Thesis Title Carburization and Nitridation of Titanium-Aluminium

Alloys

Author Mr. Chatdanai Boonruang

Degree Doctor of Philosophy (Materials Science)

Thesis Advisory Committee Assoc. Prof. Dr. Somchai Thongtem Chairperson

Assoc. Prof. Titipun Thongtem

Member

Dr. Pisith Singjai

Member

Abstract

New surface modification techniques and new analytical technique for γ -TiAl alloys were studied. MJ12 (Ti-47Al-2Nb-2Cr) and MJ47 (Ti-47Al-2Nb-2Mn+0.8TiB₂) were nitrided in 10 cm³.s⁻¹NH₃ and carburized in 0.01-0.05 cm³.s⁻¹ C₂H₂ at 1000-1300 K. The alloys were characterized using XRD, SEM, EDX, Knoop hardness and pin-on-disk wear testers. The results revealed the formation of the new phases on the alloy surfaces. Knoop hardness values of the alloys were 11.4-189.7 % increased with the increasing of temperature and C₂H₂ potential. The wear rate of the alloys was 95.0-99.6 % decreased comparing with the as-received alloys. The irregular wear rate is controlled by nitride, carbide and carbonitride phases and their concentrations in the films. In addition, the two alloys nitrided in NH₃ at 1000-1300 K and carburized in the pressed carbon rods by directly applying electrical power through them at 274.3 \pm 26.4 W, 80 A, for MJ12 and at 293.4 \pm 16.8 W, 80 A, for MJ47 in Ar atmosphere were characterized using XRD, SEM, EDX, Knoop hardness, pin-on-disk wear testers and RBS incorporated with the NUSDAN software.

XRD result shows that TiC can be deposited on the γ -TiAl alloys by directly applying voltages. The film thickness, mass increase, density increase and diffusion coefficient were increased with an increasing temperature. Diffusion coefficients of N in MJ12 and MJ47 at 1000-1300 K are 7.89×10^{-18} - 4.06×10^{-17} and 7.19×10^{-18} - 3.22×10^{-17} m².s⁻¹, respectively. Knoop hardnesses were 10.1-65.5 and 8.7-36.4 % increased for alloys nitrided in NH₃ and carburized by directly applying voltages, respectively. Wear rates were 97.2-99.2 and 98.0-98.6 % decreased for alloys nitrided in NH₃ and carburized by directly applying voltages, respectively. Directly applying voltages has an advantage on direct metal-gas reaction by faster heating up and cooling down periods.

ชื่อเรื่องวิทยานิพนธ์

การ์บูไรเซชันและในไตรเคชันของโลหะผสม

ไทเทเนียม-อะลูมิเนียม

ผู้เขียน

นาย ฉัตรคนัย บุญเรื่อง

ปริญญา

วิทยาศาสตรคุษฎีบัณฑิต (วัสคุศาสตร์)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

รศ.คร. สมชาย ทองเต็ม รศ. ธิติพันธุ์ ทองเต็ม คร. พิศิษฐ์ สิงห์ใจ ประธานกรรมการ กรรมการ กรรมการ

บทคัดย่อ

ได้ทำการศึกษาเทคนิดใหม่ในการปรับปรุงและวิเคราะห์พื้นผิวของโลหะผสมไทเทเนียมอะลูมิเนียม โดยทำการในไตรเคชันและการ์บูไรเซชันโลหะผสม MJ12 (Ti-47Al-2Nb-2Cr) และ MJ47 (Ti-47Al-2Nb-2Mn+0.8TiB₂) ใน 10 cm³.s⁻¹ แอมโมเนียและ 0.01 - 0.05 cm³.s⁻¹ อะเซทีลีน ที่อุณหภูมิ 1000-1300 K จากนั้นวิเคราะห์โลหะผสมดังกล่าวโดยใช้ XRD, SEM, EDX, อุปกรณ์วัดค่าความแข็งแบบนู้ป และอุปกรณ์วัดการสึกหรอแบบ pin-on-disk ผลการ วิเคราะห์พบว่ามีการเกิดเฟสใหม่ขึ้นบนผิวของโลหะผสม ซึ่งส่งผลให้ค่าความแข็งเพิ่มขึ้น 11.4-189.7 % ตามอุณหภูมิในการเกลือบผิวและอัตราการไหลของอะเซทีลีน อัตราการสึกหรอของโลหะผสมที่ผ่านการเกลือบผิวลดลง 95.0-99.6 % เมื่อเทียบกับขณะก่อนเคลือบ ความไม่สม่ำเสมอของ การสึกหรอเกิดจากสารประกอบในไตรด์ การ์ไบด์ และการ์โบไนไตรด์ และความเข้มข้นของสาร ดังกล่าวในฟิล์ม นอกจากนี้ ได้ทำการในไตรเดชันโลหะผสมดังกล่าวในแอมโมเนีย ที่อุณหภูมิ 1000-1300 K และได้อัดโลหะผสมดังกล่าวในแท่งการ์บอนแล้วทำการคาร์บูไรเซชันโดยการให้ กำลังไฟฟ้าที่ใช้กับโลหะผสม MJ12 และ MJ47 เท่ากับ 274.3 ± 26.4 และ 293.4 ± 16.8 W ตาม ลำดับ จากนั้นวิเคราะห์โลหะผสมดังกล่าวโดยใช้ XRD, SEM, EDX, อุปกรณ์วัดค่าความแข็ง

แบบนูป อุปกรณ์ วัดการสึกหรอแบบ pin-on-disk และเทกนิก RBS ร่วมกับโปรแกรม NUSDAN ผลการวิเคราะห์ด้วย XRD แสดงให้เห็นว่าสามารถใช้วิธีให้แรงดันไฟฟ้าโดยตรงใน การสังเคราะห์ TiC บนโลหะผสมไทเทเนียม-อะลูมิเนียมได้ ความหนาของผิวเคลือบ มวลที่เพิ่ม ขึ้น ความหนาแน่นที่เพิ่มขึ้น และสัมประสิทธิ์การแพร่ เพิ่มขึ้นตามอุณหภูมิในการเคลือบผิว สัมประสิทธิ์การแพร่ของในโตรเจนใน MJ12 และ MJ47 ที่อุณหภูมิ 1000-1300 K มีค่าอยู่ ระหว่าง 7.89×10⁻¹⁸ - 4.06×10⁻¹⁷ และ 7.19×10⁻¹⁸ - 3.22×10⁻¹⁷ m².s⁻¹ ตามลำดับ การในไตรเดชัน ในแอมโมเนียทำให้ค่าความแข็งแบบนูปเพิ่มขึ้น 10.1-65.5 % และอัตราการสึกหรอลดลง 97.2-99.2 % ส่วนการคาร์บูไรเซชันด้วยวิธีให้แรงดันไฟฟ้าโดยตรงทำให้ค่าความแข็งแบบนูปเพิ่มขึ้น 8.7-36.4 % และอัตราการสึกหรอลดลง 98.0-98.6 % การเคลือบผิวด้วยวิธีให้แรงดันไฟฟ้าโดยตรง เป็นวิธีที่ใช้เวลาในการเร่งให้ร้อนและปล่อยให้เย็นตัวสั้นกว่าวิธีการทำปฏิกิริยาโดยตรงระหว่าง แก๊สกับโลหะ

auansurphendersity Copyright by Chiang Mai University All rights reserved