CHAPTER 4 RESULTS

4.1 Mapping of Lichen diversity

4.1.1 Lichen diversity

Over the period of study, from May to November 2004, 234 mango trees were investigated. A total of 21 lichen species were recorded, 15 species belonging to the crustose group and 6 species belonging to the foliose group. Lists of total lichen species found are presented in Table 4.1 and the pictures of some lichen species are presented in Appendix F.

Table 4.1 Lists of total lichen species found in study area

	Taxa	Type
1	Arthonia antillarum	Crustose
2	Arthonia spp.	Crustose
3	Bacidia sp.	Crustose
4	Buellia sp.	Crustose
5	Caloplaca sp.	Crustose
6	cf. Lecanographa	Crustose
7.	Chrysothrix xanthina	Crustose
8	Cryptothecia sp.	Crustose
9	Dimerella sp.	Crustose
10	Dirinaria picta	Foliose
11	Graphidaceae	Crustose
12	Hyperphyscia adglutinata	Foliose
13	Hyperphyscia pandani	Foliose
14	Laurera spp.	Crustose
15	Lecanora spp.	Crustose
16	Parmotrema praesorediosum	Foliose
17	Physcia poncinsii	Foliose
18	Pyrenula sp.	Crustose
19	Pyxine cocoes	Foliose
20	Rinodina sp.	Crustose
21	Trypethelium spp.	Crustose

The similarity of ecological behaviour and floristic composition among lichen flora in the study area were then observed based on lichen frequencies. The hierarchical cluster analysis was performed by SPSS version 10.0, using cosine as the resemblance measure method and average linkage (between groups) as a clustering algorithm. The dendrogram is presented in Figure 4.1.

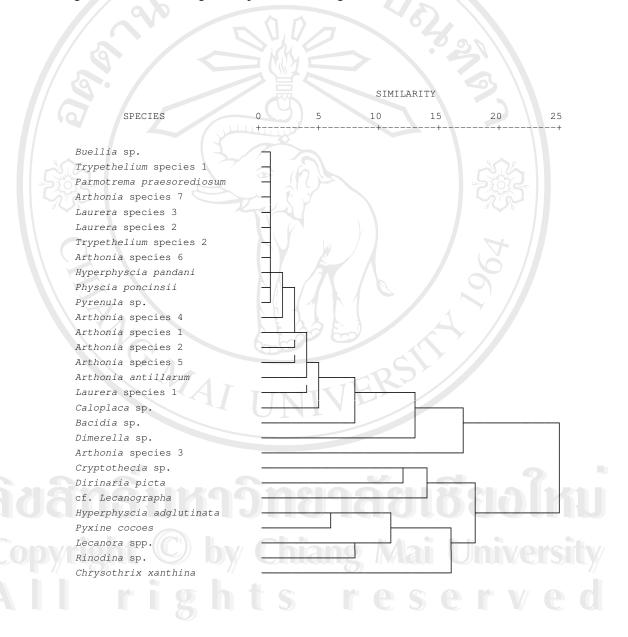


Figure 4.1 Dendrogram of lichen species found in study area

The results from the classification of lichen species found in the study area showed that two groups of lichen species were clearly distinguished. The first group includes lichen species that were found mostly in urban areas, especially in the center of Lampang city. These lichen species are *Rinodina* sp., *Lecanora* spp., *Hyperphyscia adgultinata*, *Pyxine cocoes* and *Chrysothrix xanthina*. The other species belonging to this group are *Cryptothecia* sp., *Dirinaria picta* and cf. *Lecanographa*, which were found in the suburban area and also in the rural areas. The second group consists of the lichen species that were found in the outer zone of city and in the rural areas and include the following species; *Arthonia antillarum*, *Arthonia* spp., *Bacidia* sp., *Buellia* sp., *Caloplaca* sp., *Dimerella* sp., *Hyperphyscia pandani*, *Laurera* spp., *Parmotrema praesorediosum*, *Physcia poncinsii*, *Trypethelium* spp. and *Pyrenula* sp. Lichen species belonging to the Graphidaceae were excluded in the classification because these species are found scattered throughout the study area and are not suitable for use as indicator species.

4.1.2 Calculation of lichen diversity values

According to the method by Asta *et al.* (2002), the frequencies of all lichen species found within the surveyed quadrats were expressed as the sums of frequencies (SF) (Appendix C). For each tree, four values of SF were determined, and for each cardinal point, the mean of sums of frequencies (MSF) was then calculated. Lichen diversity values (LDVs) of each sampling unit were obtained by summing MSF of each cardinal point (Table 4.2).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

Table 4.2 Mean of sum of frequencies (MSF), lichen diversity values (LDVs), standard deviation (SD) and standard error (SE)

Sampling		MSF			LDVs	SD SD				Mean	SE
Unit no.	N	E	S	W	LDVS	N	E	S	W	SD	SE
1	6.80	7.83	8.25	7.20	30.08	4.55	3.66	2.99	3.56	3.69	1.65
2	13.67	11.40	9.50	12.17	46.73	5.50	5.59	6.66	4.31	5.52	2.47
3	13.00	10.33	5.83	7.50	36.67	7.64	3.88	5.19	5.72	5.61	2.51
4	5.20	4.00	2.67	2.67	14.53	3.96	3.37	2.07	2.52	2.98	1.33
5	7.33	7.83	3.75	7.83	26.75	2.16	4.36	1.71	6.55	3.69	1.65
6	7.20	7.17	8.00	5.83	28.20	1.79	4.71	4.00	4.07	3.64	1.63
7	7.33	7.00	7.00	7.00	28.33	3.50	2.65	3.24	4.64	3.51	1.57
8	6.00	6.00	3.25	4.00	19.25	4.90	3.61	2.99	2.45	3.49	1.56
9	11.33	7.00	4.20	7.50	30.03	8.71	5.43	4.21	4.72	5.77	2.58
10	14.00	14.80	13.75	6.50	49.05	6.72	6.94	7.80	3.27	6.19	2.77
11	10.75	12.20	7.00	7.20	37.15	8.81	6.46	2.65	4.82	5.68	2.84
12	13.20	7.17	10.20	9.40	39.97	2.68	3.92	4.82	4.22	3.91	1.75
13	7.67	6.17	3.80	5.00	22.63	4.80	4.12	2.17	3.52	3.65	1.63
14	6.50	6.40	7.50	6.17	26.57	6.38	4.10	6.19	4.96	5.41	2.42
15	5.67	4.33	3.00	4.67	17.67	5.24	4.84	3.95	6.19	5.06	2.26
16	4.67	1.83	3.50	4.33	14.33	4.55	2.23	4.14	4.50	3.85	1.72
17	5.83	2.50	3.33	0.17	11.83	6.40	3.21	4.13	0.41	3.54	1.58
18	9.50	5.00	5.00	5.50	25.00	2.38	5.05	4.15	3.62	3.80	1.70
19	8.33	7.00	7.40	6.67	29.40	4.80	5.10	6.35	5.16	5.35	2.39
20	6.67	11.50	7.33	8.33	33.83	2.50	5.80	2.34	2.50	3.29	1.47

Copyright © by Chiang Mai University Allrights reserved

ปมกหย

Table 4.2 (Continued)

Sampling		M	SF		LDVs	温色	S	SD	6	Mean	SE	
Unit no.	N	E	S	W	LDVS	N	E	S	W	SD	SE	
21	5.00	3.80	3.25	4.33	16,38	3.58	2.28	1.50	2.80	2.54	1.14	
22	5.33	4.20	4.25	4.17	17.95	2.94	3.49	1.71	3.60	2.94	1.31	
23	5.50	4.17	2.60	1.00	13.27	3.94	2.79	2.51	1.73	2.74	1.23	
24	1.80	4.50	3.40	3.20	12.90	2.49	5.01	6.07	3.70	4.32	1.93	
25	8.50	6.00	4.33	6.17	25.00	7.06	4.47	3.93	5.98	5.36	2.40	
26	8.80	7.00	3.75	6.33	25.88	5.40	5.23	4.50	5.28	5.10	2.28	
27	5.50	5.83	5.33	5.83	22.50	3.51	1.94	3.14	2.99	2.90	1.30	
28	15.40	10.50	9.60	8.83	44.33	7.96	6.38	6.35	3.19	5.97	2.67	
29	4.17	4.83	4.17	4.40	17.57	1.60	2.56	2.56	2.61	2.33	1.04	
30	9.60	8.00	6.83	7.00	31.43	6.66	5.76	5.34	4.12	5.47	2.45	38
31	10.17	8.00	5.50	4.00	27.67	6.40	6.20	3.51	3.92	5.01	2.24	
32	6.00	4.75	5.50	6.33	22.58	3.74	5.91	3.73	3.50	4.22	1.89	
33	7.33	5.17	4.67	6.40	23.57	3.44	4.26	4.13	3.05	3.72	1.66	
34	8.50	5.60	5.17	6.20	25.47	3.45	1.95	2.04	1.79	2.31	1.03	
35	4.67	6.20	4.80	2.40	18.07	2.25	2.17	4.15	2.70	2.82	1.26	
36	14.50	9.50	6.50	8.25	38.75	6.66	3.94	4.28	4.57	4.86	2.17	
37	6.17	6.83	4.17	4.33	21.50	1.72	3.97	3.25	2.73	2.92	1.31	
38	7.83	10.80	7.00	6.33	31.97	5.56	5.07	4.00	4.08	4.68	2.09	
39	12.33	13.67	17.00	10.33	53.33	5.96	3.20	5.20	4.46	4.70	2.10	

Copyright © by Chiang Mai University A l l r i g h t s r e s e r v e d

4.1.3 Determination of lichen diversity classes

The width of lichen diversity class of 5.16 was obtained by multiplying the median value of standard error (SE) by three (Table 4.3). Standard deviation and standard error of each cardinal point are presented in Table 4.2.

Table 4.3 The median of standard error and the width of lichen diversity class

- B	Value	
Median of SE of all sampling units	1.72	_
Width of lichen diversity class	5.16	

4.1.4 Scales to interpret lichen diversity

The exposure scale for the study area was obtained by comparing the width of lichen diversity class with the VDI standard scale (Figure 4.2). The suitable color code for exposure scale was indicated according to the color code of VDI standard scale.

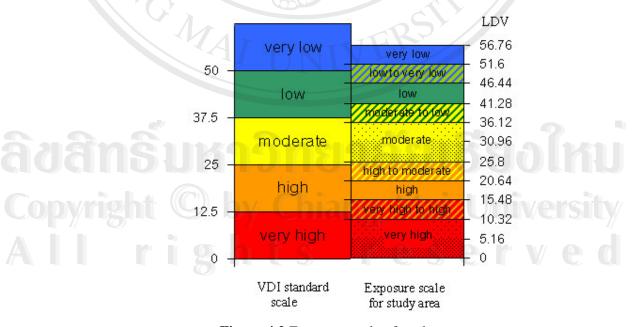


Figure 4.2 Exposure scale of study area

The color code of air quality classes 2, class 4, class 6 and class 8 in this study are indicated by the combined color code of the two classes because their ranges overlapped low air quality classes according to the VDI standard scale. Air quality class 1 and class 5 each had two sub classes, and are indicated by black dots. The density of black dots, which was used for separating two subclasses, decreased towards the range of better air quality (Figure 4.2).

4.1.5 Lichen mapping

LDVs of all sampling units, which varied from 11.83 to 53.33, were assigned to lichen diversity classes (Table 4.4). Eight air quality classes were classified, and their color codes were indicated according to the exposure scale (Figure 4.2). The air quality results in Lampang city using lichen mapping are demonstrated in two figures. The first air quality map, (Figure 4.3) presents each sampling unit colored according to the air quality class. Another lichen map (Figure 4.4) presents the isoline indicating the air pollution zone.

For air quality class 1, LDVs varied from 10.32 to 15.48, which represent very high-to-high air pollution. This classification accounts for 12.82% of study area sampling units and was characteristic of urban area and densely developed areas with the highest density population. This class was located in the central part of Lampang city, which had a high volume of traffic.

For air quality class 2, LDVs varied from 15.48 to 20.64, which represent high air pollution. This category accounts for 15.38% of the study area sampling units and was characteristic of urban areas located along highway and main roads. This zone was also in a densely developed area, but the population density was lower than that of air quality class 1.

For air quality class 3, LDVs varied from 20.64 to 25.80, which represent moderate to high air pollution. This range account for 20.51 % of study area sampling units and was characteristic of the suburban areas located south east of Lampang city. The area was a moderately developed area, which included residential and the university. The population density was at the same level of air quality class 2.

For air quality class 4, LDVs varied from 25.80 to 36.12, which represent moderate air pollution. This range of values accounts for 33.33% of study area sampling units, which included most of the study area. These values were found scattered throughout the outer part of Lampang city.

For air quality class 5, LDVs varied from 36.12 to 41.28, which represent moderate to low air pollution. This category accounts for 7.69% of study area sampling units and was found in the moderately developed area, such as villages and rice paddies.

For air quality class 6, LDVs varied from 41.28 to 46.44, which represent low air pollution. This class account for 2.56% of study area sampling units and was found in village areas with the lowest population density relative to the other areas in the study area.

For air quality class 7, LDVs varied from 46.44 to 51.60, which represent low to very low air pollution. This class account for 5.13% of study area sampling units and was found in the old city and in residential areas with a low population density.

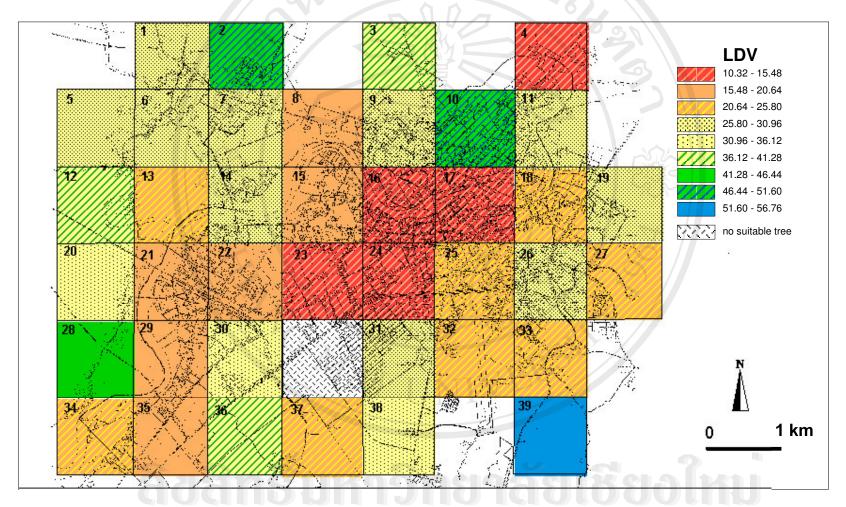

For air quality class 8, LDVs varied from 51.60 to 56.76, which represent very low air pollution. This category accounts for 2.56% of study area sampling units and was found south of city in small rural villages and agricultural areas.

Table 4.4 Air pollution level of sampling units according to lichen air quality classes

Sampling unit no.	LDV	Range of lichen diversity class	Level of air pollution	Lichen air quality class
17	11.83	Henen diversity class	un ponution	quarty class
24	12.90			
23	13.27	$10.32 < LDV \le 15.48$	very high to high	
. 16	14.33			
/11241	14.53			
21	16.38			
29	17.57			
15	17.67	$15.48 < LDV \le 20.64$	high	2
22	17.95			
35	18.07			
8	19.25			

Table 4.4 (Continued)

Sampling unit no.	LDV	Ranges of lichen diversity class	Level of air pollution	Lichen air quality class
37	21.50	2181946		
27	22.50			
32	22.58			
13	22.63			
33	23.57	$20.64 < LDV \le 25.80$	moderate to high	3
25	25.00			
18	25.00			
34	25.47			
26	25.88		\	
14	26.57			
5	26.75			
31	27.67			
6	28.20	$25.80 < LDV \le 30.96$		
7	28.33			
19	29.40		moderate	4
11	30.02			
9	30.03			
1	30.08			
30	31.43		62,//	
38	31.97	$30.96 < LDV \le 36.12$		
20	33.83			
3	36.67			
36	38.75	$36.12 < LDV \le 41.28$	moderate to low	5
12	39.97	Snegg	CHER CH	alkı
28	44.33	41.28 < LDV ≤ 46.44	low	6
2	46.73	46.44 < LDV ≤ 51.60	low to very low	7.04
10 0	49.05	$40.44 < LDV \le 31.00$	low to very low	wersity
39	53.33	$51.60 < LDV \le 56.76$	very low	8

All rights reserved

Figure 4.3 Map of lichens indicating air quality in Amphoe Mueang Lampang

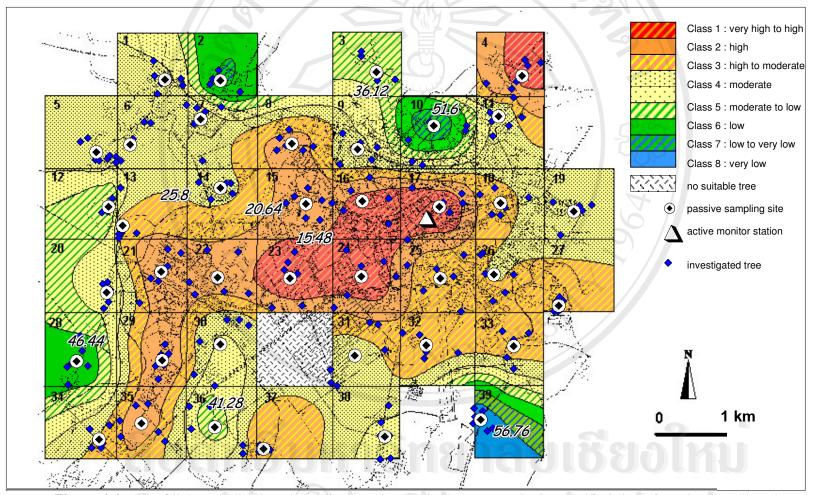


Figure 4.4 Map of lichens indicating air quality zone in Amphoe Mueang Lampang and location of passive sampling site

All rights reserved

4.2 Analysis of bark pH

The average pH of the Mango tree bark samples collected from Lampang city when compared with lichen air quality classes are presented in Table 4.5.

The statistical test from one-way analysis of variance (ANOVA) implied that there was no significant difference in mean bark pH between lichen air quality classes (F^{NS} = 0.587, p< 0.05). The statistical analysis tables are shown in Appendix E. However, the average bark pH decreased toward the better range of air quality. The pH of bark varied from 5.22 to 5.74. The highest pH value was found in lichen air quality class one, representing the very high-to-high air pollution zone. High pH values were also found in lichen air quality class two, which represents a high pollution zone, but the same high pH value was found in lichen air quality class seven, which represents a very low-to-low air pollution zone. The lowest pH was found in the very low air pollution area.

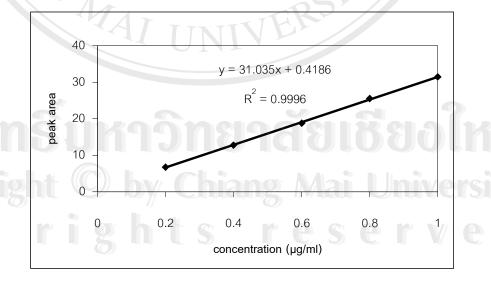
Table 4.5 Comparison of bark pH with lichen air quality classes

Lichen air quality class	Level of air pollution	No. of Sampling unit	Mean pH ± SE		
1.	Very high to high	5	5.74 ± 0.19^{a}		
2	High	6	5.68 ± 0.20^{a}		
3	Moderate to high	8	5.51 ± 0.13^{a}		
4	Moderate	13	5.47 ± 0.09^{a}		
5	Moderate to low	3	5.41 ± 0.18^{a}		
6	Low	1	5.35 ^a		
7	Very low to low	2	5.68 ± 0.44^{a}		
8	Very low		5.22 ^a		
Total		39	5.54 ± 0.06		

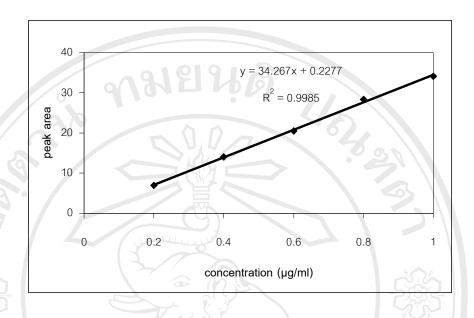
Note: same superscript letter indicate no significantly different results of ANOVA test at 0.05 probability level between eight lichen air quality classes for bark pH

4.3 Determination of NO₂ and SO₂ by passive sampling technique

4.3.1 Sampling site


To determine the NO₂ and SO₂ concentration of each air pollution zone in the study area, diffusion tubes for passive sampling were installed within each sampling

unit of the study are at thirty-nine sites. In each sampling unit, the sampling site of installed diffusion tube was based on the center location within the six sampled Mango trees (Figure 4.4).


4.3.2 Determination of nitrite (NO₂⁻) and sulfate (SO₄²-) by ion chromatography

After two weeks of exposure, the diffusion tubes were collected. The extracted solution was filtered and prepared for injection into the ion chromatograph to determine NO₂⁻ and SO₄²⁻. The concentrations of NO₂⁻ and SO₄²⁻ in the diffusion tubes were calculated with the help of a calibration curve. Two examples of calibration curves are shown in Figure 4.5 and 4.6. Blank and exposed tubes were measured subsequently, under optimized ion chromatograph conditions.

The concentrations of NO_2 and SO_2 in the exposed tube were subtracted from the laboratory blank. Then, this concentration value was used in equation 2.5 to calculate the concentration of NO_2 ($\mu g/m^3$) and SO_2 ($\mu g/m^3$) in ambient air. The details of calculation are shown in Appendix B. The results of average NO_2 ($\mu g/m^3$) and SO_2 ($\mu g/m^3$) of each lichen air quality class are shown in Table 4.6 and Table 4.7, respectively.

Figure 4.5 Calibration curve of NO_2^- (0.2 μ g/ml – 1 μ g/ml)

Figure 4.6 Calibration curve of $SO_4^{2-}(0.2 \mu g/ml - 1 \mu g/ml)$

Table 4.6 Comparison of average concentration of NO_2 ($\mu g/m^3$) in ambient air with lichen air quality classes

Lichen air	Level of	no. of	Mean	NO ₂	$(\mu g / m^3)$
Quality class	air pollution	sampling site	± SD		
1	Very high to high	5	35.84	\pm	14.15 ^c
2	High	6	29.59	\pm	4.89 ^{bc}
3	Moderate to high	8	23.46	\pm	5.56 ^{abc}
4	Moderate	13	24.21	\pm	7.90 ^{bc}
5	Moderate to low	3	19.60	±	5.43 ^{ab}
6	Low			19.9	9 ^{ab}
7	Very low to low	2	10.39	±	8.80^{a}
/*************************************	Very low	no Mai		12.9	5 ^a
Total	wy Cilla	39	24.91	±	9.52

Note: superscript letters indicate significantly different results of ANOVA test at 0.05 probability level between eight lichen air quality classes for NO₂

Table 4.7 Comparison of average concentration of SO_2 ($\mu g/m^3$) in ambient air with lichen air quality classes

Li	chen air	Level of	no. of	Mean SO	$_2(\mu g/m^3)$	
qua	ality class	air pollution	sampling site	± SE		
	1	Very high to high	5	$9.80 \pm$	6.13 ^a	
	2	High	6	$23.60 \pm$	20.60 a	
	3	Moderate to high	8	$19.77 \pm$	9.78 ^a	
	4	Moderate	13	$16.93 \pm$	7.34 ^a	
	5	Moderate to low	3	$17.27 \pm$	10.45 ^a	
	6	Low	1	52.	57 ^a	
	7	Very low to low	2	$7.88 \pm$	7.46^{a}	
	8	Very low	1	11.	02 ^a	
The state of the s	Total	(A)	39	17.95 ±	12.43	

Note: same superscript letter indicate no significantly different results of ANOVA test at 0.05 probability level between eight lichen air quality classes for SO₂

The one-way analysis of variance (ANOVA) with Least significant difference (LSD) was used to determine the difference of mean SO_2 and NO_2 concentration between each lichen air quality class. The results showed that the mean SO_2 concentration of each lichen air quality class were not significantly different (F^{NS} = 1.599, p< 0.05). However, the results showed there was a significant difference in mean NO_2 concentrations between lichen air quality classes (F^* = 5.455, p< 0.05). The statistical analysis tables are presented in Appendix E.

The scatter plot diagram was drawn between LDVs and NO_2 concentrations (Figure 4.7) and between LDVs and SO_2 concentrations of the sampling units (Figure 4.8). The correlation test was carried out by Pearson's correlation. The results showed a significant moderate correlation (r^{**} = -0.614, p < 0.01) between NO_2 and LDVs, but no significant correlation between SO_2 and LDVs (r = -0.119, p < 0.01).

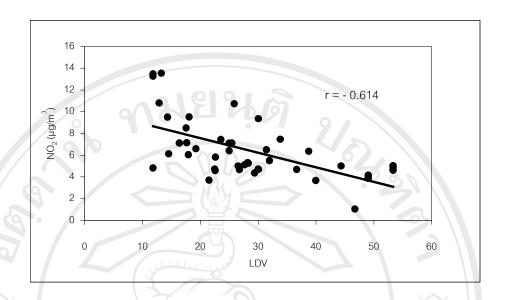
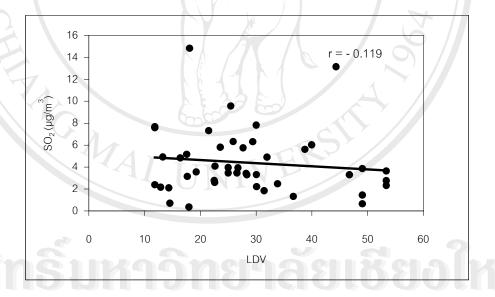
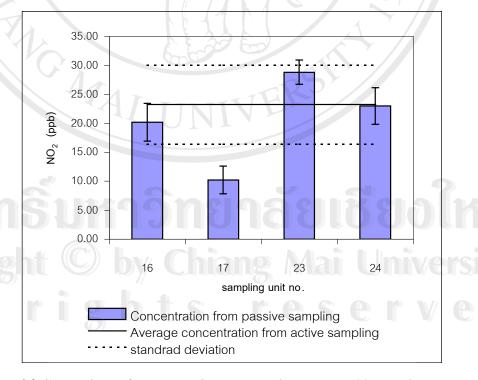
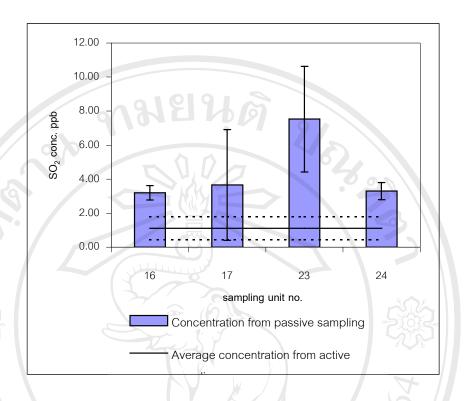


Figure 4.7 Correlation between LDVs and NO₂ (µg/m³) of all sampling site




Figure 4.8 Correlation between LDVs and SO₂ (μg/m³) of all sampling site

rights reserve


4.3.3 Comparison with active sampling measurement

The active sampling data, which was measured by a chemiluminescence monitor for NO_2 and a fluorescent analyzer for SO_2 , was obtained from the Pollution Control Department of Thailand (2005).

The concentrations of NO₂ and SO₂ obtained by active sampling were compared with average concentrations obtained by passive sampling during the two weeks of exposure at sampling unit no. 16, 17, 23 and 24 (Figure 4.9). Theses area were chosen due to the highest air pollution zone as well as located in the central of city where the active monitor station is established. The results from the comparison of the average concentration of NO₂ by passive sampling from four sampling units and active sampling showed that, the underestimation of average NO₂ concentration from passive sampling was within 11.56 % error of the value obtained from active sampling. While, the average SO₂ concentrations obtained from passive sampling was higher than the concentration measured by active sampling (Figure 4.10).

Figure 4.9 Comparison of average NO₂ concentration measured by passive with active sampling during the two weeks period of exposure

Figure 4.10 Comparison of average SO₂ concentration measured by passive with active sampling during the two weeks period of exposure

4.4 Correlation between the four parameters

The correlation tests between four parameters; LDVs, NO_2 , SO_2 and bark pH were performed using Pearson's correlation test. The results are shown in Table 4.8. A significant correlation between NO_2 and LDVs ($r^{**} = -0.614$, p < 0.01) and a slightly significant correlation between bark pH and NO_2 ($r^* = 0.368$, p < 0.05) were found

Table 4.8 Correlation between four parameters with the results of the Pearson test

Pearson correlation test	LDVs	NO ₂	SO ₂
NO_2	r = -0.614**	-	-
SO_2	r = -0.119	r = 0.151	-
Bark pH	r = -0.205	r = 0.368*	r = -0.204

^{*} significant at p < 0.05, ** significant at p < 0.01

Table 4.9 Comparison between LDV, concentration of NO₂, SO₂ and type of land use of eight lichen air quality classes

Lichen air quality class	Level of air pollution	Sampling unit no.	LDV	Median NO ₂ (ug/m ³)	Median SO ₂ (ug/m ³)	Land use type
	// 67	17/	11.83	19.26	9.56	
		24	12.90	43.25	8.63	
1	very high to high	23	13.27	54.21	19.67	Urban area
		16	14.33	37.98	8.38	
	700	4	14.53	24.48	2.77	
		21	16.38	28.46	19.31	
		29	17.57	31.87	34.73	
2	high	15	17.67	28.60	12.57	Urban area
		22	17.95	24,17	1.43	
		35	18.07	38.09	59.35	
		8	19.25	26.36	14.23	
		37	21.50	14.80	29.26	
		27	22.50	18.92	11.07	
		32	22.58	18.36	10.37	
		13	22.63	23.25	16.31	Suburban area
3	moderate to high	33	23.57	29.76	23.20	
		25	25.00	28.42	13.85	
		18	25.00	25.66	15.83	
		34	25.47	28.49	38.25	

Copyright © by Chiang Mai University Allrights reserved

Table 4.9 (continued)

able 4.9 (continued)									
Lichen air quality class	Level of air pollution	Sampling unit no.	LDV	Median NO ₂ (ug/m ³)	Median SO ₂ (ug/m ³)	Land use type			
Cluss	air polition	26	25.88	42.92	25.30				
		14	26.57	20.00	13.84				
		5	26.75	18.69	15.72				
		31	27.67	20.43	23.01				
		6	28.20	21.24	13.65				
		7	28.33	21.06	13.16	Suburban and			
4	moderate	19	29.40	17.44	25.27	agricultural area			
		11	30.02	18.88	31.27	_			
		9	30.03	37.43	13.24				
		1	30.08	18.81	8.82				
		30	31.43	25.97	7.37				
		38	31.97	22.01	19.61				
		20	33.83	29.88	9.88				
		3	36.67	18.70	5.24	C111			
5	moderate to low	36	38.75	25.42	22.44	Suburban and agricultural area			
		12	39.97	14.68	24.11	agriculturar area			
6	low	28	44.33	19.99	52.57	Suburban and agricultural area			
7	lovy to yorky lovy	2	46.73	4.17	13.16	Suburban and			
1	low to very low	10	49.05	16.61	2.60	agricultural area			
8	very low	39	53.33	12.95	11.02	Rural area			

All rights reserved