θ
fb − z̃ez] + ec[

1

α
fc + (ỹ)ey]

≤ −β(k1 + a)e2
x − k2e

2
y − (k3 + b)e2

z + (βa− S)|exey|+ S|exez| = −eT Pe

where e =
[
|ex| |ey| |ez|

]T

, P is as in (4.7). Thus the differentiation of

V (ex, ey, ez) is negative semi definite, which implies that the origin of error

system (4.9) is stable. We integrate both sides of V̇ with respect to time which

yields

∫ ∞

0

dV (τ)

dτ
dτ ≤ −

∫ ∞

0

β(k1 + a)e2
x(τ)dτ −

∫ ∞

0

k2e
2
y(τ)dτ −

∫ ∞

0

(k3 + b)e2
z(τ)dτ

+

∫ ∞

0

(βa− S)|ex(τ)ey(τ)|dτ +

∫ ∞

0

S|ex(τ)ez(τ)|dτ.

Thus,

V (∞)− V (0) ≤ −
∫ ∞

0

β(k1 + a)e2
x(τ)dτ −

∫ ∞

0

k2e
2
y(τ)dτ −

∫ ∞

0

(k3 + b)e2
z(τ)dτ

+

∫ ∞

0

(βa− S)|ex(τ)ey(τ)|dτ +

∫ ∞

0

S|ex(τ)ez(τ)|dτ.

V (0)− V (∞) ≥ +

∫ ∞

0

β(k1 + a)e2
x(τ)dτ +

∫ ∞

0

k2e
2
y(τ)dτ +

∫ ∞

0

(k3 + b)e2
z(τ)dτ

−
∫ ∞

0

(βa− S)|ex(τ)ey(τ)|dτ −
∫ ∞

0

S|ex(τ)ez(τ)|dτ.
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Since V̇ is negative or zero, V is either decreasing or constant which gives

V (0) ≥ V (+∞) ≥ 0. Then we obtain
∫ ∞

0

β(k1 + a)e2
x(τ)dτ +

∫ ∞

0

k2e
2
y(τ)dτ +

∫ ∞

0

(k3 + b)e2
z(τ)dτ

−
∫ ∞

0

(βa− S)|ex(τ)ey(τ)|dτ −
∫ ∞

0

S|ex(τ)ez(τ)|dτ ≤ V (0) < +∞.

It follows that √∫ ∞

0

β(k1 + a)e2
x(τ)dτ < +∞,

√∫ ∞

0

k2e2
y(τ)dτ < +∞,

√∫ ∞

0

(k3 + b)e2
z(τ)dτ < +∞

which indicates, according to Definition 2.1.1, that ex, ey, ez ∈ L2. We can use

(4.9) to show that ėx, ėy, ėz ∈ L∞. By Proposition 2.1.2 we obtain the errors

system (4.9) tend to zero as t → +∞. Therefore, the response system (4.4)

is synchronizing with the drive system (4.3) under the controller (4.5) and a

parameter estimation update law (4.6), provided that the condition (4.8) are

satisfied. ¤

Numerical Simulations

The numerical simulations are carried out using the fourth-order Runge-

Kutta method. The initial conditions of the drive and response systems are

(6, 4,−8) and (−5, 4, 5). The parameters of the drive system are a = 36, b = 3

and c = 20. f(x) = x2.

In order to choose the control parameters, S > |x|, S > |y| and S > |z|
must be estimated. Through simulations, we obtain S ≈ 60. Then choose

γ = α = β = θ = 1, and then choose k1 = 30, k2 = 90, k3 = 60 which satisfy

(4.8) and the initial values of the parameters â, b̂ and ĉ are all chosen to be 0, the

response system synchronizes with the drive system as shown in Fig. 4.1-4.3.
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Figure 4.1: The states x, x̃ of the coupled perturbed Lü system of equations

with the adaptive control is activated at the time t = 10.
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Figure 4.2: The states y, ỹ of the coupled perturbed Lü system of equations

with the adaptive control is activated at the time t = 10.
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Figure 4.3: The states z, z̃ of the coupled perturbed Lü system of equations

with the adaptive control is activated at the time t = 10.
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Figure 4.4: Changing parameters: â.
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Figure 4.5: Changing parameters: b̂.

0 2 4 6 8 10 12

x 10
4

−5

0

5

10

15

20

Figure 4.6: Changing parameters: ĉ.
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4.2 Synchronization via Pecora and Carroll method

In this section we will apply one of the most popular method for syn-

chronizing systems which was introduced by Pecora and Carroll (PC)[2]. Let

us consider an autonomous chaotic dynamical system

u̇ = f(u),

where u = (u1, u2, ..., un)T is an n-dimensional state vector, with f defining a

vector field f : Rn → Rn. The method of Pecora and Carroll decomposes the

dynamical system u̇ = f(u) into two subsystems

v̇ = g(v, w),

ẇ = h(v, w),

where v = (v1, v2, ..., vm)T and w = (wm+1, wm+2, ..., wn)T such that any second

subsystem (response)

ẇ′ = h(v, w′),

with the same driving v but with different variable w′ synchronizes (w → w′ as

t → +∞) with the original w-subsystem. The v − system and the w − system

are called the drive and the response systems, respectively. Let us build a

PC drive-response configuration with a drive system given by the Perturbed Lü

system (with three state variables denoted by subscript 1) and with a response

system given by the subspace containing the (x, z) variables. We will use the

chaotic signal y1 to drive the response subsystem whose variables are denoted

by subscript 2. The drive system is described by system

ẋ1 = a(y1 − x1)

ẏ1 = −x1z1 + cy1 (4.11)

ż1 = x1y1 − bz1 + f(x1)
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The response system is given by

ẋ2 = a(y1 − x2)

ż2 = x2y1 − bz2 + f(x2) (4.12)

Define the synchronization errors by

ex = x2 − x1 and ez = z2 − z1.

Using this notation and subtracting system (4.11) from system (4.12), we obtain

the error system

ėx = −aex, (4.13)

ėz = (y1 +
f(x2)− f(x1)

x2 − x1

)ex − bez.

The linear system of synchronization error (4.13) has two negative eigenval-

ues λ1 = −a and λ2 = −b and this implies that the zero solution of system

(4.13) satisfies

‖ex‖ → 0 as t → +∞ and ‖ez‖ → 0 as t → +∞. Hence, the zero solution of

the error system (4.13) is asymptotically stable and then the response system

(4.12) with y−drive configuration achieves synchonization.

Remark 1. Only one choice induces the appearance of chaos synchronization,

namely (x, z) driven by y. For the other possible choices (x, y) driven by z or

(y, z) driven by x, the Pecora and Carroll scheme did not succeed in achieving

synchronization.

Numerical Simulations

The numerical simulations are carried out using the fourth-order Runge-

Kutta method. The initial conditions of the drive and response systems are

(10, 1, 8) and (−5,−10). The parameters of the drive system are a = 36, b = 3

and c = 20. f(x) = x2. The response system synchronizes with the drive system

as shown in Fig. 4.7 and 4.8.
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Figure 4.7: The states x1, x2 of the coupled perturbed Lü system of equations

under Pecora and Carroll method.
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Figure 4.8: The states z1, z2 of the coupled perturbed Lü system of equations

under Pecora and Carroll method.
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4.3 Synchronization via one-way coupling

We take two identical chaotic systems u̇ = f(u) and u̇′ = f(u′) and

introduce a coupling term δu = (u − u′) into the second equation, which leads

to the coupled system

u̇ = f(u),

u̇′ = f(u′) + k(u− u′),

where k is a tuning parameter that controls the strength of the feedback into

the coupled system. We note that this kind of coupling does not change the

solution to the autonomous uncoupled system u̇ = f(u) and further, as δu → 0,

the driving system and the responding system essentially become uncoupled.

Our objective in this section is to study the chaos synchronization of the Per-

turbed Lü system by applying one-way coupling technique. In this method,

the behavior of the response system is dependent on the behavior of another

identical drive system where the latter is not influenced by the behavior of the

response system. We have two Perturbed Lü systems where the drive system

(4.11) with three state variables denoted by subscript 1 drives the response sys-

tem which has identical equations denoted by subscript 2. However, the initial

conditions on the drive system is different from that of the response system.

The Perturbed Lü response systems are described by

ẋ2 = a(y2 − x2)

ẏ2 = −x2z2 + cy2 − k(y2 − y1) (4.14)

ż2 = x2y2 − bz2 + f(x2)

where k is the coupling strength. Introducing the error variables

ex = x2 − x1, ey = y2 − y1 and ez = z2 − z1.

Using the previous notations, the error dynamical system is obtained by sub-
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tracting system (4.11) from system (4.14) and has the form

ėx = −a(ey − ex),

ėy = (c− k)ey − x2ez − z1ex, (4.15)

ėz = x2ey + y1ex − bez + f(x2)− f(x1).

Theorem 4.3.1 The two Perturbed Lü system (4.11)and (4.14) are synchro-

nized if the feedback control parameter k is chosen so that k ≥ max(k1, k2)

where,

k1 = minµ

(
c +

(µa + S)2

4aµ

)
, k2 = minµ


c +

b(µa + S)2

4abµ− (S +
∣∣∣f(x2)−f(x1)

x2−x1

∣∣∣
∣∣∣
S
)2




and

µ >
(S +

∣∣∣f(x2)−f(x1)
x2−x1

∣∣∣
∣∣∣
S
)2

4ab
, (4.16)

where f : R → R is satisfied Lipschitz condition, |f(x2) − f(x1)| ≤ c|x2 − x1|,
∀x1, x2 ∈ R, c is positive constant, or differentiable.

Proof. In order to achieve the complete synchronization of the drive and

response systems (4.11)and (4.14) we will prove that the zero solution of the

error dynamical system (4.15) is asymptotically stable. Let us define a Lyapunov

function for system (4.15) in the form

V (ex, ey, ez) =
1

2
(µe2

x + e2
y + e2

z) (4.17)

Then V is positive definite and its derivative with respect to (4.15) is given by

V̇ = exėx + eyėy + ez ėz

= µex(a(ex − ey)) + ey((c− k)ey − x2ez − z1ex)

+ez(x2ey + y1ex − bez + f(x2)− f(x1))

= µaexey − µae2
x + (c− k)e2

y − z1exey + y1exez − be2
z + (f(x2)− f(x1))ez
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= −µae2
x − (k − c)e2

y − be2
z + (µa− z1)exey + (y1 +

f(x2)− f(x1)

x2 − x1

)exez

≤ −µae2
x − (k − c)e2

y − be2
z + (µa + S)exey + (S + |f(x2)− f(x1)

x2 − x1

|
∣∣∣
S
)exez

= −eT Pe,

where e = [|ex| |ey| |ez| ]T and

P =




µa − (µa+S)
2

−1
2
(S +

∣∣∣f(x2)−f(x1)
x2−x1

∣∣∣
∣∣∣
S
)

− (µa+S)
2

k − c 0

−1
2
(S +

∣∣∣f(x2)−f(x1)
x2−x1

∣∣∣
∣∣∣
S
) 0 b


 . (4.18)

The matrix P is positive definite if k ≥ k̂ where k̂ = max(k1, k2),

k1 = minµ

(
c +

(µa + S)2

4aµ

)
, k2 = minµ


c +

b(µa + S)2

4abµ− (S +
∣∣∣f(x2)−f(x1)

x2−x1

∣∣∣
∣∣∣
S
)2


 .

The parameter µ is chosen such that 4µab− (S +
∣∣∣f(x2)−f(x1)

x2−x1

∣∣∣
∣∣∣
S
)2 > 0. There-

fore, V̇ is negative semi definite which implies that the origin of the error system

(4.15) is stable, By the same argument in the proof of Theorem (4.1.1), we ob-

tain the errors system (4.15) tend to zero as t tends to +∞. Therefore, the

response system (4.14) is synchronizing with the drive system (4.11) provided

that the condition (4.16) are satisfied. ¤

Numerical Simulations

The numerical simulations are carried out using the fourth-order Runge-

Kutta method. The initial conditions of the drive and response systems are

(16,−4, 10) and (−20, 8, 15). The parameters of the drive system are a = 36,

b = 3 and c = 20. f(x) = x2. Fig. 4.9-4.11 shows the time response of the

states (x1, y1, z1) for the drive system (4.11) and the time response of the states

(x2, y2, z2) of the response system (4.14) where the feedback control k = 35 is

activated at t = 10.
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Figure 4.9: The states x1, x2 of the coupled perturbed Lü system of equations

with the one-way coupling is activated at the time t = 10.
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Figure 4.10: The states y1, y2 of the coupled perturbed Lü system of equations

with the one-way coupling is activated at the time t = 10.
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Figure 4.11: The states z1, z2 of the coupled perturbed Lü system of equations

with the one-way coupling is activated at the time t = 10.
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