TABLE OF CONTENTS

		Page
Acknowledg	ement	iii
Abstract (En	glish)	iv
Abstract (Th	ai)	v
List of Table	s Syla So	viii
List of Figur	es	ix
Abbreviation	is and Symbols	xiii
Chapter 1	Introduction	1
Chapter 2	Theory	4
	2.1 Thermal spray process	4
	2.1.1 Flame spraying	7
	2.1.2 High velocity oxy-fuel spraying (HVOF)	9
	2.1.3 Detonation-gun spraying (D-gun)	11
	2.1.4 Plasma spraying	12
	2.1.5 Arc wire spraying	13
	2.2 Spraying materials	15
	2.3 Welding process	17
	2.4 Wire (weld wire and arc wire)	19
	2.5 Coating formation	21
	2.5.1 Flattening degree	26
	2.5.2 Shape factor	27
	2.6 Coating characterization	30
	2.6.1 Size distribution	30
	2.6.2 Optical microscope (OM)	32
	2.6.3 SEM	33
	2.6.4 Thickness	33
	2.6.5 Roughness	34
	2.6.6 Porosity	36
	2.6.7 Hardness	36

		Page
	2.7 Wear	40
	2.7.1 Wear mechanism	40
	2.7.1.1 Abrasive wear	41
	2.7.1.2 Adhesive wear	42
	2.7.1.3. Corrosion wear	43
	2.7.1.4. Fatigue wear	44
	2.7.1.5. Fretting wear	45
	2.7.1.6. Erosion wear	45
	2.7.2 General observations	46
	2.7.3 Thermal spray coating for wear resistance	47
	2.8 Review of previous work	47
Chapter 3	Experimental Procedures	53
	3.1 Coating materials and substrate	53
	3.1.1 Wire	53
	3.1.2 Substrate	53
	3.2 Spraying procedure	54
	3.3 Collection of in-flight particles	54
	3.4 Collection of splats	55
	3.5 Characterization of in-flight particle and splat	55
	3.5.1 Size distribution	55
	3.5.1.2 Degree of flattening	55
	3.5.1.1 Degree of splashing	56
	3.5.2 Morphology	56
	3.6 Characterization of coating	56
	3.6.1 Thickness lang Mai Unive	IS 56
	3.6.2 Roughness	57
	3.6.3 Microstructure	57
	3.6.4 Porosity and oxide	57
	3.6.5 Microhardness	58

		Page
	3.7 Wear test	58
	3.7.1 Abrasive wear test	58
	3.7.2 Sliding wear test	59
Chapter 4	Results and Discussion	66
	4.1 Weld wire coating	66
	4.1.1 In-flight particle characterization	66
	4.1.2 Splat characterization	67
	4.1.2.1 Degree of flattening	67
	4.1.2.2 Degree of splashing	68
	4.1.3 Coating characterization	68
	4.1.3.1 Microstructure	68
	4.1.3.2 Thickness	69
	4.1.3.3 Roughness	69
	4.1.3.4 Porosity and oxide	70
	4.1.3.5 Hardness	70
	4.1.3.6 Wear test	71
	4.2 Arc wire coating	72
	4.2.1 In-flight particle characterization	72
	4.2.2 Splat characterization	73
	4.2.2.1 Degree of flattening	73
	4.2.2.2 Degree of splashing	73
	4.2.3 Coating characterization	73
	4.2.3.1 Microstructure	74
	4.2.3.2 Thickness	74
	4.2.3.3 Roughness	CISE 74
	4.2.3.4 Porosity and oxide	74
	4.2.3.5 Hardness	75
	4.2.3.6 Wear test	75
	4.3 Comparison of weld wire and arc wire spraying	75
	4.3.1 In-flight particle characteristics	75
	4.3.2 Splat characteristics	76

		1 age
	4.3.2.1 Degree of flattening	76
	4.3.2.2 Degree of splashing	77
	4.3.3 Coating characterization	77
	4.3.3.1 Microstructure	77
	4.3.3.2 Thickness	77
	4.3.3.3 Roughness	78
	4.3.3.4 Porosity and oxide	78
	4.3.3.5 Hardness	78
	4.3.3.6 Wear	79
Chapter 5 Conclus	sions	104
Refference		106
Appendix		112
Append	lix A	112
Append	lix B	138
Curriculum vitae		153

Dogo

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
2.1 Comparison of standard grade and low carbon stainless steels	20
2.2 Major stainless steels and filler metals	20
3.1 Wire nominal specifications	60
3.2 Arc spray conditions.	60
4.1 Average size of stainless steel weld wire (316LS) in-flight particles.	80
4.2 Average size of stainless steel weld wire (316LS) splats.	80
4.3 Flattening degree of stainless steel weld wire (316LS) in-flight particle.	80
4.4 Average degree of splashing of stainless weld wire (316LS) coatings.	81
4.5 Average degree thickness of stainless weld wire (316LS) coatings.	81
4.6 Average roughness of stainless weld wire (316LS) coatings.	81
4.7 Percentage of porosity and oxide of stainless steel weld wire	
(316LS) coatings.	82
4.8 Average thickness of stainless weld wire (316LS) coatings.	82
4.9 Abrasive wear rate of stainless steel weld wire (316LS) coatings.	82
4.10 Sliding wear rate of stainless steel weld wire (316LS) coatings.	83

ລິ**ປສົກລິ້ມหາວົກຍາລັຍເຮີຍວໃหມ່** Copyright © by Chiang Mai University All rights reserved

LIST OF FIGURES

Table	Page
2.1 Typical cross section of a thermal spray coating.	6
2.2 Diagram show categories of thermal spray process.	7
2.3 Cross section of a wire or rod flame spray gun.	8
2.4 Cross section of a powder flame spray gun.	9
2.5 Schematic of HVOF spraying process.	11
2.6 Schematic of detonation-gun spraying process.	12
2.7 Schematic of plasma spraying process.	13
2.8 Schematic of electric arc spraying system.	14
2.9 Typical two-wire arc spray system.	15
2.10 Gas shielded metal arc welding.	18
2.11 Schematic diagram of spherical impinged onto a flat substrate.	22
2.12 Two morphological forms of lamellae splashed on the substrate	
(a) Pancake, (b) Flower	23
2.13 A cross-section of lamella splat in diagram (1) is shown in diagram (2),	
which represents the possible microstructure of lamellae resulting from	
solidification (columnar).	25
2.14 Another cross-section through a lamella, showing a Brick-wall type	
microstructure resulting from solidification.	25
2.15 Equivalent diameter, elongation factor and degree of splashing of	
a selected feature.	29
2.16 A typical particle size distribution in the form of a histogram.	30
2.17 The profile of the surface.	35
2.18 (a) Pyramid shaped diamond indentor, (b) Shallow and deep	
diamond impressions showing geometrical similarity.	38
2.19 (a) Vickers diamond impression, (b) View through microscopes of	
Vickers machine.	39
2.20 Schematic of abrasive wear phenomena.	
(a) two-body abasive, (b) three-body abrasive.	42

Figure	Page
2.21 Schematic of generation of a wear particle as a result of adhesive	
wear process.	43
2.22 Schematic of fatigue wear, due to the formation of surface and	
subsurface cracks.	44
2.23 Schematic of erosion wear.	46
3.1 Diagram shows the overall experiment procedure.	61
3.2 An in-flight particle collector	62
3.3 A splat collector	62
3.4 Optical microscope (OM)	63
3.5 Scanning electron microscope (SEM)	63
3.6 Surface profilometer	64
3.7 Vickers microhardness tester	64
3.8 A dry sand rubber wheel testing machine	65
3.9 A pin on disk sliding wear tester	65
4.1 BSE-SEM shows morphology of stainless steel 316LS in-flight particles.	84
4.2 Size distribution of the stainless steel 316LS in-flight particles.	85
4.3 Average size of the stainless steel 316LS (weld wire) in-fight particles.	85
4.4 BSE-SEM shows morphology of stainless steel 316LS splats.	86
4.5 Size distributions of stainless steel 316LS splats.	87
4.6 Average size of the stainless steel 316LS (weld wire) splats.	87
4.7 Degree of splashing distribution of stainless steel 316LS (weld wire) splats.	88
4.8 Average degree of splashing of stainless steel 316LS (weld wire) splats.	88
4.9 Degree of flattening of stainless steel 316LS (weld wire).	89
4.10 BSE-SEM micrographs show microstructure of stainless steel	
316LS coatings. Dy Chiang Mai Universi	90
4.11 Average thickness of stainless steel 316LS coatings.	91
4.12 Average roughness of stainless steel 316LS coatings.	91
4.13 Percentage porosity of stainless steel 316LS weld wire.	92
4.14 Percentage oxide of stainless steel 316LS weld wire.	92
4.15 Average hardness of stainless steel 316LS coatings.	93

Figure	Page
4.16 Abrasive wear rates of stainless steel 316LS coatings.	93
4.17 Sliding wear rates of stainless steel 316 LS coatings.	94
4.18 SE-SEM micrograph shows morphology of the stainless steel	
316L in-flight particles.	94
4.19 Size distribution of the stainless steel 316L in-flight particles.	95
4.20 SE-SEM micrograph shows morphology of the stainless steel 316L spats.	95
4.21 Size distribution of the stainless steel 316L splats.	96
4.22 Degree of splashing distribution of the stainless steel 316L splats.	96
4.23 BSE-SEM micrographs shows morphology of the stainless steel	
316L coatings.	97
4.24 Abrasive wear rate of the stainless steel 316L coatings.	97
4.25 Sliding wear rate of the stainless steel 316L coatings.	98
4.26 Comparison of the average in-flight particles size of stainless steel produced	
by weld wire and arc wire spraying.	98
4.27 Comparison of the average splats size of stainless steel produced by weld	
wire and arc wire spraying.	99
4.28 Comparison of the degree of flattening of stainless steel weld wire and arc	
wire spraying.	99
4.29 Comparison of degree of the splashing of stainless steel weld wire and arc	
wire spraying.	100
4.30 Comparison of stainless steel coating thickness produced by	
weld wire and arc wire spraying.	100
4.31 Comparison of stainless steel coating roughness produced by	
weld wire and arc wire spraying.	101
4.32 Comparison of stainless steel coating porosity produced by	
weld wire and arc wire spraying.	101
4.33 Comparison of stainless steel coating oxide of produced by	
weld wire and arc wire spraying.	102
4.34 Comparison of stainless steel coating hardness produced by	
weld wire and arc wire spraving.	102

Figure	Page
4.35 Comparison of abrasive wear rates of stainless steel coatings	
produced by weld wire and arc wire spraying.	103
4.36 Comparison of sliding wear rates of stainless steel coatings	
produced by weld wire and arc wire spraying.	103

âðânຣົ້ນກາວົກຍາລັຍເຮີຍວໃหມ່ Copyright [©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

μm	micrometer
AISI	american iron and steel institute
AS	Arc Spraying
ASTM	american society for testing and materials
Avg	average
BSE	backscattered electron-scanning electron microscope
C	carbon
Cr	chromium
D-gun TM	Detonation Gun
Fe	iron
FS	Flame Spraying
HV	Vickers Number
HVOF	High Velocity Oxy-Fuel
kPa	kilopascal
LPPS	Low Pressure Plasma Spraying
mg	milligram
mm	millimeter
Mo	molybdenum
Ni	nickle
0	oxygen
OM	Optical Microscope
R ²	coeffcient of determination
SEM O	Scanning Electron Microscope
Si	silicon ts reserved
SD	Standard deviation