CHAPTER III RESULTS

3.1 Preparation of S.tuberosa extract

One hundred grams of dried roots of *S.tuberosa* were extracted with 95% ethanol at a ratio of 1:10 (weight/volume) 2 times. Then, the ethanolic extracts were pooled and evaporated by evaporator. The extract was dried by lyophilization. Then the lyophilized sample was weighed and calculated for the percentage of yield of plant extract. It was found that 8.75 grams of lyophilized sample weight was obtained from 100 grams of dried root, shown in Table 10.

 Table 10. The percent yield of S.tuberosa extract

S.tuberosa dried weight	S.tuberosa extract weight % yield	
100 g,	8.75 g. 8.75 %	

3.2 Phytochemical groups in S.tuberosa extract

а Сор А I

After *S.tuberosa* extract was obtained the phytochemical groups were determined. The phytochemical groups were tested as follows; Phenolic moiety, Flavonoids, Triterpenes or Steroids, Saponin, Alkaloids and Anthaquinone glycosides as described in Section 2.16. The result from the test indicated that the only phytochemical group found in *S.tuberosa* extract was alkaloid. The data are shown in table 11.

 Table 11. The phytochemical group in S. tuberosa extract

- + positive
- negative

3.3 Antiproliferative effect of S.tuberosa extract on KB-3-1 and KB-V-1 cell lines

To investigate the antiproliferative effect of *S.tuberosa* extract on drug sensitive cell lines, KB-3-1 and P-gp overexpressing cell lines, KB-V-1, both cell lines were incubated with various concentrations of *S.tuberosa* extract (0-400 μ g/ml) for 48 h. The survival cells were then detected by MTT assay as described in section 2.5. As shown in Figure 16 the concentration that decrease % cell survival by 20 % called IC₂₀ (inhibitory concentration at 20 %), this concentration is non-toxic concentration. The IC₂₀ of KB-3-1 and KB-V-1 were 289 ± 91 and 361 ± 28 μ g/ml, respectively. In the drugs sensitivity assay the IC₂₀ was selected for further determining. The IC₂₀ and IC₅₀ values are shown in table 13.

Figure 16. Antiproliferative effect of *S. tuberosa* extract on KB-3-1 and KB-V-1. Both cells were seeded in 96-well plate $(1x10^3)$ well of KB-3-1 and 2 x 10^3 / well of KB-V-1) after 24 h fresh media containing various concentrations of *S. tuberosa* extract were added and incubated for 48h. The survival cells were determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

ig

hts reserved

Table 12. Antiproliferative effect of *S. tuberosa* extract in KB-3-1 and KB-V-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

S.tuberosa extract	Cell survival (% of control)		
concentration (µg/ml)	KB-3-1	KB-V-1	
0	100±0	100±0	
50	102±10	104±4	
100	94±8	98±9	
150	91±11	95±10	
200	88±8	92±9	
250	82±7	88±6	
300	75±10	81±2	
350	75 ±4	81±7	
400	69±9	74±5	

Table 13. IC₂₀ and IC₅₀ values of *S. tuberosa* extract on antiproliferation of KB-3-1 and KB-V-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

3.4 Antiproliferative effect of verapamil on KB-3-1 and KB-V-1 cell lines

To determine the antiproliferative effect of verapamil, P-glycoprotein inhibitor, on drug sensitive cell lines, KB-3-1, and P-gp overexpressing cell lines, KB-V-1, both cell lines were incubated with various concentrations of verapamil (0-100 μ M) for 48 h. Then the survival cells were detected by MTT assay as described in section 2.5. As shown in Figure 17 the IC₂₀ of KB-3-1 and KB-V-1 were 37 ± 9 and 41 ± 8 μ M, respectively. In the drugs sensitivity assay the IC₂₀ were selected for determination similar to *S. tuberosa* extract concentration. The IC₂₀ and IC₅₀ values are shown in table 15.

Figure 17. Antiproliferative effect of verapamil on KB-3-1 and KB-V-1. Both cells were seeded in 96-well plate (1×10^3) well of KB-3-1 and 2 x 10^3 / well of KB-V-1 and) after 24 h fresh media containing various concentrations of verapamil were added and incubated for 48h. The survival cells were determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

Table 14. Antiproliferative effect of verapamil on KB-3-1 and KB-V-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of threeindependent experiments performed in triplicate.

Verapamil concentration	Cell survival (% of control)		
(µM)	KB-3-1	KB-V-1	
0	100±0	100±0	
20	90±4	95±3	
40	77±12	80±6	
60	56±6	64±10	
80	37 ±7	41±2	
100	27±4	30±0	
		205	

Table 15. IC₂₀ and IC₅₀ values of verapamil on antiproliferation of KB-3-1 and KB-V-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

	C MAI	INUVERS	
	Cell lines	IC ₂₀ value (µM)	IC ₅₀ value (µM)
ລີປ	КВ-3-1	91 37±988	18867±7
Cop	yrig KB-V-1 b	Chi41±8g Ma	i Un _{72±5} rsity
AI	l righ	ts res	served

3.5 Modulating effect of *S. tuberosa* extract on anticancer drugs sensitivity in KB-3-1 and KB-V-1 cell lines

To study the effect of *S. tuberosa* extract on the sensitivity of vinblastine, paclitaxel and colchicine, the IC₂₀ values of *S. tuberosa* extract and verapamil were used. KB-3-1 and KB-V-1 were seeded into 96-well plate and incubated for 24h. After that fresh medium containing *S. tuberosa* extract at 50 µg/ml or 150 µg/ml and 20 µM verapamil (positive control for P-glycoprotein inhibition) in the presence of various concentrations of vinblastine, paclitaxel and colchicine were added and incubated for 48h. The survival cells were then detected by MTT assay as described in section 2.5. The result showed that the IC₅₀ value of vinblastine of KB-V-1 cell lines was decreased in concentration dependent manner from 0.79 \pm 0.2 (vehicle control) to 0.63 \pm 0.0 and 0.56 \pm 0.3 when treated with 50 µg/ml and 150 µg/ml of plant extract, respectively. The positive control, verapamil could decrease the IC₅₀ of vinblastine too, but in the KB-3-1 cell lines the IC₅₀ of vinblastine did not changed when incubated with plant extract or verapamil as shown in Figure 18 and Table 22.

Other chemotherapeutic drugs were studied including paclitaxel and colchicine. The plant extract at similar concentration in vinblastine sensitivity study were investigated. The IC₅₀ of paclitaxel in KB-V-1 was reduced when incubated with plant extract at 50 µg/ml and 150 µg/ml from 9.90 \pm 1.9 (vehicle control) to 7.63 \pm 1.2 and 5.76 \pm 1.3. The results showed that paclitaxel sensitivity decreased in a dose dependent manner; 20µM verapamil could reduce the IC₅₀ of paclitaxel. But in drug sensitive cell lines, KB-3-1 the IC₅₀ value of paclitaxel was not changed when treated with plant extract or verapamil as shown in Figure 19 and Table 22.

Colchicine sensitivity was determined by incubating with similar concentration of *S. tuberosa* extract or verapamil. The result found that the IC₅₀ value of colchicines in KB-V-1 cell lines decreased in dose dependent manner. The IC₅₀ value reduced from 8.65 \pm 0.8 (vehicle control) to 7.11 \pm 2.5 (50 µg/ml) and 4.77 \pm 0.3 (150 µg/ml) while the IC₅₀ value of colchicines was 4.55 \pm 0.3 as treated with 20 µM verapamil. Surprisingly, the IC₅₀ values of KB-3-1 were changed too. KB-3-1 were co-incubated with 150 µg/ml plant extract or 20 µM verapamil for 48 h then the survival cells were determined by MTT assay. The results showed that the IC₅₀ value

was changed as in KB-V-1; the IC₅₀ value decreased from 13.60 \pm 1.5(vehicle control) to 11.59 \pm 0.9 (150 µg/ml of plant extract) and 9.44 \pm 0.6 (20 µM verapamil) as shown in Figure 20 and Table 3.5-7. The IC₅₀ values and relative resistance for vinblastine, paclitaxel and colchicine in both cell lines are summarized in Table 22.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

Figure 18. Effect of *S. tuberosa* extract on vinblastine sensitivity in KB-3-1 (A) and KB-V-1 (B) cell lines. Both cell lines were grown in the pressence of 0.4 % DMSO. The survival cells were determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

Table 16. Effect of *S. tuberosa* extract on vinblastine sensitivity in KB-3-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

	Cell survival (% of control)			
0	0 μg/ml	50 μg/ml	150 µg/ml	20 µM
Vinblastine	S.tuberosa	S.tuberosa	S.tuberosa	Verapamil
(nM)	extract	extract	extract	(positive
9				control)
0	100±0	100±0	100±0	100±0
	42±1	39±4	40±4	40±4
4	34±3	34±4	36±5	37±2
5 6	34±2	33±4	36±4 5	36±1
8	36±2	37±4	37±4	36±3
10	37±4	37±4	38±6	36±4

Table 17. Effect of *S. tuberosa* extract on vinblastine sensitivity in KB-V-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

		Cell survival (% of control)			
		0 μg/ml	50 μg/ml	150 µg/ml	20 µM
	Vinblastine	S.tuberosa	S.tuberosa	S.tuberosa	Verapamil
	(µM)	extract	extract	extract	(positive
R Â	An Êı	IRAJ	ทยๆล้	้ตเลีย	control)
GU		100±0	100±0	100±0	100±0
Cor	0.5	67±3	53±0*	47±7*	33±2*
	P	45±2	41±4 🕐	43±6	29±3*
AI	1.5	35±3	S 37±5	39±6	27±1*
	2	32±2	37±3*	40±5*	28±2
	2.5	36±2	40±2*	41±3*	30±2*

Figure 19. Effect of *S. tuberosa* extract on paclitaxel sensitivity in KB-3-1 (A) and KB-V-1 (B) cell lines. Both cell lines were grown in the pressence of 0.55 % DMSO. The survival cells determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

Table 18. Effect of *S. tuberosa* extract on paclitaxel sensitivity in KB-3-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

	Cell survival (% of control)			
0	0 μg/ml	50 μg/ml	150 μg/ml	20 µM
Paclitaxel	S.tuberosa	S.tuberosa	S.tuberosa	Verapamil
(nM)	extract	extract	extract	(positive
			1.2	control)
0	100±0	100±0	100±0	100±0
	70±1	63±13	68±2	64±13
2	40±6	37±4	38±4	33±10
5 2 3	32±8	31±8	36±9	32±6
70° 4	37±14	34±10	39±10	36±15
5	36±14	34±11	39±11	35±12

Table 19. Effect of *S. tuberosa* extract on paclitaxel sensitivity in KB-V-1 cell lines. The data shown in this table were presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

		Cell survival (% of control)			
		0 μg/ml	50 μg/ml	150 µg/ml	20 µM
	Paclitaxel	S.tuberosa	S.tuberosa	S.tuberosa	Verapamil
	(µM)	extract	extract	extract	(positive
s,	anê	เหาร์	ทยๆล้	ัตเลีย	control)
QU		100±0	100±0	100±0	100±0
Cor	v 5 ht	70±4	64±8	52±5*	37±9*
	10	47±6	42±3	40±1	33±9
A	15	37±7	S 35±5	34±3	30±6
	20	33±5	36±7	38±2	35±9
	25	33±7	35±1	39±2	32±6

Figure 20. Effect of *S. tuberosa* extract on colchicine sensitivity in KB-3-1 (A) and KB-V-1 (B) cell lines. Both cell lines were grown in the pressence of 0.55 % DMSO. The survival cells determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

Table 20. Effect of *S. tuberosa* extract on colchicine sensitivity in KB-3-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

	Cell survival (% of control)			
0	0 μg/ml	50 μg/ml	150 μg/ml	20 µM
Colchicine	S.tuberosa	S.tuberosa	S.tuberosa	Verapamil
(nM)	extract	extract	extract	(positive
				control)
0	100±0	100±0	100±0	100±0
9 5	95±5	99±4	92±2	91±6
10	71±9	79±13	57±6	47±4*
15	42±10	45±12	35±2 5	27±1*
20	33±3	37±6	34±2	25±1*
25	31±3	37±3*	36±3	27±3

Table 21. Effect of *S. tuberosa* extract on colchicine sensitivity in KB-V-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

		Cell survival (% of control)			
	Colchicine	0 μg/ml	50 μg/ml	150 µg/ml	20 µM
	(µM)	S.tuberosa	S.tuberosa	S.tuberosa	Verapamil
		extract	extract	extract	(positive
R Â	anêi	แหกฏ	ทยๆล้	์ตเลีย	control)
QU		100±0	100±0	100±0	100±0
Cor	Sont 1	64±3	59±15	48±7*	30±2*
	10	40±5	39±5 O	42±6	27±1*
AI	15	-32±3	S 34±6	39±4	28±4
	20	35±1	37±7	42±6	29±3*
	25	33±0	37±7	43±4*	31±5

Table 22. Effect of *S. tuberosa* extract on IC_{50} values and relative resistance for drugs sensitivity in KB-V-1 and KB-3-1 cell lines. The data shown this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

	0		91		
	0	IC ₅₀ of	f drugs	Relative r	esistance*
Anticacer	S.tuberosa	KB-3-1	KB-V-1	KB-3-1	KB-V-1
drugs	extract dose	(nM)	(µM)		
2	0 μg/ml	1.75±0.0	0.79±0.2	1.00	453
	50 μg/ml	1.67±0.1	0.63±0.0	0.96	362
Vinblastine	150 µg/ml	1.68±0.1	0.56±0.3	0.96	322
	20 µM Ver.	1.69±0.1	0.37±0.0**	0.96	213
308	0 μg/ml	1.70±0.1	9.90±1.9	1.00	5,827
C	50 μg/ml	1.41±0.3	7.63±1.2	0.83	4,491
Paclitaxel	150 µg/ml	1.62±0.1	5.76±1.3**	0.95	3,388
—	20 µM Ver.	1.66±0.1	4.05±0.7**	0.98	2,382
	0 μg/ml	13.60±1.5	8.65±0.8	1.00	636
	50 µg/ml	14.87±2.7	7.11±2.5	1.09	523
Colchicine	150 µg/ml	11.59±0.9	4.77±0.9**	0.85	351
	20 µM Ver.	9.44±0.6 **	4.55±0.3**	0.69	335

* Relative resistance was calculated by the IC50 values for anticancer drug of KB-V-1 or KB-3-1 cells with or without the *S.tuberosa* extract diveded by IC50 value for each drug of KB-3-1 cells without the *S.tuberosa* extract

** Asterisks denote values that were significantly different from the vehicle control (P < 0.05)

Ver. was refered to verapamil.

3.6 Effect of *S. tuberosa* extract on P-glycoprotein activities in KB-V-1 and KB-3-1 cell lines

3.6.1 Effect of S. tuberosa extract on ³[H]-vinblastine uptake

The ³[H]-vinblastine transports are the method that confirm the effect of *S. tuberosa* extract on drug sensitivity assay. The principle of the assays were determining the intracellular uptake or retention of radiolabeled drug ³[H]-vinblastine in drug resistant cell lines compared to the drug sensitive cell lines. This model seems to be the best for studying the actual vinblastine uptake and retention in the intact cells. To prove the effect of *S. tuberosa* extract on ³[H]-vinblastine uptake, both cell lines were co-incubated with various concentrations of plant extract (0-500 mg/ml) and radiolabeled drug, ³[H]-vinblastine, for 60 min. After 60 min both cell lines were harvested the intracellular ³[H]-vinblastine was counted by β -counter and protein concentration was also determined. It was found that the plant extract increased ³[H]-vinblastine uptake in KB-V-1 cell lines in concentration dependent manner, but there was no change of ³[H]-vinblastine accumulation compared with vehicle control as shown in Figure 21 and Table 23.

3.6.2 Effect of S. tuberosa extract on ³[H]-vinblastine retention

To examine the effect of *S. tuberosa* extract on 3 [H]-vinblastine retention, both cell lines were up loaded with 3 [H]-vinblastine for 60 min by inhibited Pglycoprotein activities with verapamil. After 60 min both cells were filled with 3 [H]vinblastine, then the medium was removed. Next, fresh medium containing various concentrations of plant extract and the positive control verapamil were added and incubated for 30 min. Then both cell lines were harvested. The intracellular 3 [H]vinblastine was counted by β -counter and protein concentration was determined. It was found that plant extract caused an increase in the amount of 3 [H]-vinblastine retention compared with vehicle control. In KB-3-1 cells, the plant extract did not cause increase of 3 [H]-vinblastine retention compared with KB-V-1 as shown in Figure 22 and Table 24.

Figure 21. Effect of *S. tuberosa* extract on ³[H]-vinblastine uptake. The amount of intracellular radioactivity was determined by β -counter. Each bar presented as mean values \pm standard deviation of three-independent experiments performed in duplicate. **Table 23.** Effect of *S. tuberosa* extract on ³[H]-vinblastine uptake. The amount of intracellular radioactivity was determined by β -counter. The data are presented as mean values \pm standard deviation of three-independent experiments performed in duplicate.

	S.tuberosa extract	³ [H]-vinblastine uptake (% of control)				
6	Concentration	KB-3-1	KB-V-1			
	0 μg/ml	100±0 C	100±0			
Cor	200 µg/ml	102±2	162±65*			
	300 μg/ml	92±16	196±68*			
	400 µg/ml	S 113±3 C C S	203±93* C			
	500 μg/ml	98±3	264±93*			
	10 µM verapamil	100±7	275±102*			

Figure 22. Effect of *S. tuberosa* extract on ³[H]-vinblastine retention. The amount of intracellular radioactivity was determined by β -counter. Each bar presented as mean values \pm standard deviation of three-independent experiments performed in duplicate. **Table 24.** Effect of *S. tuberosa* extract on ³[H]-vinblastine retention. The amount of intracellular radioactivity was determined by β -counter. The data are presented as mean values \pm standard deviation of three-independent experiments performed in duplicate.

	S.tuberosa extract	³ [H]-vinblastine retention (% of control)			
	concentration	КВ-3-1	KB-V-1		
S.tuberosa extract 3 [H]-vinblastine retention (% of concentration0 µg/ml100±0200 µg/ml93±8300 µg/ml100±5400 µg/ml102±11500 µg/ml113±1810 µM verapamil109±6	100±0				
S.tuberosa extract 3 [H]-vin concentration KB-3- 0 µg/ml 100±0 200 µg/ml 93±8 300 µg/ml 100±0 400 µg/ml 100±1 500 µg/ml 113±1 10 µM verapamil 109±0	93±8 C O	147±33*			
Cor	300 µg/ml	100±5	162±27*		
S.tuberosa extract 3 [H]-vinbla concentration KB-3-1 0 µg/ml 100 \pm 0 200 µg/ml 93 \pm 8 300 µg/ml 100 \pm 5 400 µg/ml 102 \pm 11 500 µg/ml 113 \pm 18 10 µM verapamil 109 \pm 6	102±11	194±97*			
	500 µg/ml	S 113±18 C S	231±95*		
	10 µM verapamil	109±6	166±32*		

3.7 Antiproliferative effect of *S.tuberosa* extract on HEK293/MRP-1 cells and HEK293/pcDNA cells

To investigate the antiproliferative effect of S.tuberosa extract on drug sensitive cell lines, HEK293/pcDNA cells and MRP-1 overexpressing cell lines, HEK293/MRP-1 cells; both cell lines were incubated with various concentrations of *S.tuberosa* extract (0-400 µg/ml) for 96 h. Then the survival cells were detected by MTT assay as described in section 2.5 as shown in Figure 23 the IC₂₀ of HEK293/MRP-1 cells and HEK293/pcDNA cells were 93 \pm 13 and 83 \pm 12, respectively. In the drugs sensitivity assay the IC₂₀ were selected for determination. The IC₂₀ and IC₅₀ values are shown in table 26.

Figure 23. Antiproliferative effect of *S. tuberosa* extract on HEK293/MRP-1 cells and HEK293/pcDNA cells. Both cells were seeded in 96-well plate $(2.5 \times 10^3 / \text{ well})$. After 24 h fresh media containing various concentrations of *S. tuberosa* extract were added and incubated for 96h. The survival cells were determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

Table 25. Antiproliferative effect of S. tuberosa extract in HEK293/MRP-1 cells and HEK293/pcDNA cells. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate

S.tuberosa extract	Cell survival (% of control)		
concentration (µg/ml)	HEK293/pcDNA	HEK293/MRP-1	
0	100±0	100±0	
50	91±7	99±5	
100	79±4	68±10	
150	66±6	46±7	
200	49±8	35±3	
250	32±6	30±1	
300	28±3	28±8	
350	25±2	24±3	
400	21±4	18±3	
502		1202	

Table 26. IC_{20} and IC_{50} values of S. tuberosa extract on antiproliferation of HEK293/MRP-1 cells and HEK293/pcDNA cells. The data shown in this table are presented as mean values ± standard deviation of three-independent experiments performed in triplicate.

704

Real Y

	Cell lines	IC ₂₀ value (µg/ml)	IC ₅₀ value (µg/ml)
ຄີປ	HEK293/pcDNA	98±13 9813	196±19
Cop A	HEK293/MRP-1	$f = \frac{1}{5} $	i Un _{142±19} rsity e r v e d

3.8 Antiproliferative effect of indomethacin on HEK293/MRP-1 cells and HEK293/pcDNA cells

To investigate the antiproliferative effect of indomethacin, MRP-1 inhibitor on drug sensitive cell lines, HEK293/pcDNA cells and MRP-1 overexpressing cell lines, HEK293/MRP-1 cells; both cell lines were incubated with various concentrations of indomethacin (0-100 μ M) for 96 h. Then the survival cells were detected by MTT assay as described in section 2.5 as shown in Figure 24. Both IC₂₀ of HEK293/MRP-1 cells and HEK293/pcDNA cells were \geq 100. In the drugs sensitivity assay the IC₂₀ were selected for determining. The IC₂₀ and IC₅₀ values are shown in table 28.

Figure 24. Antiproliferative effect of indomethacin on HEK293/MRP-1 cells and HEK293/pcDNA cells. Both cells were seeded in 96-well plate $(2.5 \times 10^3 / \text{ well})$ after 24 h fresh media containing various concentrations of indomethacin were added and incubated for 96h. The survival cells were determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

Table 27. Antiproliferative effect of indomethacin in HEK293/MRP-1 cells and HEK293/pcDNA cells. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate

Indomethacin	Cell survival (% of control)		
concentration	HEK293/pcDNA	HEK293/MRP-1	
(µM)		2	
0	100±0	100±0	
20	101±22	101±19	
40	114±32	101±22	
60	108±31	97±23	
80	99±17	93±15	
	84±11	79±9	

Table 28. IC_{20} and IC_{50} values of S. tuberosa extract on antiproliferation of HEK293/MRP-1 cells and HEK293/pcDNA. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

	Cell lines	IC ₂₀ value (µM)	IC ₅₀ value (µM)	
ad	HEK293/pcDNA	908308	> 100 × 100	
Cop A	HEK293/MRP-1	t s r e s	<pre>> 100 > e r v e d</pre>	

3.9 Effect of *S. tuberosa* extract on etoposide (VP-16) sensitivity in HEK293/MRP-1 cells and HEK293/pcDNA cell lines

The effect of *S. tuberosa* extract on the VP-16 sensitivity was examined; the IC₂₀ values of *S. tuberosa* extract and indomethacin were used. HEK293/MRP-1 cells and HEK293/pcDNA cell lines were seeded into 96-well plate and incubated 24h. After 24 h fresh medium containing *S. tuberosa* extract at 25 µg/ml or 50 µg/ml and 40 µM or 70 µM indomethacin (positive control for MRP-1 inhibition) in the presence of various concentrations of VP-16 was added and incubated for 96 h. The survival cells were detected by MTT assay as described in section 2.5. The result showed that the plant extract at concentrations of 25 µg/ml and 50 µg/ml could not affect VP-16 sensitivity in both cell lines (Figure 25 and Table 31). The positive control, indomethacin, could decrease the IC₅₀ of VP-16, but in the HEK293/pcDNA cell lines the IC₅₀ of VP-16 was not changed as shown in Figure 26 and Table 32 and 33. The IC₅₀ values and relative resistance for VP-16 in both cell lines are summarized in Table 34.

Figure 25. Effect of *S. tuberosa* extract on VP-16 sensitivity in HEK293/pcDNA (A) and HEK293/MRP-1 (B) cell lines. Both cell lines were grown in the pressence of 0.65 % DMSO. The survival cells were determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

Table 29. Effect of *S. tuberosa* extract on VP-16 sensitivity in HEK293/pcDNA. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

010101					
0	Cell survival (% of control)				
VP-16	0 μg/ml	25 µg/ml	50 μg/ml		
(μM)	S.tuberosa extract	S.tuberosa extract	S.tuberosa extract		
0	100±0	100±0	100±0		
0.5	53±16	51±14	50±13		
	38±7	42±11	39±11		
1.5	23±8	29±5	28±3		
	30±4	33±6	32±5		
2.5	32±8	33±3	34±5		

Table 30. Effect of *S. tuberosa* extract on VP-16 sensitivity in HEK293/MRP-1. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

			-TUNE //		
		Cell	Cell survival (% of control)		
	VP-16	0 μg/ml	25 µg/ml	50 µg/ml	
	(µM)	S.tuberosa extract	S.tuberosa extract	S.tuberosa extract	
Я'л	an ^e in	100±0	100±0	100±0	
μU	25	60±9	60±11	60±7	
Cor	∇^{50}	38±9	37±8	42±8	
	75	27±10	26±6	28±7	
A	100	23±9 S	26±8	28±9	
	125	20±7	23±8	24±7	

Table 31. Effect of *S. tuberosa* extract on IC_{50} values and relative resistance for VP-16 sensitivity in HEK293/pcDNA and HEK293/MRP-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

	IC50 (of VP-16	Relative r	esistance*
0	10.501	JI VI-10	Relative I	csistance
	HEK293/	HEK293/	HEK293/	HEK293/
Treatment	pcDNA	MRP-1	pcDNA	MRP-1
5	(µM)	(µM)		3
Vehicle				
control	0.65±0.2	35.45±9.4	1.00	54
(DMSO)		~ (?)		502
25 μg/ml.		The si		204
S. tuberosa	0.65±0.3	35.29±12.3	1.00	54
extract				60
50 μg/ml.				5
S. tuberosa	0.66±0.3	39.12±9.8	1.01	60
extract		Colores		

* Relative resistance was calculated by the IC_{50} values for VP-16 of HEK293/pcDNA and HEK293/MRP-1 with or without the *S.tuberosa* extract diveded by IC_{50} value for each drug of HEK293/pcDNA cells without the *S.tuberosa* extract

RP

Copyright [©] by Chiang Mai University All rights reserved

Figure 26. Effect of indomethacin on VP-16 sensitivity in HEK293/pcDNA (A) and HEK293/MRP-1 (B) cell lines. Both cell lines were grown in the pressence of 0.95 % DMSO. The survival cells determined by MTT assay. Each point presented the mean value for three-independent experiments performed in triplicate.

Table 32. Effect of indomethacin on VP-16 sensitivity in HEK293/pcDNA. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

	010101					
0	Cel	Cell survival (% of control)				
VP-16	0 μΜ	40 µM	70 µM			
(µM)	indomethacin	indomethacin	indomethacin			
0	100±0	100±0	100±0			
0.5	37±11	31±8	32±7			
	31±8	28±5	30±9			
1.5	27±8	25±11	26±11			
5 2 2	31±9	28±11	29±9			
2.5	30±13	27±12	29±11			

Table 33. Effect of indomethacin on VP-16 sensitivity in HEK293/MRP-1. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

		Cel	Cell survival (% of control)		
	VP-16	0 μΜ	40 µM	70 μM	
	(µM)	indomethacin	indomethacin	indomethacin	
	0	100±0	100±0	100±0	
â	25	58±2	46±4*	42±7*	
CIU	50	42±6	33±4	31±6	
Cor	75 ± C	30±4	25±5	25±5	
	100	32±8	26±5	26±6	
A	125	28±3 S	26±5	26±4	

* Asterisks denote values that were significantly different from the vehicle control at each drug concentration (P<0.05)

Table 34. Effect of indomethacin on IC_{50} values and relative resistance for VP-16 sensitivity in HEK293/pcDNA and HEK293/MRP-1 cell lines. The data shown in this table are presented as mean values \pm standard deviation of three-independent experiments performed in triplicate.

0	IC_{50} o	of VP-16	Relative r	esistance*
	HEK293/	HEK293/	HEK293/	HEK293/
Treatment	pcDNA	MRP-1	pcDNA	MRP-1
5	(µM)	(µM)		3
Vehicle				
control	0.40±0.1	38.80±5.6	1.00	96
(DMSO)				502
202		This		202
40 µM				
indomethacin	0.37±0.0	23.95±0.9**	0.92	59
(positive				9
control)			1	
		60620		
70 µM	M		RSY	
indomethacin	0.37±0.0	21.79±2.8**	0.92	54
(positive				
control)				

มสัทธิมหาวิทยาลัยเชียงไหม

* Relative resistance was calculated by the IC_{50} values for VP-16 of HEK293/pcDNA and HEK293/MRP-1 with or without the indomethacin divided by IC_{50} value for each drug of HEK293/pcDNA cells without the indomethacin