TABLE OF CONTENTS

		Page
ACKNOW	LEDGEMENT	iii
ABSTRAC	T (ENGLISH)	v
ABSTRAC	T (THAI)	viii
TABLE OF	CONTENTS	x
LIST OF TA	ABLES	xiv
LIST OF FI	GURES	xvi
ABBREVIA	ATIONS AND SYMBOLS	xviii
Chapter 1	An Introduction to Fluoride Removal from Water by E	Bone Char 1
	1.1 Fluoride in the environment	4
	1.2 Fluoride in natural waters	7
	1.3 Fluoride in drinking water	10
	1.4 Water treatment processes for fluoride removal	12
	1.5 Defluoridation by bone char	15
	1.6 References	Uni 19ersity
Chapter 2	Principle of Simultaneous Determination of Fluoride an	ıd
	Hydroxide by Flow Injection Analysis	25
	2.1 Theory of flow injection analysis	25

		rage
	2.1.1 Flow injection system	25
	2.1.2 Dispersion in FIA	28
	2.2 Spectrophotometric flow injection determination of fluoride	31
	2.2.1 An indirect method or substitution of a colored	
	complex with fluoride	32
	2.2.2 A direct method or mixed ligand complex formation	32
	2.3 Simultaneous detection of fluoride and hydroxide	33
	2.4 References	35
Chapter 3	Flow Injection Spectrophotometric Determination of Fluoride	e
	Using Ternary Complex of Aluminium with Eriochrome	
	Cyanine R and Cationic Surfactant	38
	3.1 Introduction	38
	3.2 Experimental	40
	3.2.1 Apparatus	40
	3.2.2 Chemicals	40
	3.2.2 Solution preparation	41
	3.2.2 Samples	42
	3.3 Results and discussion	43
	3.3.1 Preliminary studies	r ₄₃ / e c
	3.3.2 Optimization of chemicals and FIA variables	43
	3.3.3 Analytical features	52
	3.3.4 Interference study	55

		Page
	3.3.5 Fluoride determination in ground water samples	57
	3.4 Conclusion	59
	3.5 References	60
Chapter 4	Determination of Hydroxide by Spectrophotometric	
	Flow Injection Analysis Using m-Cresol Purple	62
	4.1 Introduction	62
	4.2 Experimental	63
	4.2.1 Apparatus and reagents	63
	4.3 Results and discussion	64
	4.3.1 Selection of a suitable indicator	64
	4.3.2 Optimization of the parameters	67
	4.3.3 Analytical characteristics	72
	4.3.4 pH determination in real samples	73
	4.4 Conclusion	74
	4.5 References	74
Chapter 5	A Study of Ion Exchange Process Involving Defluoridation by	
	Bone Char Using Spectrophotometric Flow Injection Analysis	75 TS 11 Y
	5.1 Introduction	1 ₇₅ / e 0
	5.2 Experimental	77
	5.2.1 Apparatus and chemicals	77
	5.2.2 Bone char	77

		Page
	5.3 Results and discussion	78
	5.3.1 Simultaneous determination of fluoride and	
	hydroxide by flow injection spectrophotometry	78
	5.3.2 Fluoride removal by bone char in a fixed bed column	81
	5.3.3 Continuous desorption by water	85
	5.4 Conclusion	86
	5.5 The relevancy of the research work to Thailand	87
	5.6 References	88
APPENDIX		89
VITA		95

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 981116		Page	
1.1	Environmental properties of fluorine	6	
1.2	Relative abundance of dissolved solids in potable water	7	
1.3	Characteristics of fluoride in natural water	9	
1.4	Fluoride regulations in drinking water	11	
1.5	Removal efficiency of water treatment processes for fluoride	13	
1.6	Defluoridation methods for drinking water	14	
1.7	Chemical and physical properties of bone char	15	
3.1	Parameters optimization for fluoride determination	51	
3.2	Relative standard deviation of the aluminium complex method	54	
3.3	Summary of analytical parameters	54	
3.4	Interference effects on the determination of fluoride	56	
3.5	Recovery of fluoride from ground water samples	57	
3.6	Determination of fluoride by the proposed and standard methods	58	
3.7	Comparison of analytical characteristics of spectrophotometric FIA		
	for fluoride determination.	60	
4.1	Four phthalein indicators in a basic solution	64	
4.2	Absorbance of the basic form of phthalein dyes	66	
4.3	Optimization of chemicals and flow injection variables for pH detection	71	
1.4	Summary of analytical characteristics for hydroxide determination	73	

Table		Page
4.5	Determination of pH by the proposed and standard methods	74
5.1	Signal change of fluoride and hydroxide in the effluent of	
	a bone char column	85

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Fig	Figure 938136	
1.1	Cycling of fluoride through the biogeosphere	5
2.1	General scheme of a basic flow injection system	26
2.2	Reactor geometries	28
2.3	Dispersion in laminar flow	30
2.4	Radial flow pattern in FI manifold	30
2.5	Flow injection system for simultaneous determination of fluoride and	
	hydroxide	35
3.1	Schematic diagram of flow injection system. P: peristaltic pump,	
	I: injection valve, RC: reaction coil, D: spectrophotometer, W: waste,	
,	C: carrier (water), R: reagent (mixture of 1.00 mg L ⁻¹ Al and 1.00×10 ⁻³	
	mol dm ⁻³ ECR + 5.00×10^{-3} mol dm ⁻³ CTA + 0.50 mol dm ⁻³ HMTA)	44
3.2	Effect of pH on absorbance change	45
3.3	Effect of buffer concentration on sensitivity	46
3.4	Effect of aluminium concentration on analytical signal	47
3.5	Effect of flow rate	49
3.6	Effect of injection tubing langth	49
3.7	Effect of reaction tubing length	51
3.8	A typical calibration graph for fluoride determination by a ternary	
	aluminium complex: $Y = 0.1321 X + 0.0076$, $r^2 = 0.998$	52

xvii

Fig	Figure	
3.9	Interference from iron and phosphate. The absorbance change or	
	peak height of 1.00 mg L ⁻¹ fluoride was set as 100 %	-56
3.1	O Comparison of the proposed method and the standard one (ISE)	59
4.1	Absorption spectra of four phthalein indicators	65
4.2	Absorbance change of phthalein indicators	67
4.3	Effect of <i>m</i> -cresol purple concentration on sensitivity	69
4.4	Effect of initial pH of indicator solution on sensitivity	69
4.5	Effect of flow rate	70
4.6	Effect of injection volume	70
4.7	Effect of reactor coil length on sensitivity	71
4.8	The calibration graph for pH measurement	72
5.1	Bone char appearance	77
5.2	Absorption spectra of (a) m-cresol purple and (b) ternary aluminium complex	79
5.3	Manifold configuration for simultaneous determination of fluoride	
	and hydroxide	80
5.4	Breakthrough curve and desorption graph for fluoride removal in	
	a fixed bed column containing bone char. 0-20 min deionized water for	
	blank study, 21-330 min 6-ppm synthetic fluoride solution, 331-430	
	min deionized water for desorption study	81 81
5.5	Sorption feature of fluoride in a fixed bed column containing bone char	83V e
5.6	Liberated behavior of hydroxide from the bone char column	83
5.7	Flow injection manifold for the study of an ion-exchange process	
	during defluoridation in bone char column	84

xviii

ABBREVIATIONS AND SYMBOLS

AFB alizalin fluorine blue

BAT best available technology

CTA cetyltrimethylammonium bromide

ECR eriochrome cyanine R

FIA flow injection analysis

HMTA hexamethylenetetramine

ICOH Intercountry Center for Oral Health (Thailand)

ISE ion selective electrode

 λ_{max} wavelength of maximum absorption

LOD limit of detection

LOQ limit of quantification

min minute

mmol millimole

ppm part per million

RSD relative standard deviation

Samples/h samples per hour

SPADNS sodium 2(p-sulfophenylazo)-1,8-dihydroxy-3,6-naphthalene

disulfonate

v/v volume by volume

WHO World Health Organization

wt weight