TABLE OF CONTENTS

	ACKNOWLEDGEMENTS			
	ABSTRACT (ENGLISH)			
	ABSTRACT (THAI)			
	LIST OF TABLES			
	LIST OF ILLUTRATIONS			
	ABBREVIATIONS			
	CHAPTER 1:	INTRODUCTION AND OBJECTIVES	1	
		1.1 Introduction	1	
		1.2 Objectives	3	
	CHAPTER 2:	THEORY AND LITERATURE SURVEY	4	
2.1 Piezoelectricity				
2.2 Perovskites				
		2.3 Single Phase Piezoelectric Materials	11	
		2.3.1 Ceramic Piezoelectric Materials	11	
		2.3.1.1 Lead Zirconate Titanate	12	
		2.3.1.2 Lead Titanate	19	
		2.3.1.3 Lead Metaniobate	20	
		2.3.2 Polymer Piezoelectric Materials	S ₂₂	
		2.3.2.1 Polyvinylidene Fluoride (PVDF)	22	
		2.3.2.2 P(VDF-TrFE) Copolymer	23	
		2.4 Matrix Phase : Thermoset Resin	25	
		2.4.1 Epoxy	25	

2.5. Piez	oelectric Ceramic-Polymer Composites	27
2.5.1	Phase connectivity	30
2.5.2	Piezocomposites with 0-3 Connectivity	33
2.5.3	Piezocomposites with 1-3 Connectivity	39
2.6 Piezo	pelectric Ceramic-Polymer Applications	42
2.6.1	Hydrophone Applications	43
2.6.2	Biomedical Imaging Applications	44
2.7 Com	posite Processing and Fabrication	47
2.8 Sum	mary	50
CHAPTER 3EXPERIMEN	TAL METHODS AND PROCEDURES	51
3.1 Fabric	cation of PZT Powders	51
3.1.1	Preparation of PZT powder by	52
	spray drying technique	
3.1.2	Preparation of PZT powder by	53
	mixed oxide method	
3.1.3	Preparation of PZT powder by	54
	modified method	
3.2 Proce	essing of 0-3 ceramic-polymer composites	57
Opyright 3.3 Char	acterization and Measurement Methods	61
2 3.3.1	Thermal Analysis	61
3.3.2	Particle Size Analysis of PZT powder	61
3.3.3	X-Ray Diffraction Analysis	61

3.3.4 Scanning Electron Microscopy (SEM)	62
3.35 Transmission Electron Microscopy (TEM)	62
3.3.6 Energy Dispersive Spectroscopy	63
3.4 Property Measurement of the Composites	64
3.4.1 Density Measurement	64
3.4.2 Polarization of the Composites	65
3.4.3 Dielectric Properties	66
3.4.4 Piezoelectric Properties	66
3.4.5 Acoustic Impedance	68
CHAPTER 4 RESULTS AND DISCUSSIONS	70
4.1 Characterization of PZT sample made	70
by spray dry technique	
4.1.1 Thermal Analysis of PZT sprayed powder	70
4.1.2 X-ray Diffraction Results	72
4.1.2.1 Spray dry powder	72
4.1.2.2 Spray dry ceramics	75
4.1.3 Determination of the Particle Size	77
4.1.4 Examination of sprayed PZT powder	81
by SEM and TEM	
4.2 Characterization of PZT sampler made by	95
conventional mixed oxide method	
4.2.1 Phase formation of PZT powder	95

			Page
	4.2.2	Investigation of particle size distribution	98
		of PZT mixed oxide powder	
	4.2.3	Examination of PZT mixed powder by SEM	101
	4.3 Charac	terization of modified PZT sample	111
	4.3.1	Phase transformation of modified	111
		PZT ceramics	
	4.3.2	Microstructure of modified PZT	113
	4.4 Physica	al properties of PZT ceramics	120
	4.5 Dielect	ric and piezoelectric properties of	122
	PZT ce	ramics	
	4.6 Propert	ies of Piezoceramic-Polymer Composites	126
	4.6.1	Physical properties	126
	4.6.2	Dielectric Properties and Piezoelectric Proper	ties 128
	4.7 Scannin	ng Electron Micrographs of Composites	130
CHAPTER 5:	CONCLUS	IONS	135
	5.1 Powder	Processing and Characterization	135
	5.2 Compo	site Processing and Characterization	136
	5.3 Sugges	tion for Future Work	137
REFERENCES			S ₁₃₈
APPENDIX			148
VITA			174

LIST OF TABLES

Table		Page
2.1	Electromechanical properties of ceramic piezoelectric materials.	21
2.2	Optimum transducer material properties for low and high	46
	frequency applications.	
4.1	JCPDS Powder Diffraction File of PZT powder.	73
4.2	The relationship of physical properties and sintering temperature	121
	of PZT ceramics	
4.3	Dielectric and piezoelectric properties of the PZT ceramics	123
	produced from the spray dried granules.	
4.4.	Dielectric and Piezoelectric properties of the PZT ceramics	124
	produced from the mixed oxide powder.	
4.5.	Piezoelectric, dielectric and physical properties of the PZT	125
	ceramics produced from the mixed oxide powder.	
4.6	Physical and mechanical properties of the PZT/polymer	127
	compositesPZT(m), PZT(sp) = powders obtained from mixed	
	oxide method and spray drying techniques, respectively.	
4.7	Dielectric and piezoelectric properties of the PZT/polymer	129
	composites compared with those of previous work.	

LIST OF ILLUTRATIONS

Figure		Page
2.1	Piezoelectric effects in ferroelectric ceramics [12].	5
2.2	Schematic representation of piezoelectric response under the	8
	electric field E.	
2.3	The unit cell and ABO ₃ perovskite structure of PZT [12].	10
2.4	The phase diagram of $Pb(Zr_{1-x}Ti_x)O_3$ [15].	13
2.5	The epoxide group of epoxy matrix.	25
2.6	Ten different connectivity patterns of diphasic Materials [67].	31
2.7	Schematic diagram of various piezoelectric ceramic-polymer	32
	composites.	
2.8	Schematic diagram of 0-3 ceramic-polymer composite.	33
2.9	(a) 1-3 piezoceramic-polymer composite. (b) Fabrication the rod	49
	array for a 1-3 piezoceramic-polymer composite by injection moulding	
3.1	Schematic of preparation of PZT samples by using spray drying	55
	technique.	
3.2	Schematic of preparation of PZT samples by using mixed oxide	56
	method.	
3.3	Schematic of the equipment to prepare 0-3 piezoceramic/epoxy resin	59
	composites. The PZT/powders and resin were filled in a syringe with	
	a filter underneath. The syringe was plugged in a flask partly filled	
	with water. Suction was carried out through an air pump.	

Figure		Page
3.4	Schematic of photograph of $(0-3)$ and $(1-3)$ combined piezocomposite	60
	sample where polymer matrix = epoxy resin filled in the spaces to form	
	the 1-3 connectivity with 0-3 ceramic/polymer rods (0.35×0.35 mm.)	
3.5	The poling apparatus.	65
3.6	Equivalent circuit of the piezoelectric Material [15].	67
3.7	The circuit diagram for measuring of f_r and f_a .	67
3.8	Diagram of the apparatus for echo shift measurement.	69
4.1	DTA and TG thermograms of the spray dried granules.	71
4.2	XRD patterns of PZT powder made by spray dry technique calcined	74
	at different temperature.	
4.3	XRD patterns of sprayed PZT ceramics sintered with various	76
	temperatures.	
4.4	Particle size distribution of PZT sprayed powder calcined at	78
	(a) 500 °C and (b) 600 °C.	
4.5	Particle size distribution of PZT sprayed powder calcined at	79
	(a) 700 °C and (b) 800 °C.	
4.6	Particle size distribution of PZT sprayed powder calcined at 850 °C	80
4.7	SEM micrographs of sprayed powder (a) uncalcined and	83
	(b) calcined at 500 °C	
4.8	SEM micrographs of sprayed powder calcined at (a) 600 $^{\rm O}$ C and	84
	(b) 700 ^o C.	
4.9	SEM micrographs of sprayed powder calcined at (a) 800 $^{\rm O}$ C and	85
	(b) 850 ^o C.	

Figure		Page
4.10	TED (a) and TEM (b) micrographs of selected area of PZT powder.	86
4.11	EDS spectrum of corresponding PZT powders.	87
4.12	The dark field image of PZT ceramics prepared from sprayed powder.	87
4.13	The bright field image of PZT ceramics prepared from sprayed powder	88
4.14	The bright field image of PZT ceramics prepared from sprayed powder	88
	with different angle.	
4.15	SEM micrographs of as sintered surface of PZT ceramics fabricated	89
	from spray dried granules sintered at (a) 900 °C and (b) 1000 °C.	
4.16	SEM micrographs of as sintered surface of PZT ceramics	90
	fabricated from spray dried granules sintered at (a) 1100 °C and	
	(b) 1200 °C.	
4.17	SEM micrographs of as sintered surface of PZT ceramics fabricated	91
	from spray dried granules sintered at (a) 1230 °C and (b) 1250 °C.	
4.18	SEM micrographs of fracture surface of PZT ceramics fabricated	92
	from spray dried granules sintered at (a) 900 °C and (b) 1000 °C.	
4.19	SEM micrographs of fracture surface of PZT ceramics fabricated	93
	from spray dried granules sintered at (a) 1100 °C and (b) 1200 °C.	
4.20	SEM micrographs of fracture surface sprayed of PZT ceramics	94
	fabricated from spray dried granules sintered (a) 1230 °C and (b) 1250 °C	°C.
4.21	XRD patterns of PZT mixed powder calcined with several	96
	temperatures. (* is the unreacted ZrO ₂)	
4.22	XRD patterns of PZT mixed sample sintered with several temperatures.	97

Figure		Page
4.23	The particle size distribution of mixed oxide PZT powder calcined at	98
	temperature 500 °C.	
4.24	The particle size distribution of mixed oxide PZT powder calcined at	99
	temperature (a) 600 °C and (b) 700 °C	
4.25	Particle size distribution of mixed oxide PZT powder calcined at	100
	temperature (a) 800 °C and (b) 850 °C.	
4.26	SEM micrographs of mixed oxide powder (a) uncalcined	102
	and (b) calcined at 500 °C.	
4.27	SEM micrographs of mixed oxide powder calcined at (a) 600 ^O C and	103
	(b) 700 ^o C.	
4.28	SEM micrographs of mixed oxide d powder calcined at (a) 800 $^{\rm O}$ C	104
	and (b) 850 ^o C.	
4.29	SEM micrographs of as sintered surface of mixed oxide ceramic	105
	sintered at (a) 900 $^{\circ}$ C and (b) 1000 $^{\circ}$ C.	
4.30	SEM micrographs of as sintered surface of mixed oxide ceramic	106
	sintered at (a) 1100 $^{\circ}$ C and (b) 1200 $^{\circ}$ C.	
4.31	SEM micrographs of as sintered surface of mixed oxide ceramic	107
	sintered at (a) 1230 $^{\circ}$ C and (b) 1250 $^{\circ}$ C.	
4.32	SEM micrographs of fracture surface of mixed oxide ceramic	108
	sintered at (a) 900 $^{\circ}$ C and (b) 1000 $^{\circ}$ C.	
4.33	SEM micrographs of fracture surface of mixed oxide ceramic	109
	sintered at (a) $1100 ^{\circ}$ C and (b) $1200 ^{\circ}$ C.	

Figure		Page
4.34	SEM micrographs of fracture surface of mixed oxide ceramic	110
	sintered at (a) 1230 $^{\circ}$ C and (b) 1250 $^{\circ}$ C.	
4.35	XRD patterns of PZT modified ceramics sintered at several	112
	temperatures.	
4.36	SEM micrographs of as sintered surface of modified ceramics	114
	sintered at (a) 900 °C and (b) 1000 °C.	
4.37	SEM micrographs of as sintered surface of modified ceramics	115
	sintered at (a) 1100 °C and (b) 1200 °C.	
4.38	SEM micrographs of as sintered surface of modified ceramics	116
	sintered at (a) 1230 °C and (b) 1250 °C.	
4.39	SEM micrographs of fracture surface of modified ceramics	117
	sintered at (a) 900 °C and (b) 1000 °C.	
4.40	SEM micrographs of fracture surface of modified ceramics	118
	sintered at (a) 1100 °C and (b) 1200 °C.	
4.41	SEM micrographs of fracture surface of modified ceramics	119
	sintered at (a) 1230 °C and (b) 1250 °C.	
4.42	Top view photograph of the composite.	131
4.43	The typical SEM micrographs of top view of PZT/epoxy resin	132
	composites.	
4.44	SEM micrographs of PZT/epoxy resin which PZT composites	133
	employing powders prepared from mixed oxide route (a) and	
	spray dry techniques (b)	

Figure

4.45 SEM micrographs of cross section of PZT/epoxy resin composites 134 employing powders PZT powder prepared from mixed oxide route
(a) and spray dry techniques (b). Dark and brighter areas correspond to the resin and the PZT powders, respectively.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

ABBREVIATIONS

Α	area
c al	capacitance
cL	longitudinal velocity
c/a	tetragonality
d	interplanar spacing
dh	hydrostatic charge coefficient
d _{ij}	piezoelectric charge coefficient
d ₃₃	piezoelectric charge coefficient
$d_h g_h$	hydrophone figure of merit
Ei	electric field
\mathbf{f}_{s}	series resonance frequency
\mathbf{f}_{n}	frequency when maximum impedance
fr	resonance frequency
fa	antiresonance frequency
gh	hydrostatic voltage coefficient
gij	piezoelectric voltagecoefficient
g ₃₃	piezoelectric voltage coefficient
K	Bulk modulus
K _α gh	radiation of K series C S C M V C O
k _p	planar coupling coefficient
k _t	thickness coupling coefficient
L	column length

P _i	electrical polarization
PZT	Lead Zirconate Titanate
PVDF	Polyvinylidene Fluoride
Qm	mechanical quality factor
Re	resistive component
R ₁	resistance of the series branch
S	reciprocal space vector
SEM	Scanning Electron Microscopy
ΔΤ	time difference
tanð	dissipation factor
t	thickness
Vol%	volume percentage fraction
W _d	dry ewight
Ww	wet weight
ZAT	acoustic impedance
ε _r	relative permittivity or dielectric constant
ε ₀	permittivity of free space
ε _{ij}	mechanical strain
σ	mechanical stress
θgh	Bragg's angle