TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	X
LIST OF ILLUSTRATIONS	XV
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER 1 : INTRODUCTION	1
1.1 Statement and significance of the problem	1
1.2 Previous analytical methods for organophosphorus pesticide	3
1.3 Previous analytical methods for organophosphorus pesticide	5
using solid phase microextraction	
1.4 Purposes of the study	13
CHAPTER 2 : REVIEW OF LITERATURES	14
2.1 Solid phase microextraction	14
2.2 Theory of SPME	17
2.3 Extraction modes C C C C C C C C C C	24
2.4 Optimization of solid phase microextraction	26
2.5 Advantages and disadvantages of solid phase	30
microextraction	
2.6 Precision of the method	32

	Page
2.7 Applications of solid phase microextraction	33
CHAPTER 3 : MATERIALS AND METHODS	
3.1 The suitable GC-PFPD conditions for analysis of	36
organophosphorus insecticide	
3.2 Coating SPME fibers with octadecyltrichlorosilane	41
3.3 The suitable conditions of SPME/GC-PFPD for analysis of	43
organophosphorus insecticides	
3.4 Validation of the analytical method using SPME/GC-PFPD.	48
CHAPTER 4 : RESULTS	
4.1 The suitable GC-PFPD conditions for analysis of	52
organophosphorus insecticide	
4.2 Preparation of SPME fibers of octadecylsiloxane	53
4.3 The suitable conditions of SPME/GC–PFPD for analysis of	54
organophosphorus insecticide	
4.4 Validation of the analytical method using SPME /GC-PFPD.	82
CHAPTER 5 : CONCLUSION AND DISCUSSION	100
REFERENCES	103
APPENDIX Shts reserv	e 110
CURRICULUM VITAE	125

LIST OF TABLES

Page

Table

1.1 Various analytical method for the determination of	7
organophosphorus pesticide from different samples	
1.2 Limits of detection, equilibration times and precision of some analyte	9
2.1 Commercially available SPME fibers for GC and GC/MS.	28
2.2 SPME SPME provides advantages over other sample preparation	31
techniques	
2.3 SPME method for the determination of pesticide and organic compound	33
3.1 Composition of the standard solutions	39
3.2 Parameter from experiments on the GC optimization of GC condition	41
using DB-1 column	
3.3 Recommendations for conditioning fused silica fiber of different kinds	43
4.1 Conditions of PFPD employed	52
4.2 Comparison of retention times (min) of OPP standard solution obtained	54
from using various type coated fiber for analysis of OPPs insecticide.	
4.3 Comparison of extraction capability of different coated fibers on the	62
mean, standard deviation (S.D.) and the relative standard deviation,	
using aqueous solution of the OPP mixed standard of 1.00 mg/l of	

Table

dicrotophos, chlorpyriphos, methamidophos, mevinphos, methylparathion,	
profenofos and prothiophos for analysis.	
4.4 Peak areas of OPP obtained by ODS/GC-PFPD .	63
4.5 Comparison of the precision obtained by three techniques of	64
extraction of the OPP aqueous solution, using ODS/GC-PFPD	
4.6 Determination of absorption-time profile for OPP absorption with an	65
ODS fiber by GC-PFPD analysis.	
4.7 Determination of absorption-time profile for OPP spiked in vegetable	66
of using ODS SPME /GC-PFPD analytical method.	
4.8 Determination of absorption time of OPP mixture solution	68
with direct immersion, using PDMS SPME/GC-PFPD analytical method	d.
4.9 Comparison of absorption periods on peak areas of OPP spiked	69
in vegetable (onion) extract using direct immersion technique and	
PDMS SPME/GC- PFPD analytical method.	
4.10 Comparison of temperature (injection port temperature) on OPPs	70
desorption from the ODS fiber using SPME/GC-PFPD analytical method	
4.11 Comparison of time profile for desorption of OPP by using ODS/GC-	- 72
PFPD analytical method	
4.12 Comparison of time profile for desorption of the OPPs in vegetable	73

ix

(onion) by using ODS SPME/GC-PFPD analytical method.

Table

4.13 Comparison of time profile for desorption of OPPs in vegetable	74
(onion) by using PDMS SPME/GC-PFPD analytical method.	
4.14 Comparison of capacity profile of ODS fiber on absorption of the OPP in	75
onion extracts at different concentrations, using ODS SPME/GC-PFPD	
analytical method	
4.15 Optimized solid-phase microextraction conditions for analysis of	77
some OPPs in vegetable samples, using ODS SPME/GC PFPD	
analytical method.	
4.16 Summary of correlation coefficient (R ²) between concentration	88
of OPP and peak area, using ODS SPME/GC-PFPD analytical method.	
4.17 Detection limits of analysis of the OPPs, using ODS and SPME/GC	89
-PFPD analytical method.	
4.18 Comparison of precision on analysis of the OPPs, using ODS and PDMS	90
SPME/GC-PFPD analytical method.	
4.19 Comparison of precision of reproducibility on analysis of the OPPs	90
(0.1 mg/l), using ODS and PDMS SPME/GC- PFPD analytical method	
4.20 Summarization of precision, linear range, detection limits of analysis	91

	of the OPP, using PDMS SPME/GC-PFPD analytical method.	
4.21	Summarization of precision, linear range, detection limits of analysis	92
	of the OPP, using ODS SPME/GC-PFPD analytical method.	
4.22	Percent recovery of the analysis of chlorpyriphos from spiked in onion	93
	sample, using ODS SPME/GC- PFPD analytical method.	
4.23	Percent recovery of the analysis of profenophos from spiked in onion	94
	sample, using ODS SPME/GC- PFPD analytical method	
4.24	Percent recovery of the analysis of prothiofos from spiked in onion	94
	sample, using ODS SPME/GC- PFPD analytical method.	
4.25	Percent recovery of the analysis of methyl parathion from spiked in onion	94
	SPME/GC- PFPD analytical method.	
4.26	Average percent recovery of the analysis of profenofos and prothiophos	95
	from spiked in vegetable sample (0.01mg/l) using ODS SPME/GC-	
	PFPD analytical method	
4.27	Average percent recovery of the analysis of the OPPs from spiked	96
	vegetables (0.1mg/l), using SPME/GC- PFPD analytical method	
4.28	Analysis of organophosphorus pesticide residues in vegetables, using	97
	SPME/GC- PFPD analytical method.	

Table	Page
4.29 Analysis of organophosphorus pesticide spiked in tomato sample using	98
GC-FPD 4.30 Comparison of two method for measuring profenofos	99

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figure	Page
2.1 Diagram of extraction and analysis using SPME and GC	16
2.2 Structure of a SPME holder of Varian AutoSampler	17
2.3 Graphic representation of the SPME / sample system	23
configuration, with dimensions and parameters labeled	
2.4 SPME operation mode	25
2.5 Polarity SPME operation mode	27
4.1 Comparison of SPME fiber before and after coating with	53
three different compound	
4.2 PFPD chromatogram of mixed OPPs standard solution was obtained	56
by direct PDMS-SPME sampling under optimum conditions of	
SPME/GC-PFPD	
4.3 PFPD chromatogram of mixed OPPs standard solution was obtained	57
by direct ODS-SPME sampling under optimum conditions of SPME/GC–PFPD	
4.4 PFPD chromatogram of mixed OPPs standard solution was obtained	58

by direct PAC-SPME sampling under optimum conditions of

SPME/GC-PFPD.

- 4.5 PFPD chromatogram of mixed OPPs standard solution was obtained 59by direct CW/DVB-SPME sampling under optimum conditions ofSPME/GC-PFPD
- 4.6 PFPD chromatogram of mixed OPPs standard solution was obtained 60by direct CAR/PDMS-SPME sampling under optimum conditions ofSPME/GC-PFPD
- 4.7 PFPD chromatogram of mixed OPPs standard solution was obtained 61by direct PDMS/DVB-SPME sampling under optimum conditions ofSPME/GC-PFPD
- 4.8 Peak areas of OPP obtained by three techniques using SPME/GC- PFPD 64
 4.9 Absorption time profile of OPP into an ODS fiber, using GC-PFPD 66
 analysis.
- 4.10 Absorption time profile of OPPs in vegetable using
 - ODS SPME/GC-PFPD analytical method.
- 4.11 Absorption time profile of OPP mixture solution, using PDMS/ 68 GC-PFPD analytical method.
- 4.12 Absorption time profile for OPPs in vegetable (onion) extract using69PDMS SPME/GC PFPD analytical method.

Figure

4.13	Desorption temperature (injection port temperature) of the OPP from	71
	ODS fiber, using SPME/GC-PFPD analytical method	
4.14	Desorption time profile for OPP using ODS/GC-PFPD analytical	72
	method	
4.15	Desorption time profile for OPPs in vegetable (onion) by using	73
	ODS SPME/GC-PFPD analytical method	
4.16	Desorption time profile for OPPs in vegetable(onion) by using	74
	PDMS SPME/GC-PFPD analytical method.	
4.17	Capacity of ODS fiber for absorption of OPPs in onion extract, using	76
	ODS SPME/GC-PFPD analytical method.	
4.18	Chromatograms of 5 organophosphorus insecticides and the retention	79
	time required for each insecticide, using the ODS SPME/GC-PFPD	
	analytical method	
4.19	PFPD chromatogram water spiked with mixed OPP standard	80
	solution obtained from ODS SPME /GC – PFPD analytical method	
4.20	PFPD Chromatogram of onion extract spiked with mixed OPPs	81
	standard solution obtained from ODS-SPME/GC-PFPD	
4.2	1 Linearity of peak area plotted with concentrations of mevinphos at 0-0.4	82

ppm, using PDMS SPME/GC-PFPD analytical method.

- 4.22 Linearity of peak area plotted with concentrations of methyl parathion at0-0.4 ppm, using PDMS SPME/GC-PFPD analytical method.
- 4.23 Linearity of peak area plotted with concentrations of profenofos at 0-0.483 ppm, using PDMS SPME/GC-PFPD analytical method.
- 4.24 Linearity of peak area plotted with concentrations of prothiophos at 0-840.4 ppm, using PDMS SPME/GC-PFPD analytical method.
- 4.25 Linearity of peak area plotted with concentrations of chlorpyriphos at 0-840.4 ppm, using PDMS SPME/GC-PFPD analytical method.
- 4.26 Linearity of peak area plotted with concentrations of profenofos at 10-5085 ppb, using ODS SPME/GC-PFPD analytical method.
- 4.27 Linearity plot of peak area plotted with concentrations of chlorpyriphos86 at 0-1000 ppb, using ODS/GC-PFPD analytical method.
- 4.28 Linearity of peak area plotted with concentrations of methyl parathion at 86
 - 0-0.4 ppm , using ODS SPME/GC-PFPD analytical method.
- 4.29 Linearity of peak area plotted with concentrations of dicrotophos at 0-0.4 87 ppm, using ODS SPME/GC-PFPD analytical method.
- 4.30 Linearity of peak area plotted with concentrations of prothiophos at 0-0.5 87ppb, using ODS SPME/GC-PFPD analytical method.

ABBREVIATIONS AND SYMBOLS

AOAC	Association of Official Analytical Chemists
AR	analytical reagents
CAR	carboxen
cm	centimeter
°C	degree celsius
°C/min	degree celsius per minute
CW	carbowax
DVB	divinylbenzene
FPD	flame photometric detector
g	gram
GC	gas chromatography, or gas chromatograph
GPC	gel permeation chromatography
HPLC	high performance liquid chromatography
1	liter
LC	liquid chromatography
LLE	liquid liquid extraction
LOD ght C	limit of detection and Mai University
MAE	microwave assisted extraction
MS	mass spectrometry or mass spectrometer
m	meter
mg	milligram
mg/kg	milligram per kilogram
mg/l	milligram per liter

min	minute
mm	millimeter
ng	nanogram
nm	nanometer
ODS	octadecyltrichlorosilian
OPP	organophosphorus insecticide
OPPs	organophosphorus insecticide residue
PAC	polyacrylate
PDMS	polydimethylsiloxane
PFPD	pulsed flame photometric detector
ppb	part per billion, 10 ⁻⁹
ppm	part per million, 10 ⁻⁶
RSD	relative standard deviation
SFE	supercritical fluid extraction
SPE	solid phase extraction
SPME	solid phase microextraction
TIG	Thai Industrial Gas
% IID U	percent
μg/kg ant C	microgram per kilogram
µg/l	microgram per liter eserved
μm	micrometer