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6.19 Dielectric constant and dielectric loss as a function of temperature of 

0.5PZT-0.5PMN samples sintered at (a) 1225 oC, (b) 1250 oC, (c) 1275 

oC, (d) 1290 oC and (e) 1320 oC. 
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6.20 Dielectric constant and dielectric loss as a function of temperature of 
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ABBREVIATIONS AND SYMBOLS 

 
BT Barium titanate 

PZT Lead zirconate titanate 

PMN Lead magnesium niobate 

MPB Morphotropic phase boundary 

ZT Zirconium titanate 

MN Magnesium niobate 

Qm Electrostrictive coefficient 

tan δ Dissipation factor, dielectric loss 

kp Planar coupling factor 

εr Dielectric constant, relative permittivity 

εr(ΤR) Dielectric constant at room temperature 

εr,max Maximum dielectric constant  

εo Permittivity of the free space 

PT Lead titanate 

FE Ferroelectric 

AFE Antiferroelectric 

PZ Lead zirconate 

Pc Paraelectric cubic phase 

AT Antiferroelectric tetragonal phase 

Αο Antiferroelectric orthorhombic phase 
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FR(HT) High temperature ferroelectric rhombohedral phase 

FR(LT) Low temperature ferroelectric rhombohedral phase  

FT Ferroelectric tetragonal phase 

DTA Differential thermal analysis 

XRD X-ray diffraction 

PC (Pseudo)cubic phase 

C Cubic phase 

T Tetragonal phase 

M Monoclinic phase 

RHT Rhombohedral phase at high temperature 

RLT Rhombohedral phase at low temperature 

Tc Curie temperature 

Pyro Pyrochlore phase 

IR Insulation resistance 

Tmax or T(εr,max) Temperature at maximum dielectric constant 

SEM Scanning electron microscope / microscopy 

MCP Mixing and calcination processes 

PVA Polyvinyl alcohol 

TEM Transmission electron microscope / microscopy 

T(tan δmax) Temperature at maximum dielectric loss 
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