TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract in Thai	iv
Abstract in English	v
List of illustrations	viii
Chapter 1 Introduction	
Chapter 2 Preliminaries	- 3
2.1 Stability	3
2.1.1 Definition	3
2.1.2 Algebraic Criteria for Linear Systems	4
2.1.3 Lyapunov Theory	5
2.1.4 Application of Lyapunov Theory to Linear Sy	rstems 6
2.2 Routh-Hurwitz Theorem	6
2.3 Fourth-Order Runge-Kutta Method	8
2.4 Matrix Types	8
2.4.1 Symmetry Matrix	8
2.4.2 Positive Definite Matrix	8
2.4.3 Positive Semidefinite Matrix.	Vensit 9
2.4.4 Negative Definite Matrix	• • • • • • • • 9
2.4.5 Negative Semidefinite Matrix	
2.5 Synchronization	9
2.6 Terminology	11

Chapter 3	Main results	12
	3.1 The Perturbed Lü Chaotic Dynamical System	12
	3.1.1 Numerical Simulations	18
	3.2 Controlling Chaos of Perturbed Lü System to Equilibrium	
	Point	24
	3.2.1 Feedback Control Method	24
	3.2.2 Bounded Feedback Control Method	35
Chapter 4	Synchronization of Perturbed Lü Chaotic Dynamical System	51
	4.1 Synchronization of Perturbed Lü Chaotic Dynamical System.	52
	4.2 Synchronization via Pecora and Carroll method	59
	4.3 Synchronization via one-way coupling	62
Chapter 5	Conclusion	67
Bibliograpl	ny	71
Vita		72

ลิฮสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figure

Page

3.1	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.1) in the <i>xy</i> -plane where $a = 36, b = 3, c = 20$ and $d = 1, \ldots$ 19
3.2	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.1) in the <i>xz</i> -plane where $a = 36, b = 3, c = 20$ and $d = 1, \ldots$ 20
3.3	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.1) in the <i>yz</i> -plane where $a = 36$, $b = 3$, $c = 20$ and $d = 1$ 20
3.4	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.2) in the <i>xy</i> -plane where $a = 40, b = 0.1, c = 40 - 10sin(2)$
	and $d = 1$
3.5	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.2) in the <i>xz</i> -plane where $a = 40, b = 0.1, c = 40 - 10sin(2)$
	and $d = 1$
3.6	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.2) in the yz-plane where $a = 40, b = 0.1, c = 40 - 10sin(2)$
	and $d = 1$
3.7	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.2) in the <i>xy</i> -plane where $a = 1.2, b = 1.5, c = \frac{4-\sin(2)}{1.5}$ and $d = 1.$. 22
3.8	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.2) in the <i>xz</i> -plane where $a = 1.2, b = 1.5, c = \frac{4-\sin(2)}{1.5}$ and $d = 1.$. 23
3.9	The chaotic attractor of perturbed Lü chaotic dynamical system
	(3.2) in the yz-plane where $a = 1.2, b = 1.5, c = \frac{4-\sin(2)}{1.5}$ and $d = 1.$. 23
3.10	The time responses for the states x, y and z of the controlled system
	(3.4) before and after control activation with time. The control is
	activated at $t = 10, k_{11} = 0, k_{22} = 25$ and $k_{33} = 1. \dots$ 33
3.11	The time responses for the states x, y and z of the controlled system
	(3.5) before and after control activation with time. The control is

	activated at $t = 10, k_{11} = 1, k_{22} = 22$ and $k_{33} = 3. \dots \dots 33$
3.12	The time responses for the states x, y and z of the controlled system
	(3.6) before and after control activation with time. The control is
	activated at $t = 10$, $k_{11} = 1$, $k_{22} = 22$ and $k_{33} = 3$
3.13	The time responses for the states x, y and z of the controlled system
	(3.9) before and after control activation with time. The control is
	activated at $t = 10$, $k_{11} = 1$, $k_{22} = 32$ and $k_{33} = 2. \dots $
3.14	The time responses for the states x, y and z of the controlled system
	(3.10) before and after control activation with time. The control is
	activated at $t = 10$, $k_{11} = 1$, $k_{22} = 4$ and $k_{33} = 2$
3.15	The state x of the controlled system (3.11) respond with time
	before and after control activation. The control is activated at
	$t = 10, k = 1 \dots 43$
3.16	The state y of the controlled system (3.11) responses with time
	before and after control activation. The control is activated at
	$t = 10, k = 1 \dots 43$
3.17	The state z of the controlled system (3.11) responses with time
	before and after control activation. The control is activated at
	$t = 10, k = 1 \dots \dots$
3.18	The state x of the controlled system (3.12) responses with time
	before and after control activation. The control is activated at
	$t = 10, k = 3 \dots \dots$
3.19	The state y of the controlled system (3.12) responses with time
	before and after control activation. The control is activated at
	$t = 10, k = 3 \dots \dots$
3.20	The state z of the controlled system (3.12) responses with time
	before and after control activation. The control is activated at
	$t = 10, k = 3 \dots 45$
3.21	The state x of the controlled system (3.13) responses with time
	before and after control activation. The control is activated at

	$t = 10, k = 3 \dots \dots$	46
3.22	The state y of the controlled system (3.13) responses with time	
	before and after control activation. The control is activated at	
	$t = 10, k = 3 \dots \dots$	46
3.23	The state z of the controlled system (3.13) responses with time	
	before and after control activation. The control is activated at	
	$t = 10, k = 3 \dots \dots$	47
3.24	The state x of the controlled system (3.15) responses with time	
	before and after control activation. The control is activated at	
	$t = 10, k = 3 \dots \dots$	47
3.25	The state y of the controlled system (3.15) responses with time	
	before and after control activation. The control is activated at	
	$t = 10, k = 3 \dots \dots$	48
3.26	The state z of the controlled system (3.15) responses with time	
	before and after control activation. The control is activated at	
	$t = 10, k = 3 \dots \dots$	48
3.27	The state x of the controlled system (3.16) responses with time	
	before and after control activation. The control is activated at	
	$t = 10, k = 3 \dots \dots$	49
3.28	The state y of the controlled system (3.16) responses with time	
	before and after control activation. The control is activated at	
		49
3.29	The state z of the controlled system (3.16) responses with time	
	before and after control activation. The control is activated at	
	$t = 10, k = 3 \dots \dots$	50
4.1	The states x , \tilde{x} of the coupled perturbed Lü system of equations with	
	the adaptive control is activated at the time $t = 10. \dots \dots \dots$	56
4.2	The states y, \tilde{y} of the coupled perturbed Lü system of equations with	
	the adaptive control is activated at the time $t = 10. \dots \dots \dots$	56
4.3	The states z, \tilde{z} of the coupled perturbed Lü system of equations with	

	the adaptive control is activated at the time $t = 10. \dots \dots \dots$	57
4.4	Changing parameters: \hat{a}	57
4.5	Changing parameters: \hat{b}	58
4.6	Changing parameters: \hat{c}	58
4.7	The states x_1 , x_2 of the coupled perturbed Lü system of equations	
	under Pecora and Carroll method	61
4.8	The states z_1 , z_2 of the coupled perturbed Lü system of equations	
	under Pecora and Carroll method	61
4.9	The states x_1, x_2 of the coupled perturbed Lü system of equations	
	with the one-way coupling is activated at the time $t = 10$	65
4.10	The states y_1, y_2 of the coupled perturbed Lü system of equations	
	with the one-way coupling is activated at the time $t = 10. \ldots$	65
4.11	The states z_1 , z_2 of the coupled perturbed Lü system of equations	
	with the one-way coupling is activated at the time $t = 10$	66

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved