TABLE OF CONTENTS

· 181819 91	Page
ACKNOWLEDGMENT	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
LIST OF TABLES	xiv
LIST OF ILLUSTRATIONS	xvi
ABBREVIATIONS AND SYMBOLS	XXV
CHAPTER 1 INTRODUCTION	1
1.1 Ferroelectrics	1
1.2 Relaxor ferroelectrics	5
1.2.1 Introduction	5
1.2.2 Relaxor ferroelectric behavior	5
1.2.3 Relaxor ferroelectric modeling	10
A A A A A A A A A A A A A A A A A A A	15
1.3.1 Introduction	15
Copyright 1.3.2 Crystal structure ng Mai Univers	15
1.3.3 Tolerance factor and phase stability	18
1.3.4 Columbite-(wolframite) Precursor Method	22
1.4 Morphotropic Phase Boundary (MBP) in normal and	23
relaxor ferroelectric Solid solution	

1.4.1 Introduction	23
1.4.2 Stabilization of the perovskite phase of PZN	26
ceramic solid solutions	
1.4.3 Characteristic features of ferroelectric Pb	34
$(Ni_{1/3}Nb_{2/3})O_3$ -Pb $(Zr_x Ti_{1-x})O_3$ ceramics	
CHAPTER 2 PURPOSES OF THE RESEARCH	40
CHAPTER 3 EXPERIMENTAL PROCEDURES	42
3.1 Powder preparation	42
3.1.1 Preparation of the PZN-PZT system	46
3.1.1.1 Solid-state mixed oxide method	47
3.1.1.2 Columbite-wolframite precuresor method	48
3.1.2 Preparation of PNN-PZT powders	52
3.1.3 Preparation of PNN-PZN-PZT powders	53
3.2 Ceramic processing	57
3.3 Structure characterization	59
Copyright 3.3.1 X-ray diffraction (XRD) Mai Universi	59
3.3.2 Scanning electron microscopy (SEM)	59
3.3.3 Transmission electron microscopy (TEM)	60

X

3.4 Property measurement	60
3.4.1 Electric field-polarization hysteresis	60
3.4.2 Dielectric measurements in normal atmosphere	61
3.4.3 Piezoelectric coefficients and electromechanical	64
coupling factors	
CHAPTER 4 INFLUENCE OF PROCESSING CONDITIONS ON	65
THE PHASE TRANSITION AND FERROELECTRIC	
PROPERTIES OF $xPb(Zn_{1/3}Nb_{2/3})O_3 - (1-x)Pb(Zr_{1/2}Ti_{1/2})$	
O ₃ CERAMICS	
4.1 Introduction	66
4.2 Experimental procedure	68
4.3 Results and discussion	69
4.3.1 Perovskite phase formation and the MPB	69
4.3.2 Effect of sintering temperature and post-sinter	78
adansuk annealing 1918 918 90 1K	IJ
4.3.3 Effect of processing method on the phase	83
transformation	L.Y
A I I ^{4.4} Conclusion U S I C S C I V C	86

xi

Page

Page

CHAPTER 5 DIELECTRIC PROPERTIES AND MORPHOTROPIC	88
PHASE BOUNDARY IN THE $xPb(Zn_{1/3}Nb_{2/3})O_3 - (1-x)$	
Pb(Zr _{0.5} Ti _{0.5})O ₃ PSEUDO-BINARY SYSTEM	
5.1 Introduction	89
5.2 Experimental Procedure	90
5.3 Results and discussion	92
5.3.1 Perovskite phase formation and microstructure	92
5.3.2 Dielectric behavior	97
5.3.3 The morphotropic phase boundary	105
5.3.4 Piezoelectric properties	110
5.3.5 The PZN–PZT phase diagram	112
5.4 Conclusion	113
CHAPTER 6 THE MORPHOTROPIC PHASE BOUNDARY AND	115
DIFLECTRIC PROPERTIES OF $rPb(7reTicn)O_{2} = (1-r)$	115
$Pb(Ni_{tr}Nb_{tr})O_{tr}PEROVSKITE SOLID SOLUTION$	
6.1 Introduction	116
Copyright 6.2 Experimental procedure g Mai Univers	119
6.3 Results and discussion	121
6.3.1 Crystal structure and phase transition studies	121
6.3.2 Dielectric properties	124
6.3.3 Phase diagram of $Pb(Zr_{1/2}Ti_{1/2})O_3 - Pb(Ni_{1/3}Nb_{2/3})O_3$	134
6.4 Conclusion	134

CHAPTER 7 PEROVSKITE PHASE FORMATION AND FERRO-	137
ELECTRIC PROPERTIES OF THE PNN-PZN-PZT	
TERNARY SYSTEM	
7.1 Introduction	138
7.2 Experimental procedure	140
7.3 Results and discussion	142
7.3.1 Perovskite phase development	142
7.3.2 Dielectric properties	150
7.3.3 Ferroelectric and Electrostictive properties	158
7.3.4 TEM characterization	160
7.4 Conclusion	166
CHAPTER 8 CONCLUSIONS AND FUTUER WORK	167
21 Conclusions	167
8.1 Conclusions	107
8.1.1 PZN-PZT system	167
adamsu ^{8.1.2} PNN-PZT system a 818801	170
8.1.3 PNN-PZN-PZT system	171
8.2 Future work	176
All rights reserve	0 181

VITA

186

Page

LIST OF TABLES

Table	ે ગંમાદ્ય છે	Page
1,1	Property difference between relaxor and normal perovskite	9
	ferroelectrics.	
1.2	Composition and properties of PZN based ceramics.	29
3.1	Specifications of the component oxide powders used in this study.	44
5412	Post-sinter annealing effects on the remanent polarization P_r and	80
202	saturation polarization P_s in xPZN–(1-x)PZT ceramics sintered	
C	at 1175°C for 2 hours and annealed at 1250°C for 6 hours.	
5.1	Comparison of the dielectric properties of x PZN– $(1-x)$ PZT ceramics	99
	prepared by the conventional mixed-oxide and columbite methods.	
5.2	Comparison of the piezoelectric properties observed in this study	112
	with previous studies.	
6.1	Dielectric properties of x PZT– $(1-x)$ PNN ceramics	129
7.1	Perovskite phase development during calcinations and sintering	145
adai	process of 0.5 PNN– $(0.5-x)$ PZN– x PZT system (The first two rows	íU
Copyri	indicate the data in calcined powders and the rest rows are data from	itv
	sintering of powders calcined at 950 °C).	
7.2	Comparison of the calculated average B-site ionic radii, the crystal	149
	structure, and lattice parameters derived from XRD data.	

Table		Page
7.3	Comparisons of dielectric properties of ceramics in the 0.5PNN –	156
	(0.5-x)PZN– x PZT system at the optimum sintering conditions.	
7.4	Polarization hysteresis data as a function of x in the 0.5 PNN– $(0.5$ -	163
8	x)PZN–xPZT system.	
8.1	Optimal calcinations temperature of <i>x</i> PZN-(<i>1-x</i>)PZT.	169
	A UNIVERSIT	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

XV

LIST OF ILLUSTRATIONS

Figure	ે ગેમાં મુખ્ય જ	Page
1.1	A typical ferroelectric hysteresis loop.	4
1.2	Curie-Weiss plot for a barium strontium titanate composition.	4
1.3	Differences between ordered and disordered $Pb(Sc_{1/2}Ta_{1/2})O_{3}$.	13
1.4	Various relaxor perovskite combinations and their classification	14
1.5	Two alternative representations of the perovskite (ABO ₃) structure.	17
1.6	Structure-filed map for various perovskite materials based on	20
	electronegativity difference and tolerance factor.	
1.7	Ternary diagram depicting MPBs in PZT and relaxor-PZT systems	25
	for piezoelectric ceramics.	
1.8	Relative concentration of the rhombohedral phase with respect to the	30
	tetragonal phase as a function of PZT content.	
S 1.9	TEM micrographs of $(1-x)$ PZN– x PZT ceramics: (a) $x = 0.4$, (b)	31
qual	x = 0.5, (c) $x = 0.6$, (d) $x = 0.7$, showing the evolution of the	ŦIJ
Copyri	tetragonal domains (Tet. Domain) and the rhombohedral domains	sity
A	(Rh. Domain).	
1.10	SEM micrographs of $Pb_x((Zn_{1/3}Nb_{2/3})_{0.5}(Zr_{0.47}Ti_{0.53})_{0.5})O_3$ ceramics:	33
	(A) free surface with $x = 0.98$, (B) fracture surface with $x = 0.98$,	
	(C) free surface with $x = 1.01$, and (D) free surface with $x = 1.03$.	

Figur	e	Page
1.11	Temperature dependence of the dielectric constant and loss for	35
	PNNZT ceramics.	
1.12	(a) Room temperature dielectric hysteresis loops for PNNZT	37
8	ceramics (b) Room temperature field induced strain for PNNZT	
6	ceramics.	
1.13	Permittivity versus temperature curves for the 26 mol% PZ	38
50	- composition.	
1.14	Proposed phase diagram for a PNN–PZT system containing 40 mol%	38
C C	PNN, measured at 1 kHz ("F" denotes normal ferroelectric, "R"	
	denotes relaxor ferroelectric, and "P" denotes paraelectric).	
3.1	Mixed and Calcination Processes (MCP) for powder preparation.	45
3.2	The double crucible technique.	46
3.3	The processing flow chart for the PZN-PZT powder.	50
3.4	Columbite-wolframite precursor for binary solid solution PZN-PZT.	51
3.5	Columbite-wolframite precursor for binary solid solution PZT-PNN.	55
3.6	Columbite-wolframite precursor for binary solid solution,	56
Copyr	PNN-PZN-PZT. by Chiang Mai Univer	sity
3.7	Schematic diagrams showing the double-inverted crucible technique.	58
3.8	Schematic diagram of sample holder for high temperature dielectric	63
	measurement.	

xvii

Figure		Page
4.1	XRD patterns for 0.3 PZN – 0.7 PZT ceramics calcined at varies	72
	method.	
4.2	Percentage of perovskite phase as a function of calcination	73
6	temperature for $xPZN - (1-x)PZT$ ceramics: (a) columbite method;	
	(b) conventional method.	
4.3	XRD patterns for $xPZN - (1-x)PZT$ ceramics sintered at 1200°C for	75
206	2 hours : (a) columbite method ; (b) conventional method.	
4.4	Close examination of the (002) peaks shown in Fig. 4.2 (a) columbite	76
	method; (b) conventional method.	
4.5	Individual x-ray diffraction (002) peak for the tetragonal ($F_{T(002)}$,	77
	$F_{T(200)}$) and Rhombohedral($F_{R(200)}$) phase for difference methods,	
	(a) 0.2PZN-0.8PZT prepared by columbite method, (b) 0.3PZN-	
	0.7PZT prepared by columbite method. (c) 0.2PZN-0.8PZT prepared	
	by conventional method. (d) 0.3PZN-0.7PZT prepared by	
ລິປສຳ	conventional method.	7 1
4.6	Room temperature P-E hysteresis as a function of sintering	81
Copyri	temperature for 0.2PZN – 0.8PZT: (a) columbite method; (b)	SILY
	conventional method. TS reserve	e d

xviii

	Figure		Page
	4.7	Effect of post-sinter annealing on the P-E hysteresis for 0.1PZN –	82
		0.9PZT ceramics: (•) sintered at 1250°C, (o) sintered at 1175°C and	
		annealed at1250°C for 6 hours: (a) columbite method, (b)	
	8	conventional method.	
	4.8	Effect of composition (x) on the P-E hysteresis loops for $x PZN -$	84
	302	(1-x) PZT processed at the optimum processing conditions: (a)	
		columbite method; (b) conventional method.	
	4.9	Variation of remanent polarization P_r and coercive field E_c with	85
		composition for x PZN – $(1-x)$ PZT ceramics: (a) remanent	
		polarization; (b) coercive field.	
	5.1	XRD spectra of 0.5PZN-0.5PZT powder calcined at various	94
		temperatures for 4 hours. (a) the conventional mixed-oxide method;	
		and (b) the columbite method.	
	5.2	Perovskite phase content in 0.5PZN-0.5PZT powders calcined at	95
â	â	different temperatures.	41
	5.3	SEM examination of the grain morphology in $xPZN-(1-x)PZT$;	96
CO	Dyri	x = 0.1-0.5 ceramics sintered at optimum sintering condition: (a), (c)	
A		and (e) prepared by conventional method; (b),(d) and (f) prepared by	
		columbite method.	

xix

Figure		Page
5.4	Relative permittivity versus temperature curves for the <i>x</i> PZN–(1-	100
	x)PZT ceramics. The frequency used for the measurement is 1	
	kHz:(a) conventional method; and (b) columbite method.	
5.5	Phase transitions detected from the ε_r versus T curves in ceramics	102
6	prepared via the columbite method.	
30%	(a) 0.3PZN-0.7PZT ceramic at 1 kHz; and	
	(b) 0.5PZN–0.5PZT ceramic at 0.1, 1, 10 and 100 kHz.	
	(c) 0.6PZN-0.4PZT ceramic at 0.1, 1, 10 and 100 kHz.	
5.6	Variation of T_{max} with increasing PZN content x in the xPZN–(1-	103
	x)PZT system.	
5.7	The $\log\left[\left(\frac{\varepsilon_{r \max}}{\varepsilon}\right) - 1\right]$ vs. $\log(T - T_{\max})$ plots for (a) 0.1PZN-0.9PZT	104
	and (b) 0.5PZN-0.5PZT.	
5.8	Coercive field (E _c) and relative permittivity versus x in x PZN–(1 -	106
Sag	<i>x</i>)PZT ceramics showing the presence of MPB at $x \approx 0.25$.	
CO 5.9	Raman spectroscopy curves for x PZN– $(1-x)$ PZT ceramics prepared	107
Copyri	by (a) conventional and (b) columbite method.	sity
5.10	TEM micrographs of the 0.1PZN-0.9PZT ceramic;(a-d) shows the	108
	evolution of the tetragonal domains.	
5.11	TEM micrographs of the 0.5 PZN-0.5PZT ceramic; (a-d) shows the	109
	evolution of the rhombohedral domains.	

XX

Figure		Page
5.12	Piezoelectric coefficient d_{33} as a function of sintering temperature for	111
	xPZN– $(1-x)$ PZT ceramics prepared via columbite method.	
5.13	Piezoelectric properties of d_{33} and k_p in ceramics prepared with	111
8	optimized processing conditions.	
5.14	The proposed phase diagram for the	114
306	Pb(Zn _{1/3} Nb _{2/3})O ₃ -Pb(Zr _{0.5} Ti _{0.5})O ₃ pseudo-binary solid solution	
	system. The solid circles represent data points obtained from the	
	present study, the open circles represent data taken from reference 21.	
6.1	Compositions studied in the Pb(Ni _{1/3} Nb _{2/3})O ₃ -PbZrO ₃ -PbTiO ₃ ternary	118
	system.	
6.2	X-ray diffraction patterns at room temperature for $xPZT - (1-x)PNN$	122
	ceramics.	
6.3	X-ray pattern of the (200) and (220) peak of $xPZT - (1-x)PNN$,	123
	x = 0.4 - 0.6 ceramics.	_
6.4	X-ray pattern of the (111) and (200) peak of $xPZT - (1-x)PNN$,	123
GUGI	x = 0.6 - 0.9 ceramics.	•
COP _{6.5}	Temperature dependence of relative permittivity ε_r for xPZT – (1-	S 127
	x)PNN, $x = 0.4 - 0.9$ ceramics.	e d
6.6	Temperature dependence of relative permittivity ε_r for $xPZT - (1 -)$	128
	x)PNN,a: $x = 0.5$, b: $x = 0.7$ and c: $x = 0.8$ ceramics is shown.	

Figure		Page
6.7	T_{max} , Calculated T_{max} and Maximum ε_r as a function of composition x at 10 kHz	131
6.8	Dependence of Log [$(\varepsilon_m / \varepsilon)$ -1] with Log $(T-T_{max})$ for xPZT – (1-	132
8	x)PNN, $x = 0.4 - 0.9$ ceramics.	
6.9	Dependence of γ and degree of diffuseness (δ_{γ}) for $xPZT - (1-x)PNN$,	133
202	x = 0.4 - 0.9 ceramics.	
6.10	Phase diagram of $xPZT - (1-x)PNN$, $x = 0.4-0.9$ binary system	136
	determined from room temperature XRD, Raman spectra and	
	dielectric spectra as a function of temperature. The symbols refer to:	
, i l	\blacksquare = the transition temperature from ferroelectric (F _R , F _T and F _{PC}) to	
	relaxor (P _C); • = the transition temperature from ferroelectric state	
	(F _R , F _T and F _{PC}) to paraelectric state (cubic); \blacktriangle = the transition	
	temperature from rhombohedral (F_R) to tetragonal (F_T).	
7.1	Powder XRD patterns of a stoichiometric composition of 0.5PNN –	144
ຄິບສິ່ງ	(0.5-x) PZN – xPZT ceramics: (a) Calcined at 900°C for 4h with	XU
Copyri	20°C/min heating rate; (b) Calcined at 950°C for 2h with 20°C/min	
	heating rate. Pyrochlore phase indicated with *.	DILY
A 7.2	XRD patterns of 0.5 PNN – $(0.5-x)$ PZN – x PZT ceramics at the	146
	optimum sintering conditions.	

Figure		Page
7.3	XRD patterns of the (220) peak of 0.5 PNN– $(1-x)$ PZN – x PZT	148
	ceramic; a : $x = 0$, b: $x = 0.1$, c: $x = 0.3$, d: $x = 0.5$.	
7.4	Relative permittivity and dissipation factor at 1kHz for 0.5PNN-	152
8	(0.5-x)PZN $-x$ PZT ; a : $x = 0$, b : $x = 0.1$ Dielectric data for	
6	difference sintering temperature is shown. C: $x = 0.3$, d: $x = 0.5$.	
Sche	Dielectric data for difference sintering temperature is shown.	
7.5	Relative permittivity and dissipation factor of 0.5 PNN – $(0.5-x)$ PZN	154
006	-xPZT ceramics prepared at the optimum sintering conditions	
<u> </u>	a: $x = 0.0$, ceramics sintered at 1150°C for 2h;	
	b: $x = 0.1$, ceramics sintered at 1200°C for 2h;	
	c: $x = 0.3$, ceramics sintered at 1200°C for 2h;	
	c: $x = 0.5$, ceramics sintered at 1250°C for 2h;	
7.6	T_m , Calculated T_m and room temperature relative permittivity as a	158
	function of composition x at 1 kHz.	
7.7	Room temperature polarization vs. electric field hysteresis loop of	161
auai	0.5PNN – $(0.5-x)$ PZN – x PZT ceramic at the optimum sintering	AU
Copyri	conditions. by Chiang Mai Univer	sity
7.8	Temperature dependence of the $P - E$ hysteresis of 0.5PNN – (0.5-	162
	x)PZN – xPZT ceramics at optimum sintering conditions,	

compositions x = 0.0 and x = 0.3 are shown.

xxiii

Figure		Page
7.9	Induced strain vs. electric field butterfly loops for 0.5 PNN – $(0.5-x)$	164
	PZN - xPZT ceramics at the optimum sintering conditions.	
7.10	TEM micrographs of the 0.5 PNN – $(0.5-x)$ PZN – x PZT ceramics;	165
8	show the evolution of the micro-nano domain transition.(a) $x = 0.0$,	
6	showing nano-domain.(b) $x = 0.5$ showing micro-domain.	
8.1	Schematic representation of piezoelectric coefficient (d_{33}) as a	173
500	function of transition temperature for this study compared with other	
206	piezoelectric materials. Modified from Seung-Eek Park and Thomas	
9	R.Throut.	
8.2	Relative permittivity as a function of transition temperature (T _m) for	174
	this study compared with other piezoelectric ceramics. Modified	
	from Seung-Eek Park and Thomas R. Throut.	
8.3	Transition temperatures as a function of the perovskite tolerance	175
	factors of the MPB composition in this system compared with other	
2.2	MPB composition. Modified from Eitel <i>et.al.</i>	
	Electromechanical coupling factors, k_p , versus the average B-site	176
Copyri	ionic size of the MPB composition. Modified from Yamashita and	sitv
	Ichinose. The second se	
8 5	tolerance factor and crystal structure in PNN – PZN – PZT system	178

xxiv

ABBREVIATIONS AND SYMBOLS

	K_{lpha}	radiation of K series
	k _{ij}	electromecharnical coupling
	LCR	Inductance/Capacitance/Resistance
	MW	molecular weight
	МРВ	Morphotropic Phase Boundaries
	МСР	Mixed and Calcination Processes
	Р-Е	polarization versus electric field
c	Ps	spontaneous polarization
	Pr	remanent polarization
	Р	paraelectric
	PVA	poly(vinyl alcohol)
	ri	radius of atom
	R	relaxor ferroelectric
	Rh. Domain	rhombohedral domains
	SEM	scanning electron microscopy
	S _{ij}	field-induced strain
S a	TEM	transmission electron microscopy
QU	To	Curie-Weiss temperature
Cop	Trright	Rhombohedral to Tetragonal temperature
AI	T _{max}	temperature at maximum permittivity
	T _m	Transition temperature
	T _c	Curie point
	Tet. Domain	tetragonal domains

xxvi

t thickness; tolerance factor $tan \delta$ loss tangent voltage; volume 2157 V XRD x-ray diffraction electronegativity differences of cation A and oxygen X_{A-O} electronegativity differences of cation B and oxygen X_{B-C} diffuseness parameter δ real part of the permittivity permittivity of free space relative permittivity the permittivity at T_{max} ε_{max} critical exponent γ driving frequency ω

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

xxvii