TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW	
2.1. Basic Definitions and Characteristics of Ferroelectric Materials	3
2.1.1. Piezoelectricity	3
2.1.2. Pyroelectricity	4
2.1.3. Ferroelectricity	5
2.1.3.1. Ferroelectric phase and domains	5
2.1.3.2. Curie temperature and phase transition	7
in ferroelectrics	
2.1.3.3. Polarization switching process in ferroelectrics	8
2.1.3.4. The hysteresis loop of ferroelectric	9
2.1.3.5. Poling of ferroelectrics	11
2.1.4. Perovskite structure	12
2.2. Normal and Relaxor Ferroelectrics	13
5 2.2.1. PZT ceramic	16
A 2.2.2. PMN ceramic t s reserve	19
2.3. Prior Studies of Hysteresis Properties on PMN-PZT ceramics	21

CHAPTER 3EXPERIMENTAL PROCEDURE

3.1.	Sample preparation	23
	3.1.1. Powder preparation	23
	3.1.1.1. Preparation of lead zirconate titanate powders	26
	3.1.1.2. Preparation of lead magnesium niobate powders	26
	3.1.1.3. Preparation of lead magnesium niobate - lead zirconate titanate	27
	powders	
	3.1.2. Ceramic preparation	27
	3.1.3. Poling procedure	29
3.2.	Sample characterizations	29
372	3.2.1. The X-ray diffraction (XRD) technique	30
Z S	3.2.2. Scanning electron microscopy (SEM)	31
000	3.2.3. Densification analysis	31
3.3.	Experiment setup for hysteresis properties measurement	32
3.4.	Measurements of hysteresis properties of lead magnesium niobate -	36
	lead zirconate titanate ceramics	
CHAPTI	ER 4 RESULTS AND DISSCUSION	
4.1.	Phase formation analysis	37
4.2.	Microstructural analysis	40
4.3.	Densification analysis	50
4.4.	Hysteresis properties	51
adar	4.4.1. Hysteresis loop evolution	52
Convrig	4.4.2. Hysteresis properties dependence on poling field strength	59
COPYIS	4.4.2.1. PZT / CITICAL S Mail Officersi	59
	4.4.2.2. 0.1PMN-0.9PZT reserve	61
	4.4.2.3. 0.3PMN-0.7PZT	63
	4.4.2.4. 0.5PMN-0.5PZT	65
	4.4.2.5. 0.7PMN-0.3PZT	67
	4.4.2.6. 0.9PMN-0.1PZT	69

4.4.2.7. PMN	71
4.4.3. Hysteresis properties dependence on composition ratio	73
4.4.3.1. The remanent polarization (P _r), spontaneous polarization (P _s) and coercive field (E _c) of (x)PMN-(1-x)PZT ceramics poled at 10 kV/cm	73
4.4.3.2. The remanent polarization (P _r), spontaneous polarization (P _s) and coercive field (E _c) of (x)PMN-(1-x)PZT ceramics poled at 20 kV/cm	75
4.4.3.3. The remanent polarization (P _r), spontaneous polarization (P _s) and coercive field (E _c) of (x)PMN-(1-x)PZT ceramics poled at 30 kV/cm	77
4.4.3.4. The remanent polarization (P _r), spontaneous polarization (P _s) and coercive field (E _c) of (x)PMN-(1-x)PZT ceramics poled at 40 kV/cm	78
4.4.4. The maximum hysteresis parameters CHAPTER 5 CONCLUSIONS AND SUGGESTIONS	80
51 Conclusions	81
5.2. Suggestions	82
REFFERENCE	84
ลิปงาลัยหาวิทยาลัยเชียงใ	90 119
Copyright [©] by Chiang Mai Univer	sity
All rights reserv	e d

Х

LIST OF TABLES

	Tabl	e	Page
	2.1	Differences between normal and relaxor ferroelectric	16
	3.1	Sintering temperature, dwell time, and heating/cooling rates for (x)PMN-(1-x)PZT	28
		ceramics	
	4.1	Grain size range and average grain size of (x)PMN-(1-x)PZT ceramics	41
	4.2	Remanent polarization (P_r), spontaneous polarization (P_s) and coercive field (E_c) of PZT ceramic	60
	4.3	Remanent polarization (P_r), spontaneous polarization (P_s) and coercive field (E_c) of	62
	2	0.1PMN-0.9PZT ceramic	
0	4.4	Remanent polarization (P_p), spontaneous polarization (P_s) and coercive field (E_c) of 0.2DMAN 0.7D7TT commis	64
	1 5	U.SPIMIN-U. / PZ.1 Cerdinic Demonstration (D) approximation (D) and accurity field (E) of	66
	4.0	Remainent polarization (P_r), spontaneous polarization (P_s) and coefficive neut (E_c) of 0.5DMN 0.5PZT commit	00
	46	Remanent polarization (P) spontaneous polarization (P) and coercive field (F) of	68
	1.0	0.7PMN-0.3PZT ceramic	00
	4.7	Remanent polarization (P_r), spontaneous polarization (P_s) and coercive field (E_c) of	69
		0.9PMN-0.1PZT ceramic	
	4.8	Remanent polarization (P_r), spontaneous polarization (P_s) and coercive field (E_c) of	71
		PMN ceramic	
8	4.9	Remanent polarization (P_r), spontaneous polarization (P_s) and coercive field (E_c) of	74
dd		PMN-PZT ceramics poled at 10 kV/cm	
Con	4.10	Remanent polarization (P_r), spontaneous polarization (P_s) and coercive field (E_c) of	76
Cup	///	PMN-PZT ceramics poled at 20 kV/cm	
AI	4.11	Remanent polarization (P_{ν}), spontaneous polarization (P_s) and coercive field (E_c) of	77
		PMN-PZT ceramics poled at 30 kV/cm	
	4.12	Remanent polarization (P_r), spontaneous polarization (P_s) and coercive field (E_c) of	79
		PMN-PZT ceramics poled at 40 kV/cm	

4.13 The maximum value of remanent polarization (P_r) , spontaneous polarization (P_s) 80 and coercive field (E_c) of PMN-PZT ceramics

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
2.1 Interrelationship of piezoelectric and subgroups on the basis of symmetry	4
2.2 Unit cells of the ferroelectric phases of $BaTiO_3$	6
2.3 Schematic illustration of 180° and 90° domain walls	7
2.4 (a) Surface charge associated with spontaneous polarization	7
(b) formation of 180° domains to minimize electrostatic energy	
2.5 Schematic of 90° and 180° domain switching induced by an electric field above the	9
coercive strength ($E \ge E_c$)	
2.6 Schematic circuit of Sawyer-Tower for the observation of P-E characteristics o	f 10
ferroelectric	
2.7 A typical P-E hysteresis loop in ferroelectric	11
2.8 Schematic illustration of the domain structure and poling process	12
2.9 A cubic ABO $_3$ perovskite-type unit cell	13
2.10 Schematic temperature dependence of the dielectric permittivity (ϵ) and	1 14
spontaneous polarization (P_s) for (a) a first-order and (b) a second-orde	r
ferroelectric	
2.11 Temperature dependence of dielectric permittivity and loss factor for relaxo	r 15
ferroelectric of PMN ceramic	
2.12 Cubic perovskite-type structure of PZT	17
2.13 Phase diagram of the PbTiO ₃ -PbZrO ₃ solid solution (a) by Jaffe <i>et al.</i> ,	18
a dal (b) by Noheda <i>et al.</i> The state at a log and the state at a log at a	NU
2.14 Dielectric and piezoelectric properties of the PbTiO ₃ -PbZrO ₃ solid solution	19
2.15 Two unit cells of the Perovskite structure of PMN showing the chemical-ordering	ş 20
model. The B-site marked Mg is referred to as the B' site while Nb ions are on the)
B" sites	
3.1 Experimental procedure diagram	24
3.2 Preparation route for powder	25
3.3 Sintering process diagram (when T_s is sintering temperature)	28

xiv

Figure

3.4	Poling setup used to pole samples in this study	Page
3.5	X-ray diffractometer used in this study	29
3.6	Scanning electron microscopy (SEM) used in this study	30
3.7	Schematic of the standard Sawyer-Tower circuit	32
	$(R_1 = 6.8 \text{ M}\Omega, R_2 = 10 \text{k}\Omega, C_0 = 0.1 \mu\text{F}, C_s = \text{Sample, } C_0 >> C_s)$	33
3.8	The experiment setup for hysteresis loop measurements	
3.9	Example of a hysteresis loop obtained from the experimental set-up	33
4.1	XRD pattern of PZT ceramic which with JCPDS file no. 50-0346	34
4.2	XRD pattern of PMN ceramic (with JCPDS file no. 27-1199) including small	38
-302	amount of pyrochlore (with JCPDS file no. 33-0769)	39
4.3	XRD pattern of (x)PMN-(1-x)PZT ceramics	
4.4	SEM micrograph of (a) free and (b) fracture surfaces of PZT ceramic.	40
4.5	SEM micrograph of (a) free and (b) fracture surfaces (0.1)PMN-(0.9)PZT ceramic	42
4.6	SEM micrograph of (a) free and (b) fracture surfaces (0.3) PMN-(0.7) PZT ceramic	43
4.7	SEM micrograph of (a) free and (b) fracture surface (0.5)PMN-(0.5)PZT ceramic	44
4.8	SEM micrograph of (a) free and (b) fracture surface (0.7) PMN-(0.3) PZT ceramic	45
4.9	SEM micrograph of (a) free and (b) fracture surface (0.9) PMN-(0.1) PZT ceramic	46
4.10	SEM micrograph of (a) free and (b) fracture surface PMN ceramic	47
4.11	Representative EDX spectra obtained from submicron size grains on the surface of	48
	(x)PMN-(1-x)PZT ceramics	49
4.12	Representative EDX spectra obtained from large grain on the surface of (x)PMN-	
ada	(1-x)PZT ceramics	49
4.13	Densities of (x)PMN-(1-x)PZT ceramics	
4.14	Hysteresis loops evolution of commercial sample (PKI-552 or soft PZT) taken at	50
	AC drive amplitudes of: (a) 5.13, (b) 10.14, (c) 12.17 and (d) 19.20 kV/cm	51
4.15	Hysteresis loops evolution of PZT ceramics poled at 30 kV/cm taken at AC drive	
	amplitudes of : (a) 6.04, (b) 8.03, (c) 10.09 and (d) 14.06 kV/cm	52
4.16	Hysteresis loops of 0.1PMN-0.9PZT ceramics poled at 30 kV/cm taken at AC drive	
	amplitudes of : (a) 4.57, (b) 6.03, (c) 9.04 and (d) 11.14 kV/cm	54

Figure

4.17 Hysteresis loops of 0.3PMN-0.7PZT ceramics poled at 30 kV/cm taken at AC drive amplitudes of : (a) 4.04 (b) 5.04 (c) 6.54 and (d) 8.04 kV/cm	Page 54
4.18 Hysteresis loops of 0.5PMN-0.5PZT ceramics poled at 30 kV/cm taken at AC drive	01
amplitudes of : (a) 8.11, (b) 9.12, (c) 9.56 and (d) 10.13 kV/cm	55
4.19 Hysteresis loops of 0.7PMN-0.3PZT ceramics poled at 30 kV/cm taken at AC drive	
amplitudes of : (a) 6.05, (b) 11.03, (c) 14.00 and (d) 18.03 kV/cm	56
4.20 Hysteresis loops of 0.9PMN-0.1PZT ceramics poled at 30 kV/cm taken at AC drive	
amplitudes of : (a) 5.59, (b) 11.08, (c) 15.03 and (d) 20.03 kV/cm	57
4.21 Hysteresis loops of PMN ceramics poled at 30 kV/cm taken at AC drive amplitudes	
of : (a) 6.04, (b) 7.05, (c) 15.03 and (d) 20.14 kV/cm	57
4.22 The saturated hysteresis loop of PZT ceramic poled at poling field strength of :	
(a) 10, (b) 20 and (c) 30 kV/cm	59
4.23 The remanent polarization (P_{ν}), spontaneous polarization (P_{s}) and coercive field	
(E _c) of PZT ceramic as function of poling field strength	61
4.24 The saturated hysteresis loop of 0.1PMN-0.9PZT ceramic poled at poling field	
strength of: (a) 10, (b) 20, (c) 30 and (d) 40 kV/cm	62
4.25 The remanent polarization (P_r) , spontaneous polarization (P_s) and coercive field	
(E_c) of 0.1PMN-0.9PZT ceramic as function of poling field strength	63
4.26 The saturated hysteresis loop of 0.3PMN-0.7PZT ceramic poled at poling field	
strength of: (a) 10, (b) 20, (c) 30 and (d) 40 kV/cm	64
4.27 The remanent polarization (P_r), spontaneous polarization (P_s) and coercive field	
(E _c) of 0.3PMN-0.7PZT ceramic as function of poling field strength	65
4.28 The saturated hysteresis loop of 0.5PMIN-0.5PZT ceramic poled at poling field	00
strength of: (a) 10, (b) 20, (c) 30 and (d) 40 KV/cm	66
4.29 The remanent polarization (r_r) , spontaneous polarization (r_s) and coercive field (F) of 0 5DMN 0.5DZT commissions function of poling field strength	07
(E _c) OI U. OTIVIIV-U. OTZ I CERTIFIC AS IUNCUON OI POINTING HERA SURPHY 4.20. The actumeted hyperbonaic loop of 0.700 MI 0.207T commis hold at polying field.	07
4.50 The saturated hysteresis loop of 0.7 Pivily-0.3PZ1 certainic point at point field strength of (a) 10 (b) 20 (a) 20 and (d) 40 kV/am	60
Suengui of. (a) to, (b) 20, (c) So and (u) 40 KV/CIII	00

Figure

4.31	The remanent polarization (P_r) , spontaneous polarization (P_s) and coercive field	Page
	(E_c) of 0.7PMN-0.3PZT ceramic as function of poling field strength	69
4.32	The saturated hysteresis loop of 0.9PMN-0.1PZT ceramic poled at poling field	
	strength of: (a) 10, (b) 20, (c) 30 and (d) 40 kV/cm	70
4.33	The remanent polarization (P_{ν}) , spontaneous polarization (P_s) and coercive field	
	(E _c) of 0.7PMN-0.3PZT ceramic as function of poling field strength	70
4.34	The saturated hysteresis loop of PMN ceramic poled at poling field strength of: (a)	
	10, (b) 20, (c) 30 and (d) 40 kV/cm	71
4.35	The remanent polarization (P_{ν}) , spontaneous polarization (P_s) and coercive field	
30	(E _c) of 0.7PMN-0.3PZT ceramic as function of poling field strength	72
4.36	The remanent polarization (P _r), spontaneous polarization (P _s) and coercive field	
20	(E _c) of (x)PMN-(1-x)PZT ceramics poled at 10 kV/cm	75
4.37	The remanent polarization (P_{r}) , spontaneous polarization (P_{s}) and coercive field	
	(E _c) of (x)PMN-(1-x)PZT ceramics poled at 20 kV/cm	76
4.38	The remanent polarization (P _r), spontaneous polarization (P _s) and coercive field	
	(E _c) of (x)PMN-(1-x)PZT ceramics poled at 30 kV/cm	78
4.39	The remanent polarization (P_r) , spontaneous polarization (P_s) and coercive field	
	(E _c) of (x)PMN-(1-x)PZT ceramics poled at 40 kV/cm	79
A.1	Hysteresis loops evolution of commercial sample (PKI-552 or soft PZT)	
	taken at AC drive amplitudes of: 3.11 to 19.20 kV/cm	93
A.2	Hysteresis loops evolution of PZT ceramics poled at 10 kV/cm taken at AC drive	
BK	amplitudes of : 3.02 to 8.03 kV/cm	94
A.3	Hysteresis loops evolution of PZT ceramics poled at 20 kV/cm taken at AC drive	
Copyr	amplitudes of : 4.05 to 17.08 kV/cm lang Mai Univers	95
A.4	Hysteresis loops evolution of PZT ceramics poled at 30 kV/cm taken at AC drive	
	amplitudes of : 3.02 to 18.04 kV/cm	96
A 5	Hysteresis loops evolution of 0.1PMN-0.9PZT ceramics poled at 10 kV/cm taken	
11.0	at AC drive amplitudes of : 4.57 to 11.05 kV/cm	97

Figure

A.6 Hyster	esis loops evolution of 0.1PMN-0.9PZT ceramics poled at 20 kV/cm taken	Page
at AC	drive amplitudes of : 4.57 to 11.51 kV/cm	98
A.7 Hyster	resis loops evolution of 0.1PMN-0.9PZT ceramics poled at 30 kV/cm taken	
at AC	drive amplitudes of : 3.03 to 11.14 kV/cm	99
A.8 Hyster	esis loops evolution of 0.1PMN-0.9PZT ceramics poled at 40 kV/cm taken	
at AC	drive amplitudes of : 4.57 to 14.52 kV/cm	100
A.9 Hyster	esis loops evolution of 0.3PMN-0.7PZT ceramics poled at10 kV/cm taken at	
AC dri	ive amplitudes of : 4.04 to 8.04 kV/cm	101
A.10 Hyster	esis loops evolution of 0.3PMN-0.7PZT ceramics poled at 20 kV/cm taken	
at AC	drive amplitudes of : 4.04 to 8.04 kV/cm	102
A.11 Hyster	esis loops evolution of 0.3PMN-0.7PZT ceramics poled at 30 kV/cm taken	
at AC	drive amplitudes of : 4.04 to 8.57 kV/cm	103
A.12 Hyster	esis loops evolution of 0.3PMN-0.7PZT ceramics poled at 40 kV/cm taken	
at AC	drive amplitudes of : 4.04 to 8.57 kV/cm	104
A.13 Hyster	esis loops evolution of 0.5PMN-0.5PZT ceramics poled at 10 kV/cm taken	
at AC	drive amplitudes of : 8.11 to 10.13 kV/cm	105
A.14 Hyster	esis loops evolution of 0.5PMN-0.5PZT ceramics poled at 20 kV/cm taken	
at AC	drive amplitudes of : 8.11 to 10.13 kV/cm	106
A.15 Hyster	esis loops evolution of 0.5PMN-0.5PZT ceramics poled at 30 kV/cm taken	
at AC	drive amplitudes of : 8.11 to 10.13 kV/cm	107
A.16 Hyster	esis loops evolution of 0.5PMN-0.5PZT ceramics poled at 40 kV/cm taken	
a d at AC	drive amplitudes of : 8.11 to 10.13 kV/cm	108
A.17 Hyster	esis loops evolution of 0.7PMN-0.3PZT ceramics poled at 10 kV/cm taken	•
at AC	drive amplitudes of : 5.10 to 15.07 kV/cm	109
A.18 Hyster	esis loops evolution of 0.7PMN-0.3PZT ceramics poled at 20 kV/cm taken \sim	d
at AC	drive amplitudes of : 5.10 to 16.49 kV/cm	110
A.19 Hyster	esis loops evolution of 0.7PMN-0.3PZT ceramics poled at 30 kV/cm taken	
at AC	drive amplitudes of : 5.10 to 17.08 kV/cm	111

	•	•	•	
ΧV	1	1	1	
	Ŧ		T	

	A.20	Hysteresis loops evolution of 0.7PMN-0.3PZT ceramics poled at 40 kV/cm taken	Page
		at AC drive amplitudes of : 6.05 to 18.03 kV/cm	112
	A.21	Hysteresis loops evolution of 0.9PMN-0.1PZT ceramics poled at 10 kV/cm taken	
		at AC drive amplitudes of : 4.05 to 18.01 kV/cm	113
	A.22	Hysteresis loops evolution of 0.9PMN-0.1PZT ceramics poled at 20 kV/cm taken	
		at AC drive amplitudes of : 4.05 to 20.03 kV/cm	114
	A.23	Hysteresis loops evolution of 0.9PMN-0.1PZT ceramics poled at 30 kV/cm taken	
/	6	at AC drive amplitudes of : 5.59 to 20.03 kV/cm	115
	A.24	Hysteresis loops evolution of 0.9PMN-0.1PZT ceramics poled at 40 kV/cm taken	
	2	at AC drive amplitudes of : 5.59 to 20.03 kV/cm	116
0	A.25	Hysteresis loops evolution of PMN ceramics poled at 10 kV/cm taken at AC drive	
		amplitudes of : 2.09 to 11.00 kV/cm	117
	A.26	Hysteresis loops evolution of PMN ceramics poled at 20 kV/cm taken at AC drive	
		amplitudes of : 3.02 to 11.00 kV/cm	118
	A.27	Hysteresis loops evolution of PMN ceramics poled at 30 kV/cm taken at AC drive	
		amplitudes of : 4.03 to 20.14 kV/cm	119
	A.28	Hysteresis loops evolution of PMN ceramics poled at 40 kV/cm taken at AC drive	
		amplitudes of : 5.04 to 25.03 kV/cm	120

ลิปสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYNBOLS

PZT	lead zirconate titanate
PZ	lead zirconate
PT	lead titanate
PMN	lead magnesium niobate
BT	barium titanate
MPB	morphotropic phase boundary
T _c	Curie temperature
XRD	X-ray diffraction
JCPDS	joint committee for powder diffraction standard
SEM	scanning electron microscopy
EDX	energy dispersive X-ray spectrophotometry
W	weight
а	lattice parameter of a
D	diameter
ρ	density
V	voltage
C	capacitance
P _r	remanent polarization
P _s	spontaneous polarization
E.	coercive field
	relative permittivity
Copyright	© by Chiang Mai University
All r	ights reserved