TABLE OF CONTENTS

Title	Page	
Acknowledgements	iii	
Abstract (English)	iv	
Abstract (Thai)	vii	
List of Tables	xviii	
List of Illustrations	xx	
Abbreviations and Symbols	xxviii	
CHAPTER 1 INTRODUCTION		1
1.1 Background		100
1.2 Glucosinolates		9
1.2.1 Definition and chemical structure		10
1.2.2 Biosynthesis of glucosinolate		10
1.2.3 Classification and distribution of glucosinolates		13
a. Classification of glucosinolates		
b. Distribution of glucosinolates		Priversity
1.2.4. Determination of glucosinolate		20 V e 0
1.2.5 Glucosinolate degradation and by product		21
1.3 Myrosinase		26

1.3.1 Plant myrosinase	27
1.3.1.1 Myrosinase isolation and purification	30
1.3.1.2 Genes encoding myrosinase	31
1.3.2 Microbial myrosinase	34
1.4 Mutagenesis for enhance production	39
1.4.1 Mutagenesis	40
1.4.1.1 Base analogs	41
1.4.1.2 Alkylation	42
1.4.1.3 Nitrous acid and deaminating agents	42 5 5
1.4.1.4 Intercalation mutagens	43
1.4.1.5 UV mutagenesis	43
1.5 Rationales and purpose of the study	44
CHAPTER 2 MATERIALS AND METHODS	46
2.1 Materials	46
2.1.1 Chemicals	46
2.1.2 Instruments	niversity
All rights rese	rvec
2.2 General methods	50
2.2.1 Preparation of sinigrin agar plate	50
2.2.2 Preparation of sinigrin-barium agar plate	50

2.2.3 Preparation of mustard extracts medium	31
2.2.4 Determination of protein content	51
2.2.5 Glucosinolate assay	52
2.2.5.1 Determination of pure sinigrin content	52
2.2.5.2 Determination of total glucosinolate content	52
2.2.6 Preparation of spore suspension	53
2.2.7 Measurement of fungal cell biomass	53
2.2.8 Disruption of fungal cell pellets	54
2.2.9 Activity assay of enzyme myrosinase	54 2 3
2.2.10 Determination of reducing sugar	55
2.2.11 SDS polyacrylamide gel electrophoresis	55
a. Gel polymerization	55
b. Preparation of protein samples	56
c. Sample application	56
d. Separating procedure	57
e. Staining and destaining	57
2.2.12 GC analysis of sinigrin or glucosinolate breakdown product	niversity 58
2.3 Screening and characterization of glucosinolate degrading microorganisms	59
2.3.1 Sample collection	59

2.3.2 Screening and chara-	cterization of glucosinolate degrading	59
microorganisms		
2.3.3 Preliminary examina	tion of sinigrin degradation potential	60
and myrosinase prod	ucing ability by glucosinolate degrading	
microorganism in lic	uid medium	
2.3.4 Sinigrin degradation	by Aspergillus sp. NR463 in liquid culture	61
2.4 Production of intracellular my	rosinase from <i>Aspergillus</i> sp. NR463	62
2.4.1 Effect of pH of cultu	red medium on myrosinase production	62
2.4.2 Effect of glucosinola	te concentration on myrosinase production	63
2.4.3 Effect of incubation	temperature on myrosinase production	63
2.4.4 Effect of inoculum s	ize and spore age on myrosinase production	64
2.4.5 Preservation of myce	elium containing myrosinase	64
2.4.6 Stability of crude my	rosinase extracts	64
2.5 Mutagenesis of Aspergillus sp	. NR463	65
2.5.1 UV mutagenesis of A	Aspergillus sp. NR463	65
2.5.1.1 Production	of intracellular myrosinase from	65
Aspergillus	sp. NR463 UV mutant strains	
2.5.2 EMS mutagenesis of	Aspergillus sp. NR463	66 (e)
2.5.2.1 Production	of intracellular myrosinase from	66
Aspergillus	sp. NR463 EMS mutant strains	

2.5.3 MNNG mutagenesis of Aspergillus sp. NR463	67
2.5.3.1 Production of intracellular myrosinase from	68
Aspergillus sp. NR463 MNNG mutant strains	
2.6 Characterization of Aspergillus sp. NR463 and mutant strains	68
2.6.1 Method for activity assay of the Aspergillus myrosinase	68
2.6.1.1 Determination of enzyme activity by a	69
spectrophotometric method	
2.6.1.2 Determination of enzyme activity by a coupled	69
enzyme method	
2.6.2 Effect of enzyme concentration on activity assay	70
2.6.3 Optimum pH	70
2.6.4 Optimum temperature	71
2.6.5 Kinetic constants	71
2.7 Analysis of glucosinolate breakdown product by gas chromatography	71
2.8 RAPD analysis of mutant strains	72 8 8 0 1 1 1
CHAPTER 3 RESULTS by Chiang Mai	University
3.1 Screening and characterization of glucosinolate degrading microorganisms	erveo 74
3.1.1 Screening and identification of glucosinolate	74
degrading microorganisms	

3.1.2	Preliminary examination of sinigrin degradation and myrosinase	79
	producing ability of glucosinolate degrading microorganisms in	
	liquid medium	
3.1.3	Morphological and plate cultivation on myrosinase	83
	production of Aspergillus sp. from soil isolates	
3.1.4	Sinigrin degradation by Aspergillus sp. in liquid culture	96
3.1.5	Protein electrophoresis determining intracellular protein	97
	of selected Aspergillus sp. producing myrosinase	
3.2 Producti	on of intracellular myrosinase from <i>Aspergillus</i> sp. NR463	104
3.2.1	Effect of pH of culture medium on myrosinase production	104
3.2.2	Effect of glucosinolate concentration on myrosinase production	105
3.2.3	Effect of incubation temperature on myrosinase production	106
3.2.4	Effect of inoculum size and spore age on myrosinase production	107
3.2.5	Preservation of mycelium containing myrosinase	108
3.2.6	Stability of crude myrosinase extracts	109
3.3 Mutagen	esis of Aspergillus sp. NR463	8110 [H]
3.3.1	UV mutagenesis of Aspergillus sp. NR463	niversity
3.3.2	Production of intracellular myrosinase from Aspergillus sp. NR463	114 V e
	UV mutant strains	
3.3.3	Chemical mutagenesis of Aspergillus sp. NR463	118

	3.3.4 Production of intracellular myrosinase from	122
	Aspergillus sp. NR463 Chemical mutant strains	
3.4	Protein electrophoresis determination intracellular protein of	126
	Aspergillus sp. NR463 mutant strains	
3.5	RAPD analysis of selected mutant strains	128
3.6	Analysis of glucosinolate breakdown products by gas chromatography	133
3.7	Characterization of the Aspergillus sp. NR463 and NR463U4 myrosinase	135
	3.7.1 Effect of enzyme concentration and activity assay of myrosinase	135
	3.7.2 Optimum pH	137
	3.7.3 Optimum temperature	137
	3.7.4 Kinetics constants	138
		4 //
CH	IAPTER 4 DISCUSSION AND CONCLUSION	140
4.1	Discussion	140
	4.1.1 Screening and Characterization of a myrosinase producing fungi	140
	4.1.2 Enzyme production in liquid culture	144
	4.1.3 UV mutagenesis of Aspergillus sp. NR463	niversity 148
	4.1.4 Chemical mutagenesis of <i>Aspergillus</i> sp. NR463	151 e
	4.1.5 RAPD analysis of Aspergillus sp. NR463 mutant strains	154

4.1.6 Analysis of glucosinolate breakdown products by gas	154
chromatography	
4.1.7 Kinetic constants	155
4.2 Conclusion	157
REFERENCES	160
APPENDIX	173
A-1 Calibration curve for the determination of protein by Lowry's method	173
A-2 Calibration curve for the determination of glucose by couple-enzyme method	173
A-3 Calibration curve for the determination of total glucosinolates by	174
coupled-enzyme method	
A-4 Calibration curve for the determination of sinigrin by spectrophotometric	174
method	
A-5 Calibration curve for the determination of allylcyanide and	175
allylisothiocyanate by a Hewlett-Packard 5890 series II gas chromatograph	
(Chrompack column)	
A-6 Supporting papers	175
CURRICULUM VITAE	179

LIST OF TABLES

Title		Page
	l and common names of glucosinolates identified in higher	18
plants. (I	Fahey et al., 2001)	
Table 2 Alphabet	cical listing of common names of glucosinolates identified	20
in plants.	. (Fahey et al., 2001)	
Table 3 Microorg	ganisms from soil screening and selected strains by using	83
sinigrin a	ngar plate test and sinigrin barium sulphate agar plate test.	
Table 3.1 Morpho	ology of glucosinolate degradating colony of Aspergillus sp.	95
isolated	d from soil samples.	
Table 3.2 Liquid	cultivation of Aspergillus sp. in sinigrin medium for	96
myrosi	nase production.	
Table 3.3 Relativ	e mobility and log molecular weight of standard protein	103
marker	by SDS-PAGE.	
Table 3.4 Morpho	ology of glucosinolate degradating colony of Aspergillus sp.	113
NR463	and its UV mutant strains.	
Table 3.5 Growth	and myrosinase activity of parental strain Aspergillus sp.	115 v e C
NR463	and selected mutants.	
Table 3.6 Morpho	ology of glucosinolate degradating colony of Aspergillus sp.	120
NR 463	and its EMS mutant strains.	

Table 3.7	Morphology of glucosinolate degradating colony of Aspergillus sp.	121
	NR463 and its MNNG mutant strains.	
Table 3.8	Growth and myrosinase activity of parental strain Aspergillus sp.	122
	NR463 and its selected EMS mutants.	
Table 3.9	Growth and myrosinase activity of parental strain Aspergillus sp.	123
	NR463 and its highly active MNNG mutants.	
Table 3.10	Allylisothiocyanate production of myrosinase from <i>Aspergillus</i> sp.	134
	NR463 and selected mutant strains.	
Table 4.1	Comparison of myrosinase production by Aspergillus sp. NR463,	146
	Aspergillus sp. NR-4201 (Sakorn et al., 1999), A. syndowi IFO4284	
	(Ohtsuru et al., 1969), A. syndowi QM31c (Petroski and Kwolek, 1985	9
	and A. niger AKU3302 (Ohtsuru and Hata, 1973).	
Table 4.2	Comparison of physico-chemical properties of myrosinase from	156
	Aspergillus sp. NR463, Aspergillus sp. NR-4201 (Sakorn et al., 1999),	
	A. syndowi IFO4284 (Ohtsuru et al., 1969), A. niger AKU3302	
	(Ohtsuru and Hata 1973) and Singnis alba	

(Bjorkman and Janson, 1972; Bjorkman and Lonnerdal, 1973).

LIST OF ILLUSTRATIONS

Figure		Page
Fig. 1.1	X-ray Crystallographic analysis of sinigrin.	10
Fig. 1.2	Model of glucosinolate biosythesis.	12
Fig. 1.3	Classification of glucosinolates according to chemical structure.	16
Fig. 1.4	The normal products of glucosinolate hydrolysis.	22
Fig. 3.1	Gram negative rod bacteria screened from soil samples.	74
Fig. 3.2	Growth of bacterium in sinigrin agar plates. Only top left plate shows	75
	2 day growth.	
Fig. 3.3	Growth of isolated bacteria in nutrient agar plate for 48 h.	75
Fig. 3.4	Growth of glucosinolate degrading microorganisms in sinigrin	75
	agar plate for 72 h.	
Fig. 3.5	Rhizopus sp. staining by lactophenol blue.	76
Fig. 3.6	Growth of Rhizopus sp. on potatodextrose agar plates for 4 days.	76
Fig. 3.7	Mucor sp. staining by lactophenol blue.	77 0 181
Fig. 3.8	Growth of <i>Mucor</i> sp. on potatodextrose agar plates for 4 days.	J ⁷⁸ Jniversity
Fig. 3.9	Aspergillus sp. staining by lactophenol blue.	78
Fig. 3.10	Growth of Aspergillus sp. on potatodextrose agar plates for 7 days.	78
Fig. 3.11	Growth profiles of gram negative bacteria in sinigrin glucose medium	1 80
Fig. 3.12	Growth of <i>Rhizopus</i> sp. in sinigrin glucose medium.	81

Fig. 3.13 Growth of <i>Mucor</i> sp. in sinigrin glucose medium.	81
Fig. 3.14 Growth of Aspergillus sp. in sinigrin glucose medium.	82
Fig. 3.15 Aspergillus sp. NR461 (at 28°C) on PDA plate cultivation.	84
Fig. 3.16 Aspergillus sp. NR462 (at 28°C) on PDA plate cultivation.	84
Fig. 3.17 Aspergillus sp. NR463 (at 28°C) on PDA plate cultivation.	85
Fig. 3.18 Aspergillus sp. NR464 (at 28°C) on PDA plate cultivation.	85
Fig. 3.19 Aspergillus sp. NR465 (at 28°C) on PDA plate cultivation.	86
Fig. 3.20 Aspergillus sp. NR466 (at 28°C) on PDA plate cultivation.	86
Fig. 3.21 Aspergillus sp. NR467 (at 28°C) on PDA plate cultivation.	87
Fig. 3.22 Aspergillus sp. NR468 (at 28°C) on PDA plate cultivation.	87
Fig. 3.23 Aspergillus sp. NR469 (at 28°C) on PDA plate cultivation.	88
Fig. 3.24 Aspergillus sp. NR4610 (at 28°C) on PDA plate cultivation.	88
Fig. 3.25 Aspergillus sp. NR4611 (at 28°C) on PDA plate cultivation.	89
Fig. 3.26 Aspergillus sp. NR4612 (at 28°C) on PDA plate cultivation.	89
Fig. 3.27 Aspergillus sp. NR4613 (at 28°C) on PDA plate cultivation.	90
Fig. 3.28 Aspergillus sp. NR4614 (at 28°C) on PDA plate cultivation.	
Fig. 3.29 Aspergillus sp. NR4615 (at 28°C) on PDA plate cultivation.	University
Fig. 3.30 Aspergillus sp. NR4616 (at 28°C) on PDA plate cultivation.	91 91
Fig. 3.31 Aspergillus sp. NR4617 (at 28°C) on PDA plate cultivation.	92
Fig. 3.32 Aspergillus sp. NR4618 (at 28°C) on PDA plate cultivation.	
	92

Fig. 3.33 Aspergillus sp. NR4619 (at 28°C) on PDA plate cultivation.	93
Fig. 3.34 Aspergillus sp. NR4620 (at 28°C) on PDA plate cultivation.	93
Fig. 3.35 Aspergillus sp. NR4621 (at 28°C) on PDA plate cultivation.	94
Fig. 3.36 SDS-PAGE of intracellular protein pattern of selected strains of	98
Aspergillus sp.	
Fig. 3.37 Densitomatric chromatogram of Aspergillus sp. NR461 (1),	99
NR462 (2), NR463 (3), NR464 (4), NR465 (5) and protein marker ((M)
on 10 % gel.	
Fig. 3.38 Densitomatric chromatogram of Aspergillus sp. NR466 (6),	100
NR468 (8), NR469(9), NR4610(10), NR4611(11) and protein	
marker(M) on 10%gel.	
Fig. 3.39 Densitomatric chromatogram of Aspergillus sp. NR4612 (12),	101
NR4613 (13), NR4614 (14), NR4615 (15), NR4616 (16) and protein	
marker (M) on 10 % gel.	
Fig. 3.40 Densitomatric chromatogram of Aspergillus sp. NR4617 (17),	102
NR4618 (18), NR4619 (19), NR4620 (20), NR4621 (21) and protein	
marker (M) on 10 % gel.	
Fig. 3.41 Calibration curve of the molecular weight marker by SDS-PAGE.	erve 0
Fig. 3.42 Myrosinase production of Aspergillus sp. NR463 on mustard extract	105
medium, pH 5.0 (◊), pH 5.5 (▲), pH 6.0 (•), pH 6.5 (X).	

pH 7.0 (●) and pH 7.5 (■) at 30°C	pH 7.0 (() and	pH 7.5	(I)	at 30°C.
-----------------------------------	----------	---------	--------	--------------	----------

- Fig. 3.43 Myrosinase production of *Aspergillus* sp. NR463 on mustard extract 106 medium with different glucosinolate concentrations, 2.8 mM(●), 5.5 mM(■), 8.0 mM (▲) and 10.0 mM (X) at 30°C pH 6.5.
- Fig. 3.44 Myrosinase production of *Aspergillus* sp. NR463 on mustard extract 107 medium at incubation temperatures, 25°C (⋄), 28°C (■), 30°C (▲), 35°C (✗) and 37°C (♠) at 10 mM glucosinolate pH 6.5.
- Fig. 3.45 Myrosinase production of *Aspergillus* sp. NR463 on mustard extract 108 medium in different inoculum sizes, 1×10^5 (\bullet), 1×10^6 (\blacksquare), 5×10^6 (\blacktriangle) and 1×10^7 (\mathbf{X}), at 30°C and 10 mM of glucosinolate at pH 6.5.
- Fig. 3.46 Stability of myrosinase activity in fungal mycelium.

 109

 Mycelial samples were maintained at 4°C (▲) and -40°C (■).
- Fig. 3.47 Stability of crude myrosinase from *Aspergillus* sp. NR463.

 Enzyme samples in 40 mM sodium phosphate buffer, pH 7.0 were maintained at 0 (●), 4 (■) and 30°C (▲).
- Fig. 3.48 Survival curve of Aspergillus sp. NR463 treated with ultraviolet light. 112
- **Fig. 3.49** Myrosinase production of *Aspergillus* sp. NR463 preserved on potato 114 dextrose agar (□) and mustard extract agar (■). The fungi were subcultured monthly and determined for myrosinase production.
- Fig. 3.50 Enzyme stability of the wild-type and mutant strains of Aspergillus sp. 116

- NR463 at 30° C. Each value is the mean of triplicate tests with SD error bars indicated. NR463 (Δ); NR463U1 (■); NR463U2 (▲); NR463U3 (X); NR463U4 (□); NR463U5 (●).
- Fig. 3.51 Time course of growth and myrosinase production by *Aspergillus* sp. 117

 NR463U4 mutant strain in shaken cultures. Total glucosinolate (■);

 Glucose (•); Myrosinase activity (▲); Cell dry weights (X) are shown.
- Fig. 3.52 Production stability was recovered for the mutant NR463U4 (■) and of 118 the wild-type strain *Aspergillus* sp. NR463 (□), during the time course of 16 slant-to-slant transfers; myrosinase activity in shaken cultures was tested monthly (8 months).
- Fig. 3.53 Survival curve of *Aspergillus* sp. NR463 treat with EMS (▲) and

 MNNG (■). Each value represents means of three replicates.
- Fig. 3.54 Enzyme stability of wild-type and EMS mutants of *Aspergillus* sp. 125 NR463 at 30° C. Each value is the mean of triplicate tests with SD error bars indicated. NR463 (Δ); NR463E1 (■); NR463E2 (▲); NR463E3 (X); NR463E4 (□); NR463E5 (•).
- Fig. 3.55 Enzyme stability of wild-type and MNNG mutants of Aspergillus sp. 125
 NR463 at 30°C. Each value is the mean of triplicate tests with SD error bars indicated. NR463 (Δ); NR463MG1 (■); NR463MG2 (▲);
 NR463MG3 (X); NR463MG4 (□); NR463MG5 (●).

of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganisms, NR463U1-NR463U5, respectively. Fig. 3.57 SDS-PAGE of intracellular protein pattern of EMS mutant strains . 127 of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463E1-NR463E5, respectively. Fig. 3.58 SDS-PAGE of intracellular protein pattern of MNNG mutant strains . 128 of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and . 129 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and . 130 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and OPN6 (lanes 9-16). M-Molecular weight size markers.	Fig. 3.56	SDS-PAGE of intracellular protein pattern of UV mutant strains	127
respectively. Fig. 3.57 SDS-PAGE of intracellular protein pattern of EMS mutant strains of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463E1-NR463E5, respectively. Fig. 3.58 SDS-PAGE of intracellular protein pattern of MNNG mutant strains of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		of Aspergillus sp. NR463. The number on the top of gel, 1-5,	
of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463E1-NR463E5, respectively. Fig. 3.58 SDS-PAGE of intracellular protein pattern of MNNG mutant strains of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		indicates strains of microorganisms, NR463U1-NR463U5,	
of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463E1-NR463E5, respectively. Fig. 3.58 SDS-PAGE of intracellular protein pattern of MNNG mutant strains of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		respectively.	
indicates strains of microorganismsm, NR463E1-NR463E5, respectively. Fig. 3.58 SDS-PAGE of intracellular protein pattern of MNNG mutant strains of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and	Fig. 3.57	SDS-PAGE of intracellular protein pattern of EMS mutant strains .	127
respectively. Fig. 3.58 SDS-PAGE of intracellular protein pattern of MNNG mutant strains of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 130 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		of Aspergillus sp. NR463. The number on the top of gel, 1-5,	
Fig. 3.58 SDS-PAGE of intracellular protein pattern of MNNG mutant strains of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		indicates strains of microorganismsm, NR463E1-NR463E5,	
of Aspergillus sp. NR463. The number on the top of gel, 1-5, indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		respectively.	
indicates strains of microorganismsm, NR463MG1-NR463MG5, respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and	Fig. 3.58	SDS-PAGE of intracellular protein pattern of MNNG mutant strains	128
respectively. Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		of Aspergillus sp. NR463. The number on the top of gel, 1-5,	
Fig. 3.59 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of Aspergillus sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		indicates strains of microorganismsm, NR463MG1-NR463MG5,	
7 mutants strains, obtained with the primer OPN2 (lanes1-8) and OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of <i>Aspergillus</i> sp. NR463 wild-type strain and 130 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		respectively.	
OPN4 (lanes 9-16). M-Molecular weight size markers. Fig. 3.60 RAPD profiles of <i>Aspergillus</i> sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and	Fig. 3.59	RAPD profiles of <i>Aspergillus</i> sp. NR463 wild-type strain and	129
Fig. 3.60 RAPD profiles of <i>Aspergillus</i> sp. NR463 wild-type strain and 7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		7 mutants strains, obtained with the primer OPN2 (lanes1-8) and	
7 mutants strains, obtained with the primer OPN5 (lanes1-8) and		OPN4 (lanes 9-16). M-Molecular weight size markers.	
A matanta strains, obtained with the printer Of 143 (lanes1-6) and	Fig. 3.60	RAPD profiles of <i>Aspergillus</i> sp. NR463 wild-type strain and	130
OPN6 (lanes 9-16). M-Molecular weight size markers.		7 mutants strains, obtained with the primer OPN5 (lanes1-8) and	
		OPN6 (lanes 9-16). M-Molecular weight size markers.	
Fig. 3.61 RAPD profiles of Aspergillus sp. NR463 wild-type strain and	Fig. 3.61	RAPD profiles of Aspergillus sp. NR463 wild-type strain and	130

7 mutants strains, obtained with the primer OPN7 (lanes 1-8) and

	OPN11 (lanes 9-16). M-Molecular weight size markers.	
Fig. 3.62	RAPD profiles of Aspergillus sp. NR463 wild-type strain and	131
	7 mutants strains, obtained with the primer OPN12 (lanes 1-8) and	
	OPN13 (lanes 9-16). M-Molecular weight size markers.	
Fig. 3.63	RAPD profiles of Aspergillus sp. NR463 wild-type strain and	131 .
	7 mutants strains, obtained with the primer OPN14 (lanes 1-8).	
	M-Molecular weight size markers.	
Fig. 3.64	RAPD profiles of Aspergillus sp. NR463 wild-type strain and	132
	7 mutants strains, obtained with the primer OPN16 (lanes 1-8).	
	M-Molecular weight size markers.	
Fig. 3.65	Gas chromatograms of breakdown products from sinigrin degradation	133
	by myrosinase of Aspergillus sp. NR463 and mutant strains NR463U2.	.//
Fig. 3.66	Effect of enzyme concentration on the determination of activity by	136
	spectrophotometric assay.	
Fig. 3.67	Effect of enzyme concentration on the determination of activity by	136
	coupled enzyme assay.	
Fig. 3.68	pH activity plots of crude Aspergillus sp. NR463U4 myrosinase.	₁₃₇ V e 0
Fig. 3.69	Temperature activity plots of the crude Aspergillus sp. NR463U4	138
	myrosinase.	

Fig. 3.70 Lineweaver-Burk plots of sinigrin hydrolyzing activity of crude

Aspergillus sp. NR463U4 myrosinase. Enzyme activity was

determined by the spectrophotometric assay at 227 nm.

Fig. 3.71 Lineweaver-Burk plots sinigrin hydrolyzing activity of crude

Aspergillus sp. NR463U4 myrosinase. Enzyme activity was

determined by the coupled enzyme assay.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxviii

ABBREVIATIONS AND SYMBOLS

ATP

adenosine triphosphate

°C

degree celsius

EMS

ethyl methane sulfonate

xg

relative gravity

g

gram

mg

milligram

G-6-PD

glucose-6-phosphate dehydrogenase

HK

hexokinase

hr

hour

1

liter

μl

microliter

μmole

micromole

ml

milliliter

m

meter

MNNG

N-methyl-N'-nitro-N-nitrosoguanidine

cm

centimeter

nm

nanometer

PDA

potato dextrose agar

 $K_{\rm m}$

Michaelis-Menten's constant

 K_{i} inhibition constant K_{react} reaction constant revolution per minute rpm 2/02/31/ min minute second sec [S] substrate concentration U unit V velocity maximum velocity $V_{\rm max}$

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved