TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	•••
ABSTRACT (ENGLISH)	iii
ABSTRACT (THAI)	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vi
	ix
LIST OF FIGURES	xi .
LIST OF SCHEMES	xviii
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER I: INTRODUCTION	
- The plants of genera Chromolaena and Eupatorium in Thailand	Vi
- The plant description and the distribution of C. odorata	2
- Ethnobotanical uses and bioactivities of C. odorata	4
CHAPTER II : HISTORICAL	8
- Taxa and Classification of Chromalaena odorata	8
- Chemistry of the Compounds from Chromolaena and Eupatorium spp.	8
1. Chromolaena odorata (L.) R. M. King & H. Rob.	8
1.1 Flavonoids	9
1.2 Pyrrolizidine alkaloids	18
1.3 Triterpenoids	19
1.4 Sterols by Chiang Mai Un	
1.5 Miscellaneous compounds	20/ 은
1.6 The volatile components	21
2. Other Chromolaena and Eupatorium spp.	23

CHAPTER III : EXPERIMENTAL	36
- Source and Authentication of the Plant Materials	36
- General Techniques	36
- Bioactivity Determination	40
1. Antimicrobial activity	40
2. Brine shrimp lethality activity	42
3. Anti-inflammatory activity	43
4. Cytotoxic activity	45
5. Antimalarial activity	45
6. Anti-herpes simplex virus type 1 activity	46
7. Antituberculosis activity	46
- Extraction and Isolation	48
- Isolation of Chemical Constituents from Chromolaena odorata	50
1. Isolation of Compound EU9M021K	51
2. Isolation of Compound EU9M028K	53
3. Isolation of Compound EU9M029K	53
4. Isolation of Compound EU9M044K	53
5. Isolation of Compound EU9M055	55
6. Isolation of Compound EU9M058	55
7. Isolation of Compound EU9M063	55
8. Isolation of Compound EU9M067	56
9. Isolation of Compound EU9M068	56
10. Isolation of Compound EU9M089	57
11. Isolation of Compound EU9M101	57
12. Isolation of Compound EU9M112K	niversity
13. Isolation of Compound EU9M135	61/ 👝
14. Isolation of Compound EU9M138K	62
15. Isolation of Compound EU9M147K	62
- Isolation of the Essential Oil from Chromolaena odorata	62

CHAPTER IV: RESULTS AND DISCUSSION	63
- The Antibacterial Activity Result	63
- Chemical Components Analysis of the Essential Oil	64
- Other Biological Activities of the Crude Extracts	69
- Spectral Data of the Isolated Compounds	74
- Structure Elucidation of the Isolated Compounds	80
1. Compound EU9M021K	80
2. Compound EU9M028K	82
3. Compound EU9M029K	85
4. Compound EU9M044K	87
5. Compound EU9M055	91
6. Compound EU9M058	94
7. Compound EU9M067	96
-8. Compound EU9M068	98
9. Compound EU9M089	100
10. Compound EU9M101	103
11. Compound EU9M104K (EU9M063)	105
12. Compound EU9M112K	108
13. Compound EU9M135	110
14. Compound EU9M138K	112
15. Compound EU9M147K	114
CHADTED V. CONCLUCION	
CHAPTER V : CONCLUSION REFERENCES	120
	125
Copyright by Chiang Mai	
All rights res	e r 274 e d

LIST OF TABLES

Tab	le	Page
2.1	The flavonoids isolated from C. odorata	9
2.2	The chemical compositions of the essential oil of <i>C. odorata</i> .	21
2.3	Chemical constituents of the plants genera Chromolaena and Eupatorium	24
3.1	The anti-HSV-1 activity results of fractions EU9M001-EU9M009	51
4.1	The amount and percentage yield of extracts from C. odorata	63
4.2	The antibacterial activity results of C. odorata fractions	64
4.3	The volatile components in aerial parts of C. odorata	5 65
4.4	The comparison of major components of essential oil of C. odorata	67
4.5	The anti-herpes simplex virus type 1 of EU9 and EU10 extracts	70
4.6	The cytotoxicity against human cancer cell lines of EU9 and EU10 extracts	71
4.7	The antimalarial activity of EU9 and EU10 extracts against	72
4.0	P. falciparum	
4.8	The antituberculosis activity of EU9 and EU10 extracts	73
4.9	The anti-inflammatory activity of EU9 and EU10 extracts	73
4.10	Carbon and proton chemical shift assignments and proton-proton correlations of compound EU9M021	81
4.11	Carbon and proton chemical shift assignments and proton-proton	84
	correlations of compound EU9M028	
4.12	Carbon and proton chemical shift assignments and proton-proton	86
	correlations of compound EU9M029	
4.13	Carbon and proton chemical shift assignments and proton-proton	89
	correlations of compound EU9M044	
4.14	The ¹ H and ¹³ C-NMR data of 5,6,7- and 5,7,8-substituted flavanones	90

4.15	Carbon and proton chemical shift assignments and proton-proton	92
	correlations of compound EU9M055	
4.16	The proton and carbon NMR data comparison of compound EU9M055,	93
	3,5-dihydroxy-7-methoxyflavanone[1] and 3,5-dihydroxy-7,4'-	
	dimethoxyflavanone[2]	
4.17	Proton chemical shift assignments and proton-proton correlations of	95
	compound EU9M058 comparing to 5-hydroxy-7,4'-dimethoxyflavone	
4.18	Carbon and proton chemical shift assignments and proton-proton	97
	correlations of compound EU9M067	
4.19	Proton chemical shift assignments and proton-proton correlations of	99
*	compound EU9M068 comparing to 5-hydroxy-7,3',4'-	
	trimethoxyflavanone[1] and 5,2'-dihydroxy-7,5'-dimethoxyflavanone[4]	
4.20	Carbon and proton chemical shift assignments and proton-proton	102
	correlations of compound EU9M089	
4.21	Carbon and proton chemical shift assignments and proton-proton	104
	correlations of compound EU9M101	
4.22	Carbon and proton chemical shift assignments and proton-proton	107
	correlations of compound EU9M104	
4.23	Carbon and proton chemical shift assignments and proton-proton	109
	correlations of compound EU9M112	
4.24	Carbon and proton chemical shift assignments and proton-proton	111
	correlations of compound EU9M135	
4.25	Carbon and proton chemical shift assignments and proton-proton	113
	correlations of compound EU9M138	
4.26	Carbon and proton chemical shift assignments and proton-proton	115
	correlations of compound EU9M147	Ved

LIST OF FIGURES

Fig	ure	Page
1	The plant Chromolaena odorata (L.) R. M. King & H. Rob.	2
2	The inflorescence of Chromolaena odorata (L.) R. M. King & H. Rob.	3
3	The distribution of Siam weed (indicated by the darker area)	4
4	The gas chromatogram of the essential oil of C. odorata	64
5	The structures of some identified components of the essential oil	68
6	The flavanone skeleton and its numbering system	80
. 7	The chemical structure of compound EU9M021	82
8	The chemical structure of compound EU9M028	83
9	The chemical structure of compound EU9M029	86
10	The long-range correlations in the HMBC spectrum	88
11	The correlations in the NOEDS of EU9M044	88
12	The chemical structure of compound EU9M055	92
13	The tentative structure of compound EU9M058	94
14	The chemical structure of compound EU9M067	97
15	The tentative structure of compound EU9M068	100
16	The chemical structure of compound EU9M089	101
17	The correlations in the NOEDS of EU9M101	104
18	The correlations in the NOEDS of EU9M104	106
19	The chemical structure of compound EU9M112	109
20	The correlations in the NOEDS of EU9M135	111
21	The chemical structure of compound EU9M138	113
22	The correlations in the NOEDS of EU9M147	115
23	The proposed biosynthesis and interrelationships between flavonoid	119
	monomer types	
24	TLC chromatogram of the isolated compounds from fraction EU9M002	140
25	TLC chromatogram of the isolated compounds from fraction EU9M003	141

26	The IR spectrum of compound EU9M021	142
-27	The 300 MHz ¹ H-NMR spectrum of compound EU9M021 (in CDCl ₃)	143
28	The 75 MHz ¹³ C-NMR spectrum of compound EU9M021 (in CDCl ₃)	144
29	The 75 MHz DEPT spectrum of compound EU9M021 (in CDCl ₃)	145
30	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M021 (in CDCl ₃)	146
31	The 300 MHz HSQC spectrum of compound EU9M021 (in CDCl ₃)	147
32	The 300 MHz HMBC spectrum of compound EU9M021 (in CDCl ₃)	148
33	The 300 MHz HMBC spectrum of compound EU9M021 (in CDCl ₃)	149
	(expanded)	
34	The 300 MHz NOE difference spectrum of compound EU9M021	150
	(in CDCl ₃) irradiation at 6.95 ppm (H-3')	
35	The IR spectrum of compound EU9M028	151
36	The 300 MHz ¹ H-NMR spectrum of compound EU9M028 (in CDCl ₃)	152
37	The 75 MHz ¹³ C-NMR spectrum of compound EU9M028 (in CDCl ₃)	153
38	The 75 MHz DEPT spectrum of compound EU9M028 (in CDCl ₃)	154
39	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M028 (in CDCl ₃)	155
40	The 300 MHz HSQC spectrum of compound EU9M028 (in CDCl ₃)	156
41	The 300 MHz HMBC spectrum of compound EU9M028 (in CDCl ₃)	157
42	The 300 MHz HMBC spectrum of compound EU9M028 (in CDCl ₃)	158
	(expanded)	
43	The 300 MHz NOE difference spectrum of compound EU9M028	159
	(in CDCl ₃) irradiation at 6.07 ppm (H-6)	
44	300 MHz NOE difference spectrum of compound EU9M028 (in CDCl ₃)	160
	irradiation at 6.96 ppm (H-3')	
45	The IR spectrum of compound EU9M029	161 SITY -
46	The 300 MHz ¹ H-NMR spectrum of compound EU9M029 (in CDCl ₃)	162
47	The 75 MHz ¹³ C-NMR spectrum of compound EU9M029 (in CDCl ₃)	163
48	The 75 MHz DEPT spectrum of compound EU9M029 (in CDCl ₃)	164
49	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M029 (in CDCl ₃)	165
50	The 300 MHz HSQC spectrum of compound EU9M029 (in CDCl ₃)	166

51	The 300 MHz HMBC spectrum of compound EU9M029 (in CDCl ₃)	16
52	The 300 MHz HMBC spectrum of compound EU9M029 (in CDCl ₃)	16
	(expanded)	
53	The 300 MHz NOE difference spectrum of compound EU9M029	169
	(in CDCl ₃) irradiation at 6.29 ppm (H-3')	
54	The 300 MHz NOE difference spectrum of compound EU9M029	170
	(in CDCl ₃) irradiation at 6.94 ppm (H-3)	
55	The IR spectrum of compound EU9M044	171
56	The 300 MHz ¹ H-NMR spectrum of compound EU9M044 (in CDCl ₃)	172
57	The 75 MHz ¹³ C-NMR spectrum of compound EU9M044 (in CDCl ₃)	173
58	The 75 MHz DEPT spectrum of compound EU9M044 (in CDCl ₃)	174
59	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M044 (in CDCl ₃)	175
60	The 300 MHz HSQC spectrum of compound EU9M044 (in CDCl ₃)	176
61	The 300 MHz HMBC spectrum of compound EU9M044 (in CDCl ₃)	177
62	The 300 MHz HMBC spectrum of compound EU9M044 (in CDCl ₃)	178
	(expanded)	
63	The 300 MHz NOE difference spectrum of compound EU9M044	179
	(in CDCl ₃) irradiation at 6.95 ppm (H-3')	
64	The IR spectrum of compound EU9M055	180
65	The 300 MHz ¹ H-NMR spectrum of compound EU9M055 (in CDCl ₃)	181
66	The 75 MHz ¹³ C-NMR spectrum of compound EU9M055 (in CDCl ₃)	182
67	The 75 MHz DEPT spectrum of compound EU9M055 (in CDCl ₃)	183
68	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M055 (in CDCl ₃)	184
69	The 300 MHz HSQC spectrum of compound EU9M055 (in CDCl ₃)	185
70	The 300 MHz HMBC spectrum of compound EU9M055 (in CDCl ₃)	186
71	The 300 MHz HMBC spectrum of compound EU9M055 (in CDCl ₃)	187
	(expanded)	
72	The 300 MHz NOE difference spectrum of compound EU9M055	188
	(in CDCl ₃) irradiation at 6.06 ppm (H-8)	

73	The 300 MHz NOE difference spectrum of compound EU9M055	189
	(in CDCl ₃) irradiation at 6.99 ppm (H-3')	
74	The 300 MHz ¹ H-NMR spectrum of compound EU9M058 (in CDCl ₃)	190
75	The IR spectrum of compound EU9M067	191
76	The 300 MHz ¹ H-NMR spectrum of compound EU9M067 (in CDCl ₃)	192
77	The 75 MHz ¹³ C-NMR spectrum of compound EU9M067 (in CDCl ₃)	193
78	The 75 MHz DEPT spectrum of compound EU9M067 (in CDCl ₃)	194
79	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M067 (in CDCl ₃)	195
80	The 300 MHz HSQC spectrum of compound EU9M067 (in CDCl ₃)	196
81	The 300 MHz HMBC spectrum of compound EU9M067 (in CDCl ₃)	197
82	The 300 MHz HMBC spectrum of compound EU9M067 (in CDCl ₃)	198
	(expanded)	
83	The 300 MHz NOE difference spectrum of compound EU9M067	199
	(in CDCl ₃) irradiation at 6.96 ppm (H-3')	
84	The 300 MHz NOE difference spectrum of compound EU9M067	200
	(in CDCl ₃) irradiation at 6.10 ppm (H-8)	
85	The 300 MHz ¹ H-NMR spectrum of compound EU9M068 (in CDCl ₃)	201
86	The IR spectrum of compound EU9M089	202
87	The 300 MHz ¹ H-NMR spectrum of compound EU9M089 (in CDCl ₃)	203
88	The 75 MHz ¹³ C-NMR spectrum of compound EU9M089 (in CDCl ₃)	204
89	The 75 MHz DEPT spectrum of compound EU9M089 (in CDCl ₃)	205
90	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M089 (in CDCl ₃)	206
91	The 300 MHz HSQC spectrum of compound EU9M089 (in CDCl ₃)	207
92	The 300 MHz HMBC spectrum of compound EU9M089 (in CDCl ₃)	208
93	The 300 MHz HMBC spectrum of compound EU9M089 (in CDCl ₃)	209
	(expanded)	
94	The 300 MHz NOE difference spectrum of compound EU9M089	210
	(in CDCl ₃) irradiation at 6.07 ppm (H-6)	
95	The IR spectrum of compound EU9M101	211
96	The 300 MHz ¹ H-NMR spectrum of compound EU9M101 (in DMSO-d ₆)	212

97	The 75 MHz ¹³ C-NMR spectrum of compound EU9M101 (in DMSO-d ₆)	213
98	•	214
99		215
	(in DMSO-d ₆)	
100	The 300 MHz HSQC spectrum of compound EU9M101 (in DMSO-d ₆)	216
101	The 300 MHz HMBC spectrum of compound EU9M101 (in DMSO-d ₆)	217
102	The 300 MHz HMBC spectrum of compound EU9M101 (in DMSO-d ₆)	218
	(expanded)	
103	The 300 MHz NOE difference spectrum of compound EU9M101	219
	(in DMSO-d ₆) irradiation at 6.35 ppm (H-6)	
104	The 300 MHz NOE difference spectrum of compound EU9M101	220
	(in DMSO-d ₆) irradiation at 6.72 ppm (H-8)	
105	The 300 MHz NOE difference spectrum of compound EU9M101	221
	(in DMSO-d ₆) irradiation at 7.08 ppm (H-5')	
106	The 300 MHz NOE difference spectrum of compound EU9M101	222
	(in DMSO-d ₆) irradiation at 7.68-7.71 ppm (H-2' and H-6')	
107	The 300 MHz NOE difference spectrum of compound EU9M101	223
	(in DMSO-d ₆) irradiation at 3.84-3.86 ppm (7-OMe and 4'-OMe)	
	The IR spectrum of compound EU9M104	224
	The 300 MHz ¹ H-NMR spectrum of compound EU9M104 (in CDCl ₃)	225
110	The 75 MHz ¹³ C-NMR spectrum of compound EU9M104 (in CDCl ₃)	226
111	The 75 MHz DEPT spectrum of compound EU9M104 (in CDCl ₃)	227
112	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M104 (in CDCl ₃)	228
	The 300 MHz HSQC spectrum of compound EU9M104 (in CDCl ₃)	229
114	The 300 MHz HMBC spectrum of compound EU9M104 (in CDCl ₃)	230
115	The 300 MHz HMBC spectrum of compound EU9M104 (in CDCl ₃)	231
	(expanded)	
116	The 300 MHz NOE difference spectrum of compound EU9M104	232
	(in CDCl ₃) irradiation at 6.04-6.07 ppm (H-6 and H-8)	

11	7 The 300 MHz NOE difference spectrum of compound EU9M104	233
	(in CDCl ₃) irradiation at 6.88 ppm (H-5')	•
113	The crystal structure of compound EU9M104	234
119	The IR spectrum of compound EU9M112	235
120	The 300 MHz ¹ H-NMR spectrum of compound EU9M112 (in DMSO-d ₆)	236
12:	The 75 MHz ¹³ C-NMR spectrum of compound EU9M112 (in DMSO-d ₆)	237
	2 The 75 MHz DEPT spectrum of compound EU9M112 (in DMSO-d ₆)	238
123	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M112	239
	(in DMSO-d ₆)	
124	The 300 MHz HSQC spectrum of compound EU9M112 (in DMSO-d ₆)	240
125	The 300 MHz HMBC spectrum of compound EU9M112 (in DMSO-d ₆)	241
126	The 300 MHz HMBC spectrum of compound EU9M112 (in DMSO-d ₆)	242
	(expanded)	200 I
127	The 300 MHz NOE difference spectrum of compound EU9M112	243
	(in DMSO-d ₆) irradiation at 7.10 ppm (H-3')	
128	The IR spectrum of compound EU9M135	244
129	The 300 MHz ¹ H-NMR spectrum of compound EU9M135 (in acetone-d ₆)	245
130	The 75 MHz ¹³ C-NMR spectrum of compound EU9M135 (in acetone-d ₆)	246
131	The 75 MHz DEPT spectrum of compound EU9M135 (in acetone-d ₆)	247
132	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M135	248
	(in acetone-d ₆)	
133	The 300 MHz HSQC spectrum of compound EU9M135 (in acetone-d ₆)	249
134	The 300 MHz HMBC spectrum of compound EU9M135 (in acetone-d ₆)	250
135	The 300 MHz HMBC spectrum of compound EU9M135 (in acetone-d ₆)	251
	(expanded)	versity -
136	The 300 MHz NOE difference spectrum of compound EU9M135	252
	(in acetone-d ₆) irradiation at 6.08 ppm (H-6)	
137	The 300 MHz NOE difference spectrum of compound EU9M135	253
	(in acetone-d ₆) irradiation at 7.42 ppm (H-2' and H-6')	
138	The IR spectrum of compound EU9M138	254

139	The 300 MHz ¹ H-NMR spectrum of compound EU9M138 (in acetone-d ₆)	255	
	The 75 MHz ¹³ C-NMR spectrum of compound EU9M138 (in acetone-d ₆)	256	
	The 75 MHz DEPT spectrum of compound EU9M138 (in acetone-d ₆)	257	
142	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M138	258	
	(in acetone-d ₆)		
143	The 300 MHz HSQC spectrum of compound EU9M138 (in acetone-d ₆)	259	
144	The 300 MHz HMBC spectrum of compound EU9M138 (in acetone-d ₆)	260	
145	The 300 MHz HMBC spectrum of compound EU9M138 (in acetone-d ₆)	261	
	(expanded)		
146	The 300 MHz NOE difference spectrum of compound EU9M138	262	
	(in acetone-d ₆) irradiation at 6.97-7.05 ppm (ring B protons)		
147	The 300 MHz NOE difference spectrum of compound EU9M138	263	
	(in acetone-d ₆) irradiation at 3.86 ppm (5'-OMe)		
148	The IR spectrum of compound EU9M147	264	
149	The 300 MHz ¹ H-NMR spectrum of compound EU9M147 (in acetone-d ₆)	265	
150	The 75 MHz ¹³ C-NMR spectrum of compound EU9M147 (in acetone-d ₆)	266	
	The 75 MHz DEPT spectrum of compound EU9M147 (in acetone-d ₆)	267	
152	The 300 MHz ¹ H- ¹ H COSY spectrum of compound EU9M147	268	
	(in acetone-d ₆)		
153	The 300 MHz HSQC spectrum of compound EU9M147 (in acetone-d ₆)	269	
154	The 300 MHz HMBC spectrum of compound EU9M147 (in acetone-d ₆)	270	
155	The 300 MHz HMBC spectrum of compound EU9M147 (in acetone-d ₆)	271	
	(expanded)		
156	The 300 MHz NOE difference spectrum of compound EU9M147	272	
	(in acetone-d ₆) irradiation at 6.99 ppm (H-3' and H-5')		
157	The 300 MHz NOE difference spectrum of compound EU9M147	273	
	(in acetone-d ₆) irradiation at 5.12 ppm (H-2)		

LIST OF SCHEMES

eme	Page
Extraction scheme of the aerial parts of C. odorata	49
Extraction scheme of the subterranean parts of C. odorata	49
Isolation scheme of compound EU9M021K from the 90%methanol extract.	52
Isolation scheme of compound EU9M028K from the 90%methanol extract	53
Isolation scheme of compound EU9M044K from the 90%methanol extract	54
Isolation scheme of compound EU9M055 from the 90%methanol extract	55
Isolation scheme of compounds EU9M058, 067 and 068 from the 90%methanol extract	56
Isolation scheme of compounds EU9M101 and EU9M112K from the 90%methanol extract	60
Isolation scheme of compounds EU9M135 and EU9M138 from the 90%methanol extract	61
The isolation scheme and anti-herpes simplex virus type 1 activity of some fractions of EU9M	71
The isolation scheme and antimalarial activity of some fractions of EU10C	
	Extraction scheme of the subterranean parts of <i>C. odorata</i> Isolation scheme of compound EU9M021K from the 90%methanol extract. Isolation scheme of compound EU9M028K from the 90%methanol extract Isolation scheme of compound EU9M044K from the 90%methanol extract Isolation scheme of compound EU9M055 from the 90%methanol extract Isolation scheme of compounds EU9M058, 067 and 068 from the 90%methanol extract Isolation scheme of compounds EU9M101 and EU9M112K from the 90%methanol extract Isolation scheme of compounds EU9M135 and EU9M138 from the 90%methanol extract The isolation scheme and anti-herpes simplex virus type 1 activity of some fractions of EU9M The isolation scheme and antimalarial activity of some fractions of

ABBREVIATIONS AND SYMBOLS

 $[\alpha]_D$ = Specific rotation (using a sodium vapor lamp)

AA = Arachidonic acid

br s = Broad singlet

°C = Degree Celsius

¹³C-NMR = Carbon-13 nuclear magnetic resonance

c = Concentration

C = Carbon

CC = Column chromatography

CDCl₃ = Deuterated chloroform

 CH_2Cl_2 = Dichloromethane

 $CHCl_3 = Chloroform$

CIMS = Chemical ionization mass spectrum

cm = Centimeter

 CO_2 = Carbon dioxide

COSY = Correlated spectroscopy

COX = Cyclooxygenase

 δ = Chemical shift

1-D = One dimensional

2-D = Two dimensional

d = Doublet

DCM = Dichloromethane

dd = Doublet of doublets

DEPT = Distortionless enhancement by polarization transfer

dm = Decimeter

DMEM = Dubelcco's Modified Eagle Meduim

DMSO = Dimethylsulfoxide

 $ED_{50} = 50\%$ Effective dose

EIMS = Electron impact mass spectrum

EtOAc = Ethyl acetate

FCS = Fetal calf serum

FID = Flame ionization detector

g = Gram

GC = Gas chromatography

¹H-NMR = Proton nuclear magnetic resonance

³H-PGE₂ = Tritrium-labeled prostaglandin E₂

HEPES = N-2-hydroxy ethylpiperazine-N'-2-ethanesulfonic acid

HMBC = ¹H-detected heteronuclear multiple bond coherence

hreims = High resolution chemical ionization mass spectroscopy

hreims = High resolution electron impact mass spectroscopy

hrs = Hours

HSQC = ¹H-detected high sensitive quantum coherence

Hz = Hertz

 IC_{50} = 50% Inhibition concentration

i.d. = Internal diameter

IR = Infrared

J = Coupling constant

kg = Kilogram

l = Liter

 $LD_{50} = 50\%$ Lethality dose

 $\mu g = Microgram$

 μ m = Micrometer

m = Metre

 M^{+} = Molecular ion

MeOH = Methanol

mg = Milligram

MH⁺ = Protonated molecular ion

MHz = Megahertz

MIC = Minimum inhibition concentration

min = Minutes

ml = Milliliter

mm = Millimeter

mM = Millimolar

mp = Melting point

MS = Mass spectrum

 v_{max} = Wavenumber at maximum absorption

NA = Nutrition agar

NaHCO₃ = Sodium bicarbonate

NMR = Nuclear magnetic resonance

No. = Number

NOE = Nuclear Overhauser effect

NOEDS = Nuclear Overhauser effect difference spectrum

ppm = Part per million

RI = Retention index

RIA = Radioimmunoassay

s = Singlet

SDA = Sabouraud dextrose agar

sp. = Species spp. = Species

TLC = Thin layer chromatography

TSA = Trypticase soy agar