TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	ix
LIST OF ILLUSTRATIONS	xiv
LIST OF TABLES	xviii
ABBREVIATIONS	xix
CHAPTER I: INTRODUCTION	
1.1 Statement of problems	1
1.2 Literature review	2
1.2.1 The immune system	2
1.2.1.1 Innate immunity	3
1.2.1.2 Adaptive immunity	4
1.2.1.2.1 Humoral immunity	7
1.2.1.2.2 Cell-mediated immunity	9
1.2.1.3 Cytokines	12
1.2.1.3.1 Interleukin-2	12
1.2.1.3.2 Tumor necrosis factor-α	13
1.2.1.4 The immune cells	14
1.2.1.4.1 Lymphocytes	14
1.2.1.4.2 Macrophages	15
DOY 1.2.1.5 Nitric oxide OY Chiang Mai Univel	16
1.2.2 Mycotoxins	19
1.2.2.1 Aflatoxin B ₁	20
1.2.2.1.1 Classification and chemical structure	20
1.2.2.1.2 General toxic effects	21
1.2.2.1.3 Metabolism and mechanism of action	21
1.2.2.1.4 Toxicity and carcinogenicity	22

24

1.2.2.2 Deoxynivalenol

1.2.2.2.1 Classification and chemical structure	24
1.2.2.2.2 General toxic effects	24
1.2.2.2.3 Mechanism of action	25
1.2.2.2.4 Toxicity and carcinogenicity	25
1.2.2.3 Fumonisin B ₁	26
1.2.2.3.1 Classification and chemical structure	26
1.2.2.3.2 General toxic effects	27
1.2.2.3.3 Mechanism of action	27
1.2.2.3.4 Toxicity and carcinogenicity	28
1.2.3 Immunotoxicity of mycotoxins	29
1.2.3.1 Effect of AFB ₁ on the immune system	29
1.2.3.1.1 Cellular effects	29
1.2.3.1.2 Humoral effects	33
1.2.3.1.3 Host resistance	33
1.2.3.1.4 Mechanism of immunosuppression	34
1.2.3.2 Effect of DON on the immune system	36
1.2.3.2.1 Cellular effects	36
1.2.3.2.2 Humoral effects	40
1.2.3.2.3 Host resistance	42
1.2.3.2.4 Effect of DON on lymphocyte subsets, macrophages and	43
cytokine expression and production	
1.2.3.2.5 Mechanism of immunomodulation	45
1.2.3.3 Effect of FB ₁ on the immune system	46
1.2.3.3.1 Cellular effects	46
1.2.3.3.2 Humoral effects	47
1.2.3.3.3 Mechanism of immunomodulation	48
1.2.4 Natural co-occurrence of mycotoxins	49
1.2.5 Medicinal plants	50
1.2.5.1 Immunomodulation by medicinal plants	50

1.2.5.2 Centella asiatica (Linn.) Urban	52
1.2.5.2.1 Chemical composition	52
1.2.5.2.2 Pharmacological activities	53
1.2.5.3 Rhinacanthus nasutus (Linn.) Kurz	59
1.2.5.3.1 Chemical composition	59
1.2.5.3.2 Pharmacological activities	59
1.3 Objectives	62
CHAPTER II: MATERIALS AND METHODS	
2.1 Chemicals and materials	63
2.2 Screening for immunostimulating activity from Thai medicinal plants	63
2.2.1 Plant materials	63
2.2.2 Plant extraction	5 63
2.2.3 Preparation of peripheral blood mononuclear cells (PBMCs)	67
2.2.4 Lymphocyte activation assay	67
2.3 Effects of <i>C. asiatica</i> and <i>R. nasutus</i> extracts on lymphocytes	68
2.3.1 Effects of C. asiatica and R. nasutus extracts on lymphocyte	68
mitogenesis	
2.3.2 Effects of C. asiatica and R. nasutus extracts on cytokine production	69
2.3.2.1 Culture condition	69
2.3.2.2 Determination of human IL-2 and TNF- α	69
2.4 Effects of C. asiatica and R. nasutus extracts on macrophages	70
2.4.1 Cell culture	70
2.4.2 Nitrite assay	70
2.4.3 TNF-α quantification	72
2.4.4 Total RNA isolation	73
2.4.5 Reverse transcription-polymerase chain reaction (RT-PCR)	74
2.4.6 Determination of macrophage-mediated cytolytic activity	75
2.4.7 MTT assay	76
2.5 Effects of C. asiatica and R. nasutus extract on specific antibody production	77

2.5.1 Animals	77
2.5.2 Humoral antibody response to BSA	77
2.5.3 Measurement of antibody production in serum	77
2.6 Effects of mycotoxin mixtures on the immune cells	79
2.6.1 Effect of mycotoxin mixtures on lymphocytes	79
2.6.2 Effect of mycotoxin mixtures on macrophages	79
2.7 Modulation effect of C. asiatica and R. nasutus extraxts on mycotoxin	80
induced-immunotoxicity	
2.7.1 Effect on lymphocytes	80
2.7.2 Effect on macrophages	80
2.8 Statistical analysis	80
CHAPTER III: RESULTS	
3.1 Screening for immunostimulating activity from Thai medicinal plants	80
3.1.1 Effect of water extracts on lymphocyte mitogenesis	80
3.1.2 Effect of ethanol extracts on lymphocyte mitogenesis	86
3.2 Effects of C. asiatica and R. nasutus extracts on lymphocytes	91
3.2.1 Effects of C. asiatica and R. nasutus extracts on lymphocyte	94
mitogenesis	
3.2.2 Effects of C. asiatica and R. nasutus extracts on cytokine production	99
3.3 Effects of C. asiatica and R. nasutus extracts on macrophages	103
3.3.1 Cytotoxicity of C. asiatica and R. nasutus extracts on J774.2 mouse	103
macrophages	
3.3.2 Effect of C. asiatica and R. nasutus extracts on nitric oxide production	104
3.3.3 Effects of <i>C. asiatica</i> and <i>R. nasutus</i> extracts on TNF-α production	109
3.3.4 Effect of C. asiatica and R. nasutus extracts on iNOS and TNF-α gene	112
expression	
3.3.5 Effect of C. asiatica and R. nasutus extracts on macrophage-mediated	115
cytolytic activity	
3.4 Effects of C. asiatica and R. nasutus extracts on specific antibody production	116
in vivo	

3.5 Effect of mycotoxin mixtures on the immune cells	117	
3.5.1 Effect of individual mycotoxin on lymphocytes	117	
3.5.2 Effect of mycotoxin mixtures on lymphocytes	118	
3.5.3 Effect of mycotoxin mixtures on macrophages	122	
3.5.3.1 Effect of individual mycotoxins on nitric oxide production	122	
3.5.3.2 Effect of mycotoxin mixtures on nitric oxide production	125	
3.5.3.3 Effect of individual mycotoxins on TNF-α production	129	
3.5.3.4 Effect of mycotoxin mixtures on TNF-α production	132	
3.5.4 Effects of C. asiatica and R. nasutus extracts on mycotoxin-induced	135	
immunomodulation		
3.5.4.1 Effect on lymphocytes	135	
3.5.4.2 Effect on macrophages	140	
CHAPTER IV: DISCUSSION		
CHAPTER V: CONCLUSION	157	
REFERENCES	158	
APPENDIX	172	
PUBLICATIONS FOR THESIS	186	
CIRRICULUM VITAE	187	

ลิขสิทธิมหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xiv

LIST OF ILLUSTRATIONS

FIGURE	PAGE
1.1 Innate and adaptive immunity	4
1.2 Types of adaptive immunity	6
1.3 Effector functions of antibodies	7
1.4 Kinetics of primary and secondary humoral immune responses	8
1.5 Effector functions of T _H 1 cells	10
1.6 Effector functions of T _H 2 cells	11
1.7 The diverse functions of macrophages	15
1.8 Biosynthesis of nitric oxide	16
1.9 Nitric oxide synthase isoforms	17
1.10 The chemical structure of aflatoxin B	20
1.11 The chemical structure of deoxynivalenol	24
1.12 The chemical structure of fumonisin B ₁	26
1.13 A Centella asiatica (Linn.) Urban	52
1.14 The main active components of <i>C. asiatica</i>	53
1.15 A Rhinacanthus nasutus (Linn.) Kurz	59
1.16 The structure of some naphthoquinones isolated from <i>R. nasutus</i>	61
2.1 Thai medicinal plants used for screening of immunostimulating activity	64
2.2 A schematic diagram of the plant extraction protocol	65
2.3 The chemistry of Griess reagent	77
2.4 The reaction of MTT assay	76
2.5 A schematic diagram of animal treatment protocol	78
3.1 The effect of water extracts of Thai medicinal plants on PHA-induced	82
PBMC proliferation	
3.2 The effect of water extracts of Thai medicinal plants on PWM-induced	83
PBMC proliferation	
3.3 The effect of ethanol extracts of Thai medicinal plants on PHA-induced	87

rome promeration	
3.4 The effect of ethanol extracts of Thai medicinal plants on PWM-induced	88
PBMC proliferation	
3.5 Effect of three different batches of <i>C. asiatica</i> on lymphocyte mitogenesis	92
3.6 Effect of three different batches of <i>R. nasutus</i> on lymphocyte mitogenesis	93
3.7 Effect of <i>C. asiatica</i> extract on lymphocyte mitogenesis	95
3.8 Variation of PWM-induced lymphocyte mitogenesis in response to <i>C</i> .	96
asiatica treatment	
3.9 Effect of <i>R. nasutus</i> extract on lymphocyte mitogenesis	97
3.10 Effects of asiaticoside and asiatic acid on lymphocyte mitogenesis	98
3.11 Effects of <i>C. asiatica</i> extracts on IL-2 production in human PBMCs	99
3.12 Effects of <i>C. asiatica</i> extracts on TNF-α production in human PBMCs	100
3.13 Effects of R. nasutus extracts on IL-2 production in human PBMCs	101
3.14 Effects of <i>R. nasutus</i> extracts on TNF-α production in human PBMCs	102
3.15 Effects of C. asiatica and R. nasutus extracts on viability of J774.2 mouse	103
macrophages	
3.16 Effects of plant extracts on NO production in J774.2 mouse macrophages	105
3.17 Effects of three different batches of <i>C. asiatica</i> water extracts on NO	106
production in J774.2 mouse macrophages	
3.18 Effects of polymyxin B on water extracts of C. asiatica induced-NO	107
production in J774.2 mouse macrophages	
3.19 Effects of plant extracts on LPS- induced NO production in J774.2 mouse	108
macrophages	
3.20 Effects of plant extracts on TNF-α production in J774.2 mouse	110
macrophages	
3.21 Effects of plant extracts on LPS- induced TNF-α production in J774.2	111
mouse macrophages	
3.22 A water extract of C . asiatica induced TNF- α gene expression	112
3.23 An ethanol extract of C. asiatica inhibited iNOS gene expression	113
3.24 Plant extracts modulated iNOS and TNF-α gene expression	114

e de la companya de	3.25 Effects of water extracts of C. asiatica (CAW) and R. nasutus (RNW) on	115
	cytolytic activities of mouse macrophages	
3	3.26 Effect of DON-AFB ₁ mixture on the proliferation of human PBMCs	119
Sign	3.27 Effect of DON-FB ₁ mixture on the proliferation of human PBMCs	120
ŝ	3.28 Effect of AFB ₁ -FB ₁ mixture on the proliferation of human PBMCs	121
3	3.29 Effect of AFB1 on NO production in J774.2 mouse macrophages	122
,3	3.30 Effect of DON on NO production in J774.2 mouse macrophages	123
3	3.31 Effect of FB ₁ on NO production in J774.2 mouse macrophages	124
/3	3.32 Effect of DON-AFB ₁ mixture on NO production in J774.2 mouse	126
	macrophages	
.3	3.33 Effect of DON-FB ₁ mixture on NO production in J774.2 mouse	127
	macrophages	
3	3.34 Effect of AFB ₁ - FB ₁ mixture on NO production in J774.2 mouse	128
	macrophages	
3	5.35 Effect of DON on TNF-α production in J774.2 mouse macrophages	129
3	3.36 Effect of AFB ₁ on TNF-α production in J774.2 mouse macrophages	130
3	2.37 Effect of FB ₁ on TNF-α production in J774.2 mouse macrophages	131
3	.38 Effect of DON-AFB ₁ mixture on TNF-α production in J774.2 mouse	132
	macrophages	
3	.39 Effect of DON-FB ₁ mixture on TNF-α production in J774.2 mouse	133
	macrophages	
3	.40 Effect of AFB ₁ -FB ₁ mixture on TNF-α production in J774.2 mouse	134
	macrophages	
3.	.41 Modulation effect of water extracts of <i>C. asiatica</i> (CAW) and <i>R. nasutus</i>	136
	(RNW) on DON-inhibited PHA induced-lymphocyte mitogenesis	
3.	42 Modulation effect of water extracts of C. asiatica (CAW) and R. nasutus	137
	(RNW) on DON-inhibited PWM induced-lymphocyte mitogenesis	
3.	43 Modulation effect of water extracts of C. asiatica (CAW) and R. nasutus	138
	(RNW) on AFB ₁ -inhibited PHA induced-lymphocyte mitogenesis	
3.	44 Modulation effect of water extracts of C. asiatica (CAW) and R. nasutus	139

(RNW) on AFB1-inhibited PWM induced-lymphocyte mitogenesis	
3.45 Modulation effect of water extracts of C. asiatica (CAW) and R. nasutus	141
(RNW) on mycotoxin-inhibited NO production	
3.46 Modulation effect of water extracts of C. asiatica (CAW) and R. nasutus	142
(RNW) on DON-induced TNF-α production	
3.47 Modulation effect of water extracts of C. asiatica (CAW) and R. nasutus	143
(RNW) on AFB ₁ -inhibited TNF-α production	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xviii

LIST OF TABLES

TA	BLE	PAGE
1.1	Features of innate and adaptive immunity	5
1.2	Comparison of three isoforms of nitric oxide synthase	18
2.1	The percentage of plant extract (% yield) after water and 80% ethanol	66
	extraction	
3.1	Influence of water extract of Thai medicinal plants on proliferative responses	84
	to the PHA stimulation of human PBMCs	
3.2	Influence of water extract of Thai medicinal plants on proliferative responses	85
	to the PWM stimulation of human PBMCs	
3.3	Effect of plant extracts on viability of human PBMCs	86
3.4	Influence of ethanol extract of Thai medicinal plants on proliferative	89
	responses to the PHA stimulation of human PBMCs	
3.5	Influence of ethanol extract of Thai medicinal plants on proliferative	90
	responses to the PWM stimulation of human PBMCs	
3.6	The % yield of C. asiatica and R. nasutus after water and ethanol extraction	91
3.7	Effects of water extract of C. asiatica and R. nasutus on antibody response in	116
	mice	
3.8	Effect of individual mycotoxins on cell proliferation assay	117

ABBREVIATIONS

%	Percent
°C 001919	Degree Celsius
μCi	Microcouli
μg	Microgram
μΙ	Microliter
μm	Micrometer
AFB1	Aflatoxin B ₁
AP-1	Activator protein-1
AR	Aldehyde reductase
BSA	Bovine serum albumin
CD	Cluster of differentiation
CNS	Central nervous system
Con A	Concanavalin A
CTLs	Cytotoxic T lymphocytes
CYP450	Cytochrome P450
DMEM	Dulbecco's Modified Eagle Medium
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DON	Deoxynivalinol
a FBI INSUKASINS	Fumonisin B ₁
FCS	Fetal calf serum
GSTs TEMPON Chia	Glutathione S-transferases
$\mathrm{H_2O_2}$	Hydrogen peroxide
A Ig	Immunoglobulin
iNOS	Inducible nitric oxide synthase
IL-2	Interleukin-2
IFN-γ	Interferon- γ
JNK	Jun N-terminal kinase

kg bw Kilogram bodyweight LAK Lymphocyte activated killer LPS Lipopolysaccharide MAPK p38 mitogen -activated protein kinase **MIP** Macrophage inflammatory protein mg Milligram MHC Major histocompatibility complex NIV Nivalenol NO Nitric oxide NOS Nitric oxide synthase NK Natural killer NF-κB Nuclear factor-KB **PBMCs** Peripheral blood mononuclear cells PHA Phytohemagglutinin

PWM Pokeweed mitogen

RNA Ribonucleic acid

SRBC Sheep red blood cell

TNF- α Tumor necrosis factor- α TIL Tumor infiltrating lymphocytes

Th Helper T cells
ZEA Zearalenone

Copyright[©] by Chiang Mai University

All rights reserved