CHAPTER 3
MAIN RESULTS

3.1 Main Results

In this chapter, we will show the some problem of counted ballots in the election
of candidate A and candidate B. If we let some condition in this election, we will

get. From [2], we have lemma 3.1.1.

Lemma 3.1.1 In an election, candidate A receives n votes and candidate B receives

(n — 1) votes number of ways may the ballots be counted so that candidate A is
1/2n—2
n\n—1)’

In section 3.2, we propose theorem 3.2.1 which is a generalization of lemma

always ahead of candidate B is

where n is positive integer.
3.1.1.

3.2 Main theorem

Theorem 3.2.1 In an election, if candidate A receives n votes and candidate B
receives (n — k) votes then number of ways may the ballots be counted so that

candidate A is always ahead of candidate B is

k{2n—k—1

n n—1 ’
where k < n are positive integer.
Proof.

We want the number of strings of n A’s and (n—1) B’s. The number of

A’s in an initial substring always exceeds the number of B’s. We can generalize



and count the routes in Pascal’s triangle. The votes for A are tabulated vertically
and the votes for B are tabulated horizontally. The first vote counted must be for
A because of candidate A always ahead of candidate B. Therefore the routes can
be considered as beginning at G) A route meeting the diagonal from (8) to (2:)
would have A tied with B at this point and a route crossing the diagonal would
have A lose with B at point under diagonal. A route not meeting the diagonal
has A always ahead of B. Then, we will count the routes that do not meet the
diagonal from (}) to (2"7:1). We will consider a route from G) to (2"7:1) which
meets the diagonal has a first point of intersection with the diagonal. Take the

portion of the route to the first point of intersection and reflect it in the diagonal.

27171)

Therefore, the result is a route from ((1)) to ( -

(1) (y

<2n—2)
A n—2

(1) l G )

1 . . . . . A n—1
(0) Figure 3.1 ( 0 )

2"?1_1) crosses the diagonal so every route from (1)

Every route from ([1)) to ( 0

2n—1
n

to (2"71) is the reflection of some route from (}) to ( ) that meets the diagonal.

n

It follows that the number of routes from G) to (2"7:1) which meet the diagonal



is the total number of routes from ((1)) to (2" 1) We have

2n -2\ _ (2n—2)!
( n ) - (n—2)!
(2n —2)(2n — 3)..n(n — 1)(n — 2)!
(n —2)In!
(2n —2)(2n — 3).. n(n—l)
n(n—1)(n —2)...2
(n—1) (2n—2)(2n—3) .n (n—1)!
n n—1)(n-2)..2-1 (n—l)
(n—1) (2n—2)2n—3).n(n—1)..2-1
n (n—1(n—1)!
(n—1)  (2n-=2)!
n (n—1!(n—1)

_ ; 1) (2:_—12)

The total number of routes from (}) to (an_1) is (2::11). The number of

routes from (i) to (2”;1) do not meet the diagonal which is
2n — 2 n—1/M2n—-2\ 1(2n-2
n—1 n \n—-1) n\n-1)

Next, we consider the case when candidate A receives n votes and candidate B

receives (n — 2) votes so that candidate A is always ahead of candidate B. We
find the routes from (}) to (273;1) by lemma 3.1.1. Thus, candidate A receives n
votes and candidate B receives (n—2). We shall find the routes from (;) to (**?).

n
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(1) ‘ C)

n—1

((1)) "N Fi.gure' 32 ( 0 )

The routes from G) to (2”7:2) which meets the diagonal has a first point of

intersection with the diagonal. Take the portion of the route to the first point of

2n72)

intersection and reflect it in the diagonal. The result is a route from ((1]) to ( -

2n—2)

and every route from ((1)) to ( ") crosses the diagonal, so every route from ((1)) to

2n—2

(2"7:2) is the reflection of some route from (}) to ( .

) that meets the diagonal.

It follows that the number of routes from G) to (2”7:2) which meet the diagonal
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is the total number of routes from ((1)) to (2"7;2), which is

2n -3\ _ (2n—3)!
( n ) ~ (n—3)n!
(2n —3)(2n —4)(2n —5)..n(n — 1)(n — 2)(n — 3)!
(n — 3)!n!
(2n —3)(2n —4)..n(n —1)(n —2)
nn—1)(n—2)..2-1

_ (n—=2) (2n—-3)@2n—-4)..n(n-1) (n—2)!

n n—1)(n—-2)..2-1  (n—2)
(=2 2n-3)2n—4).a(n-1)..2-1
B n (n—1)1(n—2)!

(n—=2)  (2n-3)!
n (n—1)I(n—2)!

_ = 2) (2:_—13)‘

The total number of routes from G) to (2"7:2) is (2::13). Therefore the

number of routes from G) to (2”7:2) which do not meet the diagonal is

(2:_—13) (n ; 2) (2:_—13> _ % (2:_—13).

Next, we shall consider the case when candidate A receives n votes and candidate

B receives (n — 3) votes.
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(1) ‘ )

n—1

((1)) "N Fi.gure. 33 ( 0 )

As in lemma 3.1.1, routes from G) to (2"7:3) which meets the diagonal has
a first point of intersection with the diagonal. Take the portion of the route to the

first point of intersection and reflect it in the diagonal. Therefore, the result is a

2n—3)

route from ((1)) to ( . 2”_3)

and every route from ((1)) to ( ") crosses the diagonal

2n—3)

so every route from ((1)) to (2”7:3) is the reflection of some route from (1) to ( -

2n73)

that meets the diagonal. It follows that the number of routes from (}) to ( -
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which meet the diagonal is the total number of routes from ((1)) to (2”7:3), which is

2n —4\  (2n—4)!
( n )  (n—4)n!
(2n —4)(2n —5)(2n —6)...n(n — 1)(n — 2)(n — 3)(n — 4)!
(n—4)In!
(2n —4)(2n —5)..n(n—1)(n — 2)(n — 3)
n(n—1)(n—2)(n —3)..2-1
(n=3) (2n—4)(2n—5)..n(n—1)(n—2) (n—3)!

n  (m—-Dn-2)n-3).2-1  (n-—3)
- (n—=3) (2n—4)2n—-5)..n(n—1)..2-1
T on (n—1)!(n — 3)!

(n —3) (2n — 4)!
n  (n—1)(n—23)

G \ 3) (2::14)

The total number of routes from (}) to (2"7:3) is (27?:14), so the number of

routes from (i) to (2”;3) which do not meet the diagonal is

(2:_—14) (n ; 3) (2:_-;1) _ % (2:_—14)7

For the case when candidate A receives n votes, and candidate B receives

(n—4) votes so that candidate A is always ahead of candidate B, it is not difficult

4 (2n —5
n\n—1/

to show that the result is
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(e ‘ Gy

6 o)

n—(n—1)

1 . . . . . . n—1
(0) Figure 3.4 ( 0 )

Similarly, in the case when candidate A receives n votes and candidate B
receives (n — k) votes so that candidate A is always ahead of candidate B, a route
from (}) to (2";’“) which meets the diagonal has a first point of intersection with
the diagonal. Take the portion of the route to the first point of intersection and

reflect it in the diagonal. The result is a route from ([1)) to (Q"n_k):



(i)

14

e B e I (0

A (2::11)

(277,—2)
A n—2

(2n—(n—1))

n—(n—1)

((1)) "N Fi.guré 35 ( 0 )

Every route from ((1)) to (Q”n_k) crosses the diagonal, so every route from

0

(1) to (2”7:’“) is the reflection of some route from (i) to (2"_k) that meets the

n

diagonal. It follows that the number of routes from G) to (2";k) which meet the

diagonal is the total number of routes from ((1)) to (2"7:]“), which is

o

(2n—k—1)!
(n—k— 1)n!
Cn—k—1)2n—k—-2)..n—k+1)(n—Fk)(n—Fk—1)!

(k= !
Cn—k—-1)2n—k—2)...(n—k+1)(n—k)
nn—1)(n-2)..2-1
m—k) 2n—k—1)2n—-k—-2)..(n—k+1) (n—Fk)!

n (n—1)(n—2)..2-1 (n—k)!
m—k) Cn—k—-1)2n—-k—-2).n(n—1)(n—2)..2-1
n o (n—1)(n —k)!
(n—k) (2n—k—1)

n o (n—1l(n—k)
(n;;k)(Qnéi?£—1>'
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2n—k—1

The total number of routes from (}) to (2”7;]“) is ( o

), so the number

of routes from (}) to (Q"H_k) which do not meet the diagonal is

2n—k—1 _n—k n—k—1 _E n—k—1
n—1 n n—1 n n—1 ’

where k£ < n are positive integer.

Lastty, we prove that the result is true by mathematical induction.

From lemma 3.1.1, we have

2n — 2 2n—2\ 1(2n-2
n—1 n T n\n—1)
Suppose that if candidate A receives n votes and candidate B receives (n—(k—1))

votes, Therefore

Gn—gt;y—v__en—wgwy—v _ k;1cn—f:fy4>

k-1 (2m—k
N n n—1)

Consider

from
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Hence,
2n —k—1 2n—k—-1\  [(2n—k 2n —k —1 2n — k
P R S I Wiy Bl (e B
2n —k—1
(")
(k=1 (2n—k 2n—k—1
- n (n—l)_( n—2 )
2n —k—1
(")

e

N (n(ﬁ;j—)l) (an__k; 1>

) IS

n(n—k+1) n—1

__n(n-1) <2n—k—1>

n(n—k+1) n—1
n(n—k+ ;<2n— —1)

n(n—k+1 n—1
B E 2n —k—1
T n n—1 '

By induction, the theorem is true for all £k < n.

+

Hence we have completed the proof.
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Example 3.2.1 In an election, if candidate A receives 4 votes and candidate B
receives 3 votes then number of ways may the ballots be counted so that

candidate A is always ahead of candidate B is

AAAABBB,AABAABB,AAABABB,AABABAB and AAABBAB

In pascal’s triangle

o060 o
) 0
) 0
) ()

HoH 66 o0
) % 0
O )
) ()

MW 66 6
(s) TJ (3)
() i ()
() ()

(8) AAABABB (3)



M W6 6 6
(s) i J (3)
() IH ()
() ()

MW 6 6 @
() IH J (3)
() i ()
() ()

(8) AAABBAB (é)

From theorem 3.2.1 number of ways may the ballots be counted are
k(2n—k—-1\  1(24)—-1-1
E( n—1 > [ Z( 4-1 >
176
- 1(6)
6!

1
4
1
Z (20
1 (20)
)
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Next, we have a more generalization.

Theorem 3.2.2 In an election, if candidate A receives n votes and candidate B
receives (n — k) votes then number of ways may the ballots be counted so that
candidate A is always ahead of candidate B at least r votes is

(k—r+1) <2n—k—r>

(n—r+1) n—r )’

where r < k < n are positive integer.

Proof. From theorem 3.2.1 show that case candidate A receives n votes and
candidate B receives (n — k) votes so that number of ways may the ballots be
counted candidate A is always ahead of candidate B at least 1 votes. Next,
we shall show that case candidate A receives n votes and candidate B receives
(n — k) votes so that candidate A is always ahead of candidate B at least 2 votes.
Therefore the routes can be considered as beginning at (g) Then, we will count
the routes that do not meet the diagonal from (}) to (2";1). We will consider a
route from (;) to (2”7;'“) which meets the diagonal has a first point of intersection

with the diagonal. Take the portion of the route to the first point of intersection

2nfk)

and reflect it in the diagonal. Therefore, the result is a route from (f) to ( -

and every route from (f) to (Q”n_k) crosses the diagonal so every route from (f) to

2n—k
n

(Q"n_k) is the reflection of some route from (3) to ( ) that meets the diagonal.

It follows that the number of routes from (;) to (2";]“) which meet the diagonal



is the total number of routes from (f) to ( "

)_

(

of routes from @) to ( -

2n —k — 2
n—1

20

2"7'“) , which is

(2n — k —2)!

(n—Fk—1)l(n—1)
2n—k—-2)2n—k—=3).nn—1)..(n—k)(n—k—1)!
(n—k—1)!n—1)
2n—k—2)2n—k—3)..n(n—1)...(n—k)
(n—1)(n—2)(n—13)..2-1

(n=Fk) @n—-k-2)2n-k-3).n(n-1)..(n—k+1) (n—Fk)
(n—1) (n—2)(n—3)..2-1 (n—k)!
(n—Fk) @n-k—-2)2n—k-3)..n(n-1)..2-1

(n—1) (n—k)l(n—2)!

(n—Fk) (@2n—Fk-2)!

(n—=1) (n—Fk)(n—2)!

(n — k)

The total number of routes from (g) to (Q”n_k) is (2”7:_k_2), so the number

2

Zn_k) which do not meet the diagonal is

(s )-e=5 005 ) e ()

n—2
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n—1

" Figure 3.6 (")

()
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Similarly, consider the case when candidate A receives n votes and candi-
date B receives (n — k) votes then number of ways may the ballots be counted so
that candidate A is always ahead of candidate B at least r votes. A route from
(:) to (2n;k) which meets the diagonal from (:j) to (2";”1) has a first point of

intersection with the diagonal. Take the portion of the route to the first point of

intersection and reflect it in the diagonal. The result is a route from (Til) to (2n_k):

n

0 TR G DU o RN ot I 0

(1) - Ay ()

() ‘ ()
(=) )
(1) Crimy)

1 . . . . . . n—1
(0) Figure 3.7 ( 0 )

2nfk)

Every route from (Til) to ( ") crosses the diagonal, so every route from

(Til) to (Q”n_k) is the reflection of some route from (:) to (%n_k) that meets the

diagonal. It follows that the number of routes from (:) to (Q"H_k) which meet the
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diagonal is the total number of routes from (Til) to (2"7;1‘2), which is

2n—k—r (2n —k—1)!

(n—r—l—l) (n—k—1Y(n—r+1)!
C2n—k-—r)2n—k—-r—1)..nn—1)...(n—k)(n—k—1)!
n—k—1Yn—r+1)!

Cn—k—r)2n—k—r—1).nn—1)....n — k)
(n—r+1)(n-r).2-1
(n—Fk) @n-k—r)nn-1).(n—k+1) (n—k)

(n—r+1) (n—r)! (n—k)!
_ (n=k) @n—k-r)2n—k-r—1)..n(n-1)(n-2)..2-1
 (n—r+1) (n—r)l(n—k)!

(n=Fk)  @n—k—r)
m—r+1) (n—r)l(n—k)!

- (ﬁ?i)n (an_ —k r_ r)‘

The total number of routes from (7) to (Q”H_k) is (Q”r:fr_r), so the number

2"_k) which do not meet the diagonal is

of routes from (;) to( -
2n —k —r n—k 2n—k—r\ (k—r+1)/2n—k—-r
n—r m—r+1)\ n-—r S (n—r+D\ n-r )

where » < k& < n are positive integer.

Lastty, we prove that the equation is true by mathematical induction.

From theorem 3.2.1, we have

2n—k—1 n—k—-1\ k(2n—k—-1
n—1 n n n—1 ‘
Suppose that if candidate A receives n votes and candidate B receives (n—k) votes

so that candidate A is always ahead of candidate B at least (r—1) votes. Therefore

(2B Gremnd) = s (5 )
(k—r+2)/2n—k—-r+1
(n—r+2)( )

n—r+1

Consider

2n—k—r B 2n—k—r
n—r n—r+1
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n+1 n n
Go)=(1) ()
Hence,
2n—k—r o n—k—r 1 n—k—r+1 _ n—k—r
n-—r n—r—+1 = n—r+1 n—r-+1

) G5)
< et ) o)
on—k—r
J(rk(nr+r2;r(§n) k—r+1)/2n—k—r
('r(z —_'f’;g 2)(7; —_7” ;r_l) ( )
()
s ()
o k=r+2)@n—k—r+1)(2n—k—7
/ %r;fﬂnr$1k2< ;—3 )
n—Fk)(n—r+ n—k—r

=1+ 1)(n—r+2) n—r

(n—k)(n—k—1) Gn—k—j

(n—r+2)(n—r+1) n—r

[ (l{;—r+l)<2n—k—r)‘

(n—r+1) n—r

from

n—r

By induction, the theorem is true for all r < k < n.

Hence we have completed the proof.
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Example 3.2.2 In an election, if candidate A receives 4 votes and candidate B
receives 2 votes then number of ways may the ballots be counted so that

candidate A is always ahead of candidate B less than 2 votes is

AAAABB,AAABAB

In pascal’s triangle

©  aaapap O

From theorem 3.2.2 number of ways may the ballots be counted are

(k—r+1)(2n—k—r> _ 2—2+1<2(4)—2—2>

(n—r+1) n—r iy 2 59 4-—2




