
CHAPTER 5

CONCLUSION

In this work, we study conditions on the parameters that make the equi-

librium points of (3.1), (3.2) asymptotically stable and conditions that make the

equilibrium points of (3.1), (3.2) unstable. The results are summarized as follows:

1. The Perturbed Lü Chaotic Dynamical System.

Theorem 3.1.1 The equilibrium point E1 = (0, 0, 0) is

(i) asymptotically stable if a > c and b > c.

(ii) unstable if a > c and b < c.

Theorem 3.1.2 The equilibrium point E2 = (β, β, c) is

(i) asymptotically stable if a > 4c.

(ii) unstable if 2c > a, c > b and a + b > c.

Theorem 3.1.3 The equilibrium point E3 = (−β,−β, c) is

(i) asymptotically stable if a > 4c.

(ii) unstable if 2c > a, c > b and a + b > c.

Theorem 3.1.4 The equilibrium point E1 = (0, 0, 0) is

(i) asymptotically stable if a > c and b > c.

(ii) unstable if a > c and b < c.

Theorem 3.1.5 The equilibrium point E2 = (x1, x1, c) is

(i) asymptotically stable if a > 2c, b >
√

x2
1 + x1dcos(x1) and b > c.

(ii) unstable if 2c > a, b <
√

x2
1 + x1dcos(x1) and b < c.

Theorem 3.1.6 The equilibrium point E3 = (x2, x2, c) is

(i) asymptotically stable if a > 2c, b >
√

x2
2 + x2dcos(x2) and b < c.

(ii) unstable if 2a > c, b <
√

x2
2 + x2dcos(x2), a <

√
bc and b < c.

We have presented two methods for controlling chaos of the perturbed Lü

chaotic dynamical system (3.1) and (3.2). Both methods, feedback control and

bounded feedback control, suppress the chaotic behavior of system (3.1) and (3.2)

to one of the three steady states E1, E2 and E3.
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2 Controlling Chaos of Perturbed Lü System to Equilibrium Point

2.1 Feedback Control Method

Theorem 3.2.1 The equilibrium point E1 = (0, 0, 0) is asymptotically sta-

ble if k11 = 0, k33 > 0 and k22 > c.

Theorem 3.2.2 The equilibrium point E2 = (β, β, c) is asymptotically sta-

ble if k11, k33 > 0 and k22 > c.

Theorem 3.2.3 The equilibrium point E3 = (−β,−β, c) is asymptotically

stable if k11, k33 > 0 and k22 > c.

Theorem 3.2.4 The equilibrium point E1 = (0, 0, 0) is asymptotically sta-

ble if k11 = 0, k33 > 0 and k22 > c.

Theorem 3.2.5 The equilibrium point E2 = (x1, x1, c) is asymptotically

stable if k11, k33 > 0 and k22 > c.

Theorem 3.2.6 The equilibrium point E3 = (x2, x2, c) is asymptotically

stable if k11, k33 > 0 and k22 > c.

2.2 Bounded Feedback Control Method

Theorem 3.2.7 The equilibrium point E1 = (0, 0, 0) is asymptotically sta-

ble if k >
c

a
.

Theorem 3.2.8 The equilibrium point E2 = (β, β, c) is asymptotically sta-

ble if k > 2.

Theorem 3.2.9 The equilibrium point E3 = (−β,−β, c) is asymptotically

stable if k > 2.

Theorem 3.2.10 The equilibrium point E1 = (0, 0, 0) is asymptotically

stable if k >
c

a
.

Theorem 3.2.11 The equilibrium point E2 = (x1, x1, c) is asymptotically

stable if k > 2x1+dcos(x1)
x1

.

Theorem 3.2.12 The equilibrium point E3 = (x2, x2, c) is asymptotically

stable if k > 2x2+dcos(x2)
x2

.

3. Synchronization of Perturbed Lü Chaotic Dynamical System.

3.1 Adaptive Synchronization of Perturbed Lü Chaotic Dynamical System.

Theorem 4.1.1 Suppose that |x| ≤ S < +∞, |y| ≤ S < +∞,
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|z| ≤ S < +∞, γ, θ, β, α are positive constants. When k1, k2 and k3 ≥ 0 are

properly chosen so that the following matrix inequality holds,

P =




β(k1 + a) −1
2
(βa− S) −S

−1
2
(βa− S) k2 0

−S 0 k3 + b


 > 0

or k1, k2 and k3 can be chosen so that the following inequalities hold:

(i) A = β(k1 + a)k2 − 1

4
(βa− S)2 > 0

(ii) B = A(k3 + b)− k2S
2 > 0,

then the two perturbed Lü systems (4.3) and (4.4) can be synchronized under the

adaptive control of (4.5) and (4.6)

3.2 Synchronization via Pecora and Carroll method.

The synchronization errors by

ex = x2 − x1 and ez = z2 − z1.

Using this notation and subtracting system (4.11) from system (4.12), we obtain

the error system

ėx = −aex,

ėz = (y1 +
f(x2)− f(x1)

x2 − x1

)ex − bez.

The linear system of synchronization error has two negative eigenvalues

λ1 = −a and λ2 = −b and this implies that the zero solution of system satisfies

‖ex‖ → 0 as t → +∞ and ‖ez‖ → 0 as t → +∞ Hence the zero solution

of the error system is asymptotically stable and then the response system with

y−drive configuration achieves synchonization.

Remark 1. Only one choice induces the appearance of chaos synchroniza-

tion, namely (x, z) driven by y. For the other possible choices (x, y) driven by z

or (y, z) driven by x, the Pecora and Carroll scheme did not succeed in achieving

synchronization.

3.3 Synchronization via one-way coupling.
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Theorem 4.3.1 The two Perturbed Lü system (3.27)and (3.30) are syn-

chronized if the feedback control parameter k is chosen so that k ≥ max(k1, k2)

where,

k1 = minµ

(
c +

(µa + S)2

4aµ

)
, k2 = minµ


c +

b(µa + S)2

4abµ− (S +
∣∣∣f(x2)−f(x1)

x2−x1

∣∣∣
∣∣∣∣
S

)2




and

µ >
(S +

∣∣∣f(x2)−f(x1)
x2−x1

∣∣∣
∣∣∣
S
)2

4ab

where f : R → R is satisfied Lipschitz condition, |f(x2) − f(x1)| ≤ c|x2 − x1|,
∀x1, x2 ∈ R, c is positive constant, or differentiable.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d


