TABLE OF CONTENTS

	PAGE
Acknowledgements	iii
Abstract (in English)	v
Abstract (in Thai)	vii
List of tables	xii
List of figures	xiii
CHAPTER 1 INTRODUCTION	1
1.1 Overview	1
1.2 Bone alkaline phosphatase	4
1.2.1 Bone alkaline phosphatase	4
1.2.2 Methodology for determination of bone alkaline	
phosphatase	6
1.2.2.1 Heat inactivation	6
1.2.2.2 Chemical inhibition	7
1.2.2.3 Electrophoresis	8
1.2.2.4 Chromatographic technique	9
1.2.2.5 Immunoassay	9
1.2.2.6 Lectin precipitation	11
1.3 Wheat germ lectin	$\mathbf{e}_{11}0$
1.4 Flow injection-bead injection for determination of bone AL	P 13
1.5 Research objectives	16

CHAPTER 2 EXPE	RINENTAL	17
2.1 Materia	als and apparatus	17
2.2 Reager	nts	17
2.3 Prepara	ation of standard solutions and reagents	18
2.4 Bead re	etention cell	20
2.5 Manife	old and operation steps	22
2.6 Opimiz	zation	25
2.6.1 \$	Sample volume	25
2.6.2 I	Flow rate	26
2.6.3 I	Bead loading time	26
2.6.4 I	Processing time	26
2.7 Within	-run precision	28
2.8 Betwee	en-run precision	28
2.9 Calibra	ation curve	28
2.10 Cross-1	reactivity with liver ALP	28
2.11 Testing	g of accuracy	29
2.12 Dilutio	on of serum sample	29
2.13 Applic	ation of developing FI-BI technique for	real serum
sample	s	29
2.14 Compa	arison of the FI-BI system with ELISA kit	anvers ₃₀
CHAPTER 3 RESU	LTS AND DISCUSSION	Y Q 31
3.1 Bead re	etention cell designs	31
3.2 Manife	old and operation step	32
3.3 Optimi	zation	33

3.3.1 Sample volume	33
3.3.2 Flow rate	35
3.3.3 Bead loading time	36
3.3.4 Processing time	37
3.4 Optimum condition of the FI-BI system	42
3.5 Within-run precision	43
3.6 Between-run precision	44
3.7 Calibration curve	45
3.8 Cross-reactivity with liver ALP	48
3.9 Testing of accuracy	49
3.10 Dilution of serum sample	50
3.11 Determination of bone ALP in serum samples using the system	52
CHAPTER 4 CONCLUSION	58
4.1 Conclusion	58
4.2 Further works	59
THE RELEVANCY OF THE RESEARCH WORK TO THAILAND	60
REFFERENCES	61
APPENDICES	64
Appendix A	65
Appendix B Children S Mail Onivers	66
Appendix C hts reserve	74
Appendix D	76
Appendix E	84
CURRICULUM VITAE	85

LIST OF TABLES

TABLE		PAGE
1.1	Total ALP and bone ALP activities in various groups of subjects	6
1.2	Relationship of incubation time and temperature was used in hea	t
	inactivation	7
1.3	Immunoassay method for bone alkaline phosphatase	10
3.1	Operation time for determination of bone ALP by using FI-B	I
	system	42
3.2	The optimum condition of the FI-BI system for determination of	f
	bone ALP in human serum samples	43
3.3	Within-run precision of the FI-BI system obtained from 10)
	injections of a fetal bovine serum in one day	44
3.4	Between-run precision of the FI-BI system obtained from 10 runs	5
	of a fetal bovine serum in 10 days	45
3.5	Cross-reactivity of liver ALP with bone ALP assay	49
3.6	Percent difference of spiked bone ALP in normal serum sample	50
3.7	Testing of accuracy of spiked bone ALP in normal serum samples	51
4.1	The comparison of the FI-BI assay with commercial ELISA kit	59

LIST OF FIGURES

FIGURE		PAGE
1.1	Composition of wheat seed	3
1.2	Separation of serum samples containing bone (B) and liver (L))
	ALP isoforms by affinity electrophoresis with wheat-germ lectin	l
	and by conventional electrophoresis	8
1.3	Serum ALP isoform profiles from a healty male (A) and a prostate	
	cancer patient with bone metastases (B)	9
501.4	Lectin mediated interactions	12
1.5	3 D structure model of wheat germ agglutinin	13
1.6	A simple FIA manifold with a typical recorded output as obtained	l
	from a flow-through detector	14
1.7	Beads material for supporting media	15
2.1	A schematic diagram of the bead retention cell	20
2.2	A schematic diagram of the bead retention cell made from Perspex	ζ.
	glass	21
2.3	A schematic diagram of beads retention and beads rejection by a	R
	solenoid valve	22
2.4	The enzyme-substrate reaction of bone alkaline phosphatase with	
	p-nitrophenyl phosphate	23
2.5	The FI-BI system for the determination of bone alkaline	•
	phosphatase	24

2.6	p-nitrophenol obtained from auto-oxidation of p-nitrophenyl	
	phosphate	27
3.1	A micro column	31
3.2	Effect of the sample volume on analytical signal	34
3.3	Effect of the buffer flow rate (P_1) on the analytical signal	35
3.4	Effect of the bead loading time on the analytical signal	36
3.5	Effect of the wheat germ lectin beads conditioning time on the	
	analytical signal	37
3.6	Effect of incubation time of wheat germ lectin with bone ALP on	
	the analytical signal	39
3.7	Effect of the Tris-HCl buffer pH 9.5 flowing time on the analytical	
	signal	40
3.8	The washing profile at various flowing times of the Tris-HCl	
	buffer pH 9.5	40
3.9	Effect of incubation time of bone ALP with p-nitrophenyl	
	phosphate on the analytical signal	41
3.10	Analytical signal profile of standard bone ALP of various	
	concentrations	46
3.11	Calibration curve of the bone ALP activities	47
3.12	The method comparison between FI-BI and commercial ELISA kit	53
3.13	The ratio of bone ALP: total ALP in normal serum samples and	
	abnormal serum samples were obtained from the FI-BI assay and	
	commercial ELISA kit	55

3.14	Distribution of bone ALP activity in normal serum group and	
	abnormal serum group (osteoporosis) from the FI-BI assay	56
3.15	Comparison of bone ALP activities in normal group and abnormal	
	group from the FI-BI assay and ELISA	57
A1	Stability of pNPP stock solution was stored at -20°C	65
C1	Optical diagram of the Spectronic® 21 spectrophotometer	74

ลิปสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved