Chapter 2

METHODOLOGY

2.1 Terminologies used in reserve calculation
Volumetric equations:
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Oil reserve is in stock tank barrels (STB) and gas reserve is in standard cubic feet
(scf). Area and thickness are in metric units. The numbers of 6.2898 and 35.3147 are

conversion factors to change cubic meters to barrels and cubic feet.

Discovered Hydrocarbons-Initially-In-Place: are those quantities of oil or gas
which are estimated, for given data, to be contained in known accumulations, plus
those quantities already produced therefrom (after Rose, 2001). They can be OIIP or
OOIP or GIIP or OGIP.

Reserves: are those quantities of petroleum which are anticipated to be commercially
recovered from known accumulations from given data forward. There are three levels
of reserves that are distinguished by levels of uncertainty of geological and
engineering data and of economical and political conditions. Proved reserves are those
quantities of petroleum which, by analysis of geological and engineering data, can be
estirnated with reasonable certainty to be commercially recoverable, from a given data
forward, from known reservoirs and under current economic conditions, operating
methods, and government regulations. If probabilistic methods are used, there should
be at least a 90 percent probability that the quantities actually recovered will equal or
exceed the estimate. Probable reserves are those unproved reserves, which analysis of
geological and engineering data suggests, are more likely than not to be recoverable.
In this context, when probabilistic methods are used, there should be at least a 50
percent probability that the quantities actually recovered will equal or exceed the sum

of estimated proved plus probable reserves. Possible reserves are those quantities of
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petroleum, which analysis of geological and engineering data suggests, are less likely
to be recoverable than probable reserves. In this context, when probabilistic methods
are used, there should be at least a 10 percent probability that the quantities actually
recovered will equal or exceed the sum of estimated proved plus probable plus

possible reserves (after Rose, 2001).

Area (A): is the area of the oil-bearing or gas-bearing reservoir bounded by the
contour which corresponds to the hydrocarbon-water contact. Area is measured on
the structural map of the top reservoir. The structural maps are constructed using
seismic and well log data. From one set of data, many possible maps can be created
for just one horizon. This is one of the sources that create the random variation of
area. In the case that the created map is considered to reasonably show the
geological structure, there is still another uncertainty. Figure 2.1 is an example of

the uncertainty involved.
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Figure 2.1 Possible extensions of an oil body

If the oil-water contact is penetrated in the well (Figure 2.1A), then the extension of
the oil body can be estimated quite correctly. In this case, the value of area is
considered to be constant. If the well does not penetrate the oil-water contact, it is
difficult to determine the extension of the oil accumulation (Figure 2.1B). In this
case, the area inside the contour corresponding to the oil-down-to is normally
considered to be the minimum possible area, the area inside the contour

corresponding to spill-point is considered to be the maximum possible area. In this
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study, there are no structure maps for layer KR2-6 and KR2-7. In order to estimate
the areas of these two layers, the structure map of S4 horizon, which is the top of
layer KR2-8, was used with the assumption that the top surfaces of KR2-6 and KR2-
7 are parallel to the S4 surface. The S4 structure map was shifted upward to KR2-6
and KR2-7 using the average distances from top of those layers to $4 measured in

wells. Then the areas on each layer were determined by using the shifted maps

(Figure 2.2).
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Figure 2.2 Method of shifting faults and contours on a structure map

In case of lack of data, the triangular distribution was normally used to describe the

variation of area. In this study, there were only two data points of area, minimum
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area and maximum area, which could be determined. The average of these two
values, which corresponding to the middle contour between the deepest oil-down-to
point and the shallowest water-up-to point or spill-point, is usually used as the limit
for the P50 area. The minimum, maximum, and average areas were used to describe

the triangular distribution in this report.

Thickness (h): is the true vertical thickness of the reservoir, vertically measured from
top to bottom of the reservoir. If the reservoirs are thin, it is not accurate to
determine thickness from seismic lines because seismic waves can not define layers
thinner than 25-30 m. Thus, the thicknesses of reservoirs are determined from well
logs. In this study, after the well correlation was made, the true vertical thicknesses

of only sand bodies were selected. The true vertical thickness is calculated by:

TVT = MLT[cos(r) * sin(a) cos(y) tan(3)] 3)
When the bed is horizontal, equation (3) becomes:

TVT = MLT cos(c) (4)

On the structure maps of S3 and S4 the bed dip of the layers is only about five
degrees. The correction for this small bed dip is negligible. Thus, bed thickness was
calculated by equation (4).

Net to Gross ratio (N/G_ratio): in a heterogeneous reservoir, there may be some tight
layers, such as claystone, mudstone, or tight sandstone, that have very low porosity
and permeability. Even these layers contain some hydrocarbon, but the interstitial
fluids can not flow. It is necessary to eliminate such layers from volumetric
calculations. Net to gross ratio is used to do this. This is the ratio between the total
thickness of porous layers inside the reservoir and the total vertical thickness of the
reservoir. It is expressed in fraction or percentage. Net to gross ratio is normally
determined from well logs. In this study, the net to gross ratio was one because only
the thicknesses of sand bodies were used. But even within a sandstone layer, the
whole layer may not yield hydrocarbons. Some parts of it could be non-reservoirs
because of clay contamination. Clay can reduce the pore space that can yield fluids.
The remaining parts of the rock unit, which are reservoirs, are the volume of sand

that equals one minus the volume of clay:
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Vss =1-Vel (5)

with Vgs being the volume of sand in one unit volume of rock and V being the
volume of clay in one unit volume of rock. So that, the actual reservoir rock volume

for sand layers becomes:
Reservoir rock volume = A * h * Vgg * GCF (6)

In each sand bed, the volume of clay was calculated by using the gamma ray log and

the relationship for Tertiary rocks (Rider, 1996):
Vel = 0.083(2* 7o 1) (7)
where: Vecl is volume of clay in one unit of volume of rock

Igr is gamma ray index, calculated by
GR,, —GR

7. B log ~— min 8
o GRmzlx -GR ( )

Sand volume data were listed in Appendix B.

Geometry Correction Factor (GCF): In the volumetric equation, the product A*h is
the volume of a parallelepiped or cylinder geometry. In fact, there are very rare
reservoirs with such geometries. Geometric correction factor is used to adjust the
calculated volume A*h to the real geometry of the reservoir. This factor is shown in
fraction. The product of area, thickness, net to gross ratio, and geometric correction
factor is the total rock volume of porous reservoir that bears hydrocarbons. The
geometric correction factor is normally derived from a chart based on the shape and
the thickness of the reservoir (Figure 2.3). The three layers within the Lower Zone
are nearly similar. Thus, the geometric correction factor estimated for one layer can
be applied to the others. From the structure maps of the S4 horizon, the ratio of
length over width of the structure is about 1, including the missing segment of the
structure caused by the faulting (Rose, 2001), and the geometric shape would be
type 3. The closure on the S4 structure map is 155 m between the highest contour
1120 m and the closure contour 1275 m. The average thickness of KR2-8 in 10

wells is 7.9 m. The ratio of sand thickness over the height of closure is about 0.05.
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From the chart, the geometric correction factor is 0.97 for KR2-8 and also for the
KR2-6 and KR2-7.
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Figure 2.3 Determination of geometric correction factor (after Rose, 2001)

Porosity (®): is the ratio between pore volume and the bulk rock volume. It is shown
as a fraction or as a percentage. The product of total rock volume and porosity is the
total pore volume of the reservoir. Porosity is determined from well logs. Core data,
if available, are used to correlate the log-derived values. In this study, due to the
lack of core data, the log-derived porosities and water saturations were used
directly. Porosity was determined from sonic logs using the Raymer - Hunt equation
and from density and neutron logs using Schlumberger’s charts after borehole
corrections and clay volume correction. For the wells where both density and
neutron logs were available, the neutron-density porosity was used; otherwise,

porosity from only the sonic, density or neutron log was used.

Sonic porosity was calculated by:

Jﬁt - JAt
= ma 9
Y s —AL, ®

Density porosity was calculated by:

? —
g, =Lma"Ps (10)
pma = pj'
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Neutron porosity was read directly on the neutron log and corrected for sandstone

matrix using Schlumberger’s correction chart.

Neutron-density porosity was calculated by:
gt (1)

The porosities of each layer in each well are shown in Appendix B.

For each layer, the distributions of porosity used in the simulations were
constructed using the fitting tool of the Crystal Ball software based on the log-
derived porosity data. Some distribution types, such as lognormal and logistic
distributions, vary from minus infinity to plus infinity. If these distributions are used
to describe some parameters, such as porosity and saturation, they need to be
truncated by the constraints of the parameters which they describe. For example,
saturation, net to gross ratio, and Vs always vary from zero to one. Therefore, at
least the ranges from minus infinity to zero and from one to plus infinity of the
distributions must be truncated because it is impossible for those ranges to occur in
nature. Within a reservoir, those parameters normally vary in a certain range but not
the whole range from zero to one. In this study, the distribution curves of porosity

and water saturation were truncated using the actual range of the data.

Saturation: is the volumetric proportion of one liquid in the total pore volume of the
reservoir. In an oil zone or a gas zone, there are both hydrocarbons and water co-
existing. Thus, one zone has two saturations: oil saturation (S,) or gas saturation (Sg)
and water saturation (S,,). From well logs, only water saturation can be calculated. In

order to calculate oil saturation and gas saturation, the following formulae are used:
S() = 1 X Sw (12)
Sg=1-8, (13)

In a laboratory, oil and water saturations are measured directly from core samples.
But these measured values are not correct due to the contamination of drilling mud
and the loss of water and oil during sampling. Thus, the log-derived water saturations
are normally used. Water saturation is determined from spontaneous potential and

resistivity logs using the Archie equation:
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S, =af—F (14)

F is calculated by the equation, which is the best average for sandstones (Rider,
1996):

< hDE

A water resistivity, Ry, of 0.8 ohm meter at surface temperature used to calculate

the water saturation was measured in the laboratory of PTTEP.

For the wells where deep, shallow, and micro resistivity, density, and neutron logs
are available, the dual water model was used to calculate water saturation. In wells
UT1-7/D5, UT1-7/D6, and UT1-7/D7, the log data were not enough. That led to
unconfident results for water saturation. Then, the water saturations of these wells

were not used in the study.
The water saturations of each layer in each well are shown in Appendix B.

For each layer, the distributions of water saturation used in the simulations were
constructed by using the fitting tool of the Crystal Ball software based on the log-

derived data and then truncated by the actual range of the data.

Initial oil or gas formation volume factor (B, Bg): presents the change in volume
when one unit volume of oil or gas at reservoir pressure and temperature is brought to
the surface. It is the ratio between the volume of oil or gas at reservoir conditions and
one unit volume of oil or gas at standard surface conditions. B,; and B, are measured
in PVT laboratories. In thin, small reservoirs, where the reservoir pressure and
temperature and the oil compositions do not vary much, B,; can be considered to be
constant throughout the reservoir. For the oil from the U-Thong field, the measured

Boi was 1.11 bbl/STB at reservoir conditions.

Recovery factor (RF): is the ratio between the ultimate amount of produced
hydrocarbons and the hydrocarbons initially in place in the reservoir. This factor

represents the percentage of the hydrocarbons initially in place in the reservoir that
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can be recovered. It can be expressed as a fraction or as a percentage. The recovery

factor for an oil field and a gas field are defined as:
RF = Recovered oil volume/ OIIP (16)
RF = Recovered gas volume / GIIP (17)

Recovery factor is affected by two main elements: natural factors, such as reservoir
heterogeneity, aquifer size, pore geometry, and fluid properties, and artificial factors,
such as abandonment pressures, which is the pressure at which the natural energy of
the field is considered to be exhausted, abandonment rates, and well spacing.
Estimation of recovery factor is the most difficult task. Until now, all the oil fields in
Thailand are still producing. Therefore, the ultimate recovery factors of other fields
are not available for analogy. In PTTEP’s calculation, the reserves of the U-Thong
field were calculated with an assigned recovery factor of 0.3 for the lower zone. This
value was used in this study to check the accuracy of the Monte Carlo simulation in

comparison to the volumetric method.
2. 2 Monte Carlo Simulation

The Monte Carlo method was originally developed by Nicholas Metropolis and
Stanislaw Ulam while working on the Manhattan Project in Los Alamos, New
Mexico, U.S.A. during the time of World War II as a way to model the random
behavior of sub-atomic particles. Since then, the theory has been used by numerous
industries and for countless purposes to solve deterministic problems through the use
of random numbers. By the early 1970s petroleum engineers began to use the
technique to model reserves estimates. The Monte Carlo method has two
requirements. The first is a mathematical model, or simulator. The second is the
knowledge of the probabilistic cumulative distribution functions (CDFs) of the
variables to be fed into the mathematical model. When the CDFs are known,
each variable needed in the model is randomly sampled and the model is used to
calculate the unknown quantity. This process, known as a trial, is repeated many
times until a sufficient number of trials have been made to create a distribution of
the unknown quantity. The process of performing an adequate number of trials is

called a Monte Carlo simulation.
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2. 2.1 The mathematical model

For the recoverable hydrocarbon volume, or reserves, approach using Monte Carlo
simulation, the mathematical model used was the volumetric equations (1) and (2)

mentioned earlier.
In the case of a multi-layer field, the mathematical model is:
Field reserves = X (Zone reserves); (18)

The term (Zone reserves); is the reserves of production zone i™ calculated by either

equation (1) or (2). The distribution of the total field reserves may be calculated by:
Distribution of field reserves = X Distributions of (Zone reserves); (19)

In this study, the Crystal Ball 2000 Professional package, version 5.0, was used to
perform the Monte Carlo simulation for hydrocarbon reserves. The Crystal Ball can
sample the distributions of the input variables and perform the mathematical
calculations as described by the model. To do this, the program generates a random
number between 0 and 1. Once the random number has been generated, the program
reads the corresponding data value from the CDF plot and inserts it into the model.
For each trial, a random number is generated and the corresponding parameter value
is determined for each of the seven input variables required in the volumetric model.
These seven input variables are area, thickness, net to gross ratio, porosity, water
saturation, hydrocarbon formation volume factor, and recovery factor. The process is
repeated for each trial. A simulation can be a few hundreds to a few
thousands trials. As the number of trials increase, the results represent more
reliable probability distributions but it becomes a time consuming procedure.
However, the time needed to run the simulation depends largely on the

capacity of the computer used.

The CDF of each parameter in the right-hand side of the volumetric equation is fed

into the model.
2. 2. 2 Probability Distributions

Some basic terminologies concerning probability distributions are:
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Statistics: is a set of mathematical methods for collecting, organizing, and
interpreting data, as well as drawing conclusions and making reasonable

decisions based on such analysis.

Population: is a collection of a finite number of measurements or virtually

infinitely large collection of data about something of interest.

Sample: is a representative subset selected from the population. A good
sample must reflect the essential features of the population from which it is

drawn.

Random sample: is a sample in which each member of a population has an

equal chance of being included in the sample.

Random variable: is a form of presenting any unsampled, or unknown, value
z, the probability distribution of which models the uncertainty about z. The

variable can be continuous or discrete.

Probability function of a random variable Z: is a mathematical function that

assigns a probability to each realization z of the random variable Z: P(Z=z).

Expected value, EV, or mean: is the probability-weighted sum of all the

possible occurrences of the random variable Z.

n

wazf

EV(Z)=m =] (20)

n

2w

i=1

There are several ways to calculate the mean from a cumulative distribution

curve:
L "
> Wz
e Arithmetic mean= = 21)
}.4 i
=1
s Trusstatistical mean= & ") (22)

e Swanson’s mean=0.3 * P90 + 0.4 * P50+ 0.3 * P10 (23)
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This mean is good approximation for low-medium variance

distributions.

Variance of the random variable Z: is defined as the expected squared

deviation of Z about its mean.

Var{Z} = EV{Z-m}* = EV{Z} -m* >0 (24)
Standard deviation: is the square root of the variance.

SD = \[Var{Z} (25)
Median: is the value of variable Z at the cumulative probability of 50 percent.

Mode: is the value of variable Z which has highest frequency on a probability

density curve.
Cumulative distribution function, CDF: is defined as:
F(z) = Prob{Z<z} € [0,1] (26)

This formula gives the area under the probability density function of the
random variable Z, and is the probability that the random variable Z is less
than or equal to a threshold value of z. Then the probability of exceeding any

of the threshold values of z can be written:
Prob{Z>z} = 1- F(z) (27)

All CDFs are monotonically increasing and continuous to the right.
Monotonically increasing means that as z increases, F(z) must not decrease.
Continuous to the right means that small changes in z result in small changes
in F(z). Additionally, for all CDFs, as z goes to infinity, F(z) approaches the

value of 1 and as z goes to negative infinity, F(z) approaches the value of zero.

When reservoir parameters are analyzed as random variables and the
distributions of their values are created, it is possible to make statistical
statements about the variables. For example, it might be said of a given
reservoir that 90 percent of the porosity values measured will fall below
30 percent. This comes directly from the CDF. In this case, at the point where

F(z) = 0.9, the porosity equals 30 percent. Similar readings of the CDF
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can be made and the corresponding values of porosity can be determined
to have a certain probability. In the example above, a porosity of 30
percent is considered the P90 value. It is common to note the P10, P50, and
P90 values for distributions since they give a good representation of the
entire distribution with just three numbers. By definition, P50 is equal to

the median value of the distribution. F igure 2.1 gives an example of CDF.

Probability density function, PDF: is the derivative of the CDF and can be

written:

f@)=F%n=ﬁm&w}“Z+f2‘F“) 28)

Inversely, CDF can be obtained from integrating the PDF:
F(2)= [f(2)dz 29)

The PDF displays the same information as the CDF, but in a different format.
A familiar type of PDF is the histogram. PDF relates the probability of
occurrence of the variable f(z) for a small range of z. The variable z should not
be thought of as a fixed number, but as a small range of values because the
probability f(z) that z is any one exact number is zero. For all PDFs, f(z) > 0
for all z. Additionally, the sum of the values of f(z) over the infinite range,
also the area under the PDF curve, must be equal to one. Figure 2.4 gives an

example of PDF.
Probability Density Function - PDF Cumulative Distribution Function - CDF

f(z) A

Mode Median z

Figure 2.4 Example of PDF and CDF

Depending on the data, there are many different types that the CDF and PDF can be.
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Mathematicians have developed models of the CDF and PDF for certain distribution
types that frequently occur in applications. The following are some examples of

distribution types.

Normal Distribution (or Gaussian distribution)

The normal distribution has a PDF given by the following equation:

f(z)=——l——ex:p[~—l(z_-mj ] (30)

SD\ 27 ZNSD

The standard normal PDF fo(z) has a mean of zero and a standard deviation of one:

£ ::/;—7; exp{— (g] J (31)

The CDF of the normal distribution F (2) is written as:

i zZ—m
F(z)= dz =F 32
(2) _!f(z) G ( SDJ (32)
The CDF of the standard normal distribution F, o(z) is written as:
Fy(2)= [f(2)dz (33)

The expected value of the normally distributed random variable is equal to the mean
and also to the median. The normally distributed PDF and CDF are symmetrical in

shape (Figure 2.5).
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Normal Distribution - PDF Normal Distribution - CDF
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Figure 2.5 Normal PDF and CDF

Lognormal Distribution

The lognormal distribution is another common distribution in which the logarithm of the
random variable is normally distributed. The lognormal distribution is frequently
associated with processes that divide large quantities into smaller ones. This is exactly the
type of process that occurs during sediment deposition. Therefore, lognormal distributions

are common in the petroleum industry. The PDF for the lognormal distribution is:

1 R
Z)=———=¢exp| - — = 34
/( zo\27 }p[ 2 ( o J jl B4
and the CDF is given by:
1 : 1 ;
Z—H I
F(z)=— = |exp| —— - 35
=) zo 2 _;[ 3 2 ( o J . G

When drawn on probability paper in which the x-axis has a logarithmic

scale, lognormal distributions plot as straight line.

Figure 2.6 shows the shape of the PDF and CDF curves for a lognormal
distribution. The PDF of a lognormal distribution is said to be positively skewed, as is
seen by the large value of f(z) for small values of z and a long tail extending to the

right.
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Legnormmal Distrbution - POF Lognormnal Distribution - COF Lognommnal Distribution - CDF
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Figure 2.6 Lognormal PDF and CDF and lognormal CDF plotted on probability paper

Note that a lognormal distribution will be a straight line on probability paper in which

the y-axis is a linear scale and the x-axis is a logarithmic scale.
Triangular Distribution

The triangular distribution is useful when limited data are available. Data are
distributed between a minimum, a maximum, and the likeliest value. For an oil field,
the number of wells drilled limits the number of reliable data points. Therefore, the
triangular distribution is used to describe some reservoir data such as reservoir

thickness. The equations for the PDF are:

fz) =0 z<a (36)

f(Z) = 21{2 — ‘J)E—Q)I(Ta) &5z <h (37)
) 1

f(z‘)—Zl[c—‘.) (cm bE g <c (38)

fiz) =0 ez (39)

The CDF is given by the following:

Fiz)=0 z<a (40)
4 7 fia - it

F(z)=(z-a) T a<z<b (41)
- gl

F(z)=1-(c-2) Cali=b b=<z<e¢ (42)

Fla)y=1 c<z (43)
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where a is the minimum, b is the likeliest, and ¢ is the maximum possible value of z.

An example of triangular distribution is shown in Figure 2.7.
Triangular Distribution - PDF Triangular Distribution - CDF
f(z) 4 F(zh

1

£
/ \\

Figure 2.7 Triangular PDF and CDF

Uniform Distribution

The uniform distribution is a two-parameter distribution and is the simplest of all
distributions. It is useful when little is known about the distribution of the subject

parameter other than a maximum and a minimum. The PDF of this distribution is

given by:
fz)=0 z<a (44)
f(x) = 1/(b-a) a<z<b (45)
f(z) = 0 b<z (46)
The CDF is:

F(z) =0 z <a (47)
F(z)=(z-a)/(b-a) a<z<b (48)
F@z)=1 b<z (49)

where a is the minimum possible value and b is the maximum possible value. Figure

2.8 shows the shape of the PDF and CDF for the uniform distribution.
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Uniform Distribution - PDF Uniform Distribution - CDF
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Figure 2.8 Uniform PDF and CDF

Central Limit Theorem

A very important and useful concept in statistics is the central limit theorem. There

are three things that are important in understanding about any distribution:
1) The location of its center

2) Its width

3) Its distribution

The central limit theorem helps to approximate all three.

The central limit theorem states that as sample size increases, the sampling
distribution of sample means approaches that of a normal distribution with a mean the
same as the population and a standard deviation equal to the standard deviation of the

population divided by the square root of the sample size.

The central limit theorem is simply that the sum of a great number of independent

equally distributed standardized random variables tends to be normally distributed.

The corollary of the central limit theorem states that the product of a great number
of independent, identically distributed random variables tends to be lognormally

distributed.

The model used for hydrocarbon reserves estimation is the result of multiplying the
distributions of area, thickness, porosity, water saturation, and recovery factor
together. Thus, this model would be expected to be approximately lognormal

according to the corollary.
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2.2.3 Creating probability distributions of the parameters, PDFs and CDFs

In Monte Carlo simulation, the program uses PDFs for calculations. The first duty of

the estimator is to create CDFs for the data.

To create the CDF of a set of data, the following steps are taken. First, the data are
sorted from smallest to largest, Zi=1 to Zi=N. Then, the corresponding value of

F(z); is calculated by the following formula:
F(z)i=(Ni-0.5)/N (50)

where Ni is the rank of the data point and N is the total number of data
measurements. A plot of F(z) versus Zi yields the empirical CDF plot. A CDF may be

created manually or by computer programs.

To calculate the empirical PDF, representative ranges of values for the data, or bins -
Az, are created. The sizes of the bins are equal and are in general determined by the

formula:
Az=5(ZN - Z1)/N (51)

The data are then examined to determine the number of occurrences of values that fall
into each bin. These occurrences are tabulated and then the value of f(z) is calculated
by dividing the number of occurrences in each bin by the total number of data points.
A plot of f(z) versus Zi yields the empirical PDF plot. A PDF can also be created

either manually or by computer programs.

After the CDFs and PDFs are created, the best fit types for these functions to input
into the simulator need to be chosen. There are some ways to evaluate the empirical
CDFs and PDFs to find out what types of distribution they are. The first is a visual
inspection and comparison to the idealized distribution CDF and PDF shapes. The
second, and more reliable, is to plot the data on probability paper. For a lognormal

distribution, the logarithm of the data forms a straight line on probability paper.





