TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract (Thai)	v
Abstract (English)	vii
Table of contents	Х
List of tables	
List of illustrations	
Abbreviations	
Charpter 1 Introduction	1
1.1 Objectives	3
Charpter 2 Literature reviews	4
2.1 Phytoplankton diversity and relations between species and	4
environmental conditions	
2.2 Toxic cyanobacteria in water and their toxins	8
2.2.1 Microcystin production	8
2.2.2 Cyanobacterial blooms in water environment	9
2.2.3 Microcystis in sediments	9
2.2.4 Influences of environmental factors on cyanobacterial growth	10
2.3 Effects of cyanobacterial toxins on human and animal health	11
2.4 Determination methods for microcystins in cyanobacterial	15
material, water and sediments	
2.5 Removal of toxic cyanobacteria and their toxins in water	e 0 19
Charpter 3 Materials and Methods	22
3.1 Study sites	22
3.2 Phytoplankton study	25

TABLE OF CONTENTS (continue)

		_
		Page
3.2.1	Sampling of phytoplanktons	25
3.2.2	Identification and biovolume study	26
3.3 Environm	nental factor study	26
3.3.1	Physico-chemical parameters of water at the sampling	26
	sites	
3.3.2	Laboratory investigation of chlorophyll-a, total bacterial	27
	plate count and some chemical parameters of water samples	
3.3.3	Laboratory analysis of sediment samples	28
3.4 Microcys	tin analysis	28
3.4.1	Microcystins in cyanobacterial scum	28
3.4.2	Microcystins in water	29
3.4.3	Microcystins in sediment	30
	3.4.3.1 Microcystin-LR extractions from Scottish sediment	30
	3.4.3.2 Microcystin-LR sorption onto Scottish sediment	30
	3.4.3.3 Microcystin-LR sorption onto Thai environment	32
	sediment samples	
	3.4.3.4 Total microcystins in Thai environmental sediment	32
	samples	
3.5 Analysis	of correlations among environmental factors, phytoplankton	33
species co	omposition and microcystins	
Charpter 4 Results		35
4.1 Phytoplan	nkton diversity S T C S C T V C	35
4.1.1	Phytoplankton identification and classification	35
4.1.2	Phytoplanktons distribution and abundance	38
4.2 Environn	nental factors	66

TABLE OF CONTENTS (continue)

	Page
4.2.1 Water properties	66
4.2.1.1 Physico-chemical and some biological properties	66
of water samples	
4.2.1.2 Trophic level estimation	78
4.2.2 Sediment properties	83
4.2.2.1 Physico-chemical and some biological properties	83
of sediment samples	
4.3 Microcystin analysis	91
4.3.1 Microcystins in cyanobacterial scum	91
4.3.2 Microcystins in water	93
4.3.3 Microcystins in sediments	99
4.3.3.1 Microcystin-LR extractions from Scottish sedime	ent 99
4.3.3.2 Microcystin-LR sorption onto Scottish sediment	101
4.3.3.3 Microcystin-LR sorption onto Thai environmenta	al 106
sediment samples	
4.3.3.4 Total microcystins in Thai environmental	108
sediment samples	
4.4 Multiple-correlations	110
4.4.1 Principal Component Analysis (PCA)	110
4.4.1.1 PCA for environmental factors of water	110
4.4.1.2 PCA for environmental factors of sediment	113
4.4.2 Detrended Correspondence Analysis (DCA) for	e 115
phytoplankton species composition	
4.4.3 Canonical Correspondence Analysis (CCA)	117

TABLE OF CONTENTS (continue)

		Page
	4.4.3.1 CCA for environmental factors of water,	117
	species composition and microcystins	
	4.4.3.2 CCA for environmental factors of sediment,	119
	phytoplankton species composition and microcystins	
Charpter 5	Discussions	123
5.1	Phytoplankton diversity	123
5.2	Environmental factors	124
5.3	Microcystin analysis	127
5.4	Multiple-correlations	133
Charpter 6	Conclusions and recommendations	138
References		143
Appendixes		158
Curriculum	vitae	188

âdânອົບหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University AII rights reserved

LIST OF TABLES

Tables		Page
1	Basic information of six study localities in five water resources	25
	in northern and north-eastern Thailand	
2	Conclusion of study scopes which were done in each study site.	34
	() represents the study scope which was done.	
3	The phytoplankton species number in six division in water collected from	36
	five localities in four water resources at six sampling times during	
	three seasons	
74	The distribution and the abundance of phytoplanktons are represented using	50
	the biovolume (mm ³ m ⁻ 3) and found in five water resources from the rainy	
	season of 2003 to the summer of 2004 [FP = a fish pond, $HYr = Houy Yua$	k
	Reservoir (open water), HYs = Houy Yuak Reservoir (small pond),	
	MK = the reservoir of Mae Kuang Udomtara Dam and SK = Sakon Nakhon	L
	sewage oxidation pond]	
5	The percent of sediment components and the sediment texture of sediment	90
	samples from all water resources during the rainy season in August 2003	
	to the summer in May 2004	
6	The conclusion of multiple-correlations between some phytoplankton	121
	species and some environmental factors. (+) represents the presence of	
	the correlation.	
7	The conclusion of multiple-correlations among some environmental	122
	factors. (+) represents the presence of the correlation.	

LIST OF ILLUSTRATIONS

Figures Page 1 Map of study water resource sites in northern and north-eastern Thailand. 23 The fish pond (FP), the open water of Houy Yuak Reservoir (HYr), the small pond of Houy Yuak Reservoir (HYs), the reservoir of Mae Kuang Udomtara Dam (MK), Sakon Nakhon sewage oxidation pond (SK) and a prawn pond (PP). The areas of six study locations in five water resources in northern and 24 2 north-eastern Thailand. The fish pond (FP), the open water of Houy Yuak Reservoir (HYr), the small pond of Houy Yuak Reservoir (HYs), the reservoir of Mae Kuang Udomtara Dam (MK), Sakon Nakhon sewage oxidation pond (SK) and a prawn pond (PP). 40 Microscopic images of dominant phytoplankton species occurring in 3 the fish pond during the rainy season from August 2003 to the summer in May 2004. (A) Microcystis aeruginosa (magnification: 100x), (B) Microcystis aeruginosa (magnification: 400x), (C) Planktolyngbya limnetica and (D) Euglena acus. The biovolumes of dominant phytoplankton species occurring in the fish 4 41 pond during the rainy season from August 2003 to the summer in May 2004. The first sampling in the rainy season (R1), the second sampling in the rainy season (R2), the first sampling in the cool dry season (C1), the second sampling in the cool dry season (C2), the first sampling in the summer (S1) and the second sampling in the summer (S2).

Figur	es กุมยนต์	Page
5	Microscopic images of dominant phytoplankton species occurring at	42
	the open water of Houy Yuak Reservoir during the rainy season from	
	August 2003 to the summer in May 2004. (A) Cylindrospermopsis racibor.	skii,
	(B) Planktolyngbya limnetica, (C) Peridiniopsis sp.1 and	
	(D) Trachelomonas oblonga.	
6	The biovolumes of dominant phytoplankton species occurring at	43
	the open water of Houy Yuak Reservoir during the rainy season	
	from August 2003 to the summer in May 2004	
7	Microscopic images of dominant phytoplankton species occurring at	44
	the small pond of Houy Yuak Reservoir during the rainy season from	
	August 2003 to the summer in May 2004. (A) Cylindrospermopsis	
	raciborskii, (B) Ocillatoria sp.1, (C) Trachelomonas oblonga and	
	(D) Peridiniopsis sp.1	
8	The biovolumes of dominant phytoplankton species occurring at the	45
	small pond of Houy Yuak Reservoir during the rainy season from	
	August 2003 to the summer in May 2004.	
9	Microscopic images of dominant phytoplankton species occurring	46
	in the reservoir of Mae Kuang Udomtara Dam during the rainy season	
	from August 2003 to the summer in May 2004. (A) Cylindrospermopsis	
	philippinensis, (B) Trachelomonas oblonga, (C) Cosmarium sp. 1,	
	(D) Staurastrum gracile and (E) Staurastrum smithii	
10	The biovolumes of dominant phytoplankton species occurring in the	47
	reservoir of Mae Kuang Udomtara Dam during the rainy season from	
	August 2003 to the summer in May 2004	

Fi	gur	es กายเหตุ	Page
	11	Microscopic images of dominant phytoplankton species occurring in	48
		Sakon Nakhon sewage oxidation pond during the rainy season from	
		August 2003 to the summer in May 2004. (A) Spirulina platensis,	
		(B) Oscillatoria sp. 2, (C) Diatomella sp. 1, (D) Trachelomonas	
		Oblonga and (E) Microcystis aeruginosa	
	12	The biovolumes of dominant phytoplankton species occurring in	49
		Sakon Nakhon sewage oxidation pond during the rainy season from	
		August 2003 to the summer in May 2004	
	13	The depths of water resources from the rainy season in August 2003	71
		to the summer in May 2004. the fish pond (FP), the open water of	
		Houy Yuak Reservoir (HYr), the small pond of Houy Yuak Reservoir	
		(HYs), the reservoir of Mae Kuang Udomtara Dam (MK) and	
		Sakon Nakhon sewage oxidation pond (SK).	
	14	The water volumes of water resources from the rainy season in	71
		August 2003 to the summer in May 2004.	
	15	The Secchi depths of water resources from the rainy season in	72
		August 2003 to the summer in May 2004.	
	16	The water temperatures in water resources from the rainy season in	72
		August 2003 to the summer in May 2004	
	17	The conductivities levels of water resources from the rainy season in	73
		August 2003 to the summer in May 2004	
	18	The pH values of water resources from the rainy season in August 2003 to	73
		the summer in May 2004	
	19	The alkalinity of water resources from the rainy season in August	74
		2003 to the summer in May 2004	

xvii

xviii

Figure	es กามยานดี	Page
20	The dissolved oxygen in water resources from the rainy season in	74
	August 2003 to the summer in May 2004	
21	The biochemical oxygen demand (BOD_5) in water resources from the	75
	rainy season in August 2003 to the summer in May 2004	
22	The nitrate-nitrogen levels of water resources from the rainy season in	75
	August 2003 to the summer in May 2004	
23	The ammonium-nitrogen levels of water resources from the rainy season	76
	in August 2003 to the summer in May 2004	
24	The soluble reactive phosphorus of water resources from the rainy	76
	season in August 2003 to the summer in May 2004	
25	The chlorophyll-a levels of water resources from the rainy season in	77
	August 2003 to the summer in May 2004	
26	The total bacterial plate count of water resources from the rainy season in	77
	August 2003 to the summer in May 2004	
27	The trophic level of water in all water resources from the rainy season	80
	in August 2003 to the summer in May 2004, following Wetzel (1983);	
	Lorraine and Vollenweider (1981). the fish pond (FP), the open water of	
	Houy Yuak Reservoir (HYr), the small pond of Houy Yuak Reservoir	
	(HYs), the reservoir of Mae Kuang Udomtara Dam (MK) and Sakon Nakho	n
	sewage oxidation pond (SK).	
28	The trophic level of water in all water resources from the rainy season in	81
	August 2003 to the summer in May 2004, following AARL-PP score	
29	The trophic level of water in all water resources from the rainy season in	81
	August 2003 to the summer in May 2004, following AARL-PC score	

Figur	es	Page
30	The trophic level score of water in all water resources from the rainy	82
	season in August 2003 to the summer in May 2004, following	
	Wetzel (1983); Lorraine and Vollenweider (1981)	
31	The trophic level score of water in all water resources from the rainy	82
	season in August 2003 to the summer in May 2004, following AARL-PP score	
32	The trophic level score of water in all water resources from the rainy	83
	season in August 2003 to the summer in May 2004, following	
	AARL-PC score	
33	The sediment pH levels of water resources from the rainy season in	86
	August 2003 to the summer in May 2004. The fish pond (FP), the open	
	water of Houy Yuak Reservoir (HYr), the small pond of Houy Yuak	
	Reservoir (HYs), the reservoir of Mae Kuang Udomtara	
	Dam (MK) and Sakon Nakhon sewage oxidation pond (SK)	
34	The total bacterial plate count in sediment of water resources from the rainy	87
	season in August 2003 to the summer in May 2004	
35	The percent of organic matter of sediment in water resources from	87
	the rainy season in August 2003 to the summer in May 2004	
36	The sediment nitrate-nitrogen levels in water resources from the rainy	88
	season in August 2003 to the summer in May 2004	
37	The sediment ammonium-nitrogen levels in water resources from the rainy	88
	season in August 2003 to the summer in May 2004	
38	The sediment soluble reactive phosphorus levels in water resources from	89
	the rainy season in August 2003 to the summer in May 2004	

Figures

deviation (n = 3).

39 Microcystins in cyanobacterial scum samples collected from the fish pond 93 (FP), the open water of Houy Yuak Reservoir (HYr), the small pond of Houy Yuak Reservoir (HYs), the reservoir of Mae Kuang Udomtara Dam (MK), Sakon Nakhon sewage oxidation pond (SK) and the prawn pond (PP). The error bar represents the standard deviation (n = 3)Total microcystins in water samples collected from five water resources 97 40 from the rainy season in August 2003 to the summer in May 2004. The fish pond (FP), the open water of Houy Yuak Reservoir (HYr), the small pond of Houy Yuak Reservoir (HYs), the reservoir of Mae Kuang Udomtara Dam (MK) and Sakon Nakhon sewage oxidation pond (SK). The error bar represents the standard deviation (n = 2). 41 Microcystin-RR in water samples collected from five localities in four water 98 resources from the rainy season in August 2003 to the summer in May 2004 98 42 Microcystin-LR in water samples collected from five localities in four water resources from the rainy season in August 2003 to the summer in May 2004 Total concentration of other microcystin variants (unknown microcystins 99 43 varints) in water samples collected from five localities in four water resources from the rainy season in August 2003 to the summer in May 2004 Comparison of percent extraction of microcystin-LR from the sediment 100 using different solvents and microwave plus sonication detected by ELISA. The error bar represents the standard deviation (n = 3)Comparison of remaining total microcystins in the supernatant of 102 suspended environmental sediment after magnetic stirrer mixing at different times detected by ELISA. The error bar represents the standard

Figures

Comparison of the remaining spiked microcystin-LR in the supernatant 104 46 separated from the sediment detected by HPLC (conc. 1 = standard micocystin-LR concentration of 1 μ g ml⁻¹; conc. 2 = standard micocystin -LR concentration of 2 μ g ml⁻¹; conc. 3 = standard micocystin-LR concentration of 3 μ g ml⁻¹). The error bar represents the standard deviation (n = 3).Comparison of the effect of microcystin-LR concentration on microcystin 104 47 -LR sorption onto the sediment detected by HPLC. The error bar represents the standard deviation (n = 3). 48 Comparison of the effect of the sediment concentration on microcystin-LR 105 sorption onto the sediment detected by ELISA. The error bar represents the standard deviation (n = 3). Microcystin-LR sorption onto Thai environmental sediment samples 107 49 collected from five localities in four water resources from the rainy season in August 2003 to the summer in May 2004. The error bar represents the standard deviation (n = 3). Total microcystins in Thai environmental sediment samples collected 110 50 from five localities in four water resources from the rainy season in August 2003 to the summer in May 2004. The error bar represents the standard deviation (n = 3). PCA for environmental factors of water in five localities in four water 51 112 resources from the rainy season in August 2003 to the summer in May 2004 PCA variable loading for environmental factors of water in five localities 113 52 in four water resources from the rainy season in August 2003 to the summer in May 2004

PCA Compared to the discussion from	
PCA for environmental factors of sediment in five localities in four	114
water resources from the rainy season in August 2003 to the summer	
	115
five localities in four water resources from the rainy season in August	
2003 to the summer in May 2004	
DCA for phytoplankton species composition in five localities in four	116
water resources from the rainy season in August 2003 to the summer	
in May 2004	
CA joint plot for phytoplankton species composition in five localities in	117
four water resources from the rainy season in August 2003 to the summer	
in May 2004	
CCA for Environmental factors of water, phytoplankton species	118
composition and microcystins in five localities in four water resources	
from the rainy season in August 2003 to the summer in May 2004	
CCA for Environmental factors of sediment, phytoplankton species	120
composition and microcystins in five localities in four water resources	
from the rainy season in August 2003 to the summer in May 2004	
	 in May 2004 PCA variable loading for environmental factors of sediment in five localities in four water resources from the rainy season in August 2003 to the summer in May 2004 DCA for phytoplankton species composition in five localities in four water resources from the rainy season in August 2003 to the summer in May 2004 CA joint plot for phytoplankton species composition in five localities in four water resources from the rainy season in August 2003 to the summer in May 2004 CCA for Environmental factors of water, phytoplankton species composition and microcystins in five localities in four water resources from the rainy season in August 2004 CCA for Environmental factors of sediment, phytoplankton species composition and microcystins in five localities in four water resources from the rainy season in August 2004

xxiii

ABBREVIATIONS

1 liter g gram m meter m^2 square meter m³ cubic meter milli cubicmeter per cubic meter mm⁻³m nm nanometer micrometer μm nanogram ng microgram μg milligram mg microliter μl ml milliliter microgram per milliliter μg ml⁻ μg l⁻¹ microgram per liter μg kg⁻¹ microgram per kilogram g kg⁻¹ gram per kilogram $mg l^{-1}$ milligram per liter mg l⁻¹ as CaCO₃ milligram per liter as calcium carbonate µS cm⁻¹ microSimens per centimeter colony forming unit per milliliter CFU ml⁻¹ volume per volume v/v kHz kiloHertz 🔿 °C degree Celsius revolutions per minute rpm hr hour MeOH methanol

ABBREVIATIONS (continue)

TFA	tri-fluoro acetic acid
TFA-MeOH	tri-fluoro acetic acid in methanol
DO	dissolved oxygen
BOD ₅	biochemical oxygen demand
cf.	carried forward
MCs	microcystins
HPLC	High Performance Liquid Chromatography
ELISA	Enzyme Link Immuno Sorpbent Assay
MVSP	Multivariate Statistical Package
PCA	Principle Component Analysis
DCA	Detrended Correspondence Analysis
CA	Correspondeene Analysis
CCA	Canonical Correspondence Analysis

âðânຣົມหາວົກຍາລັຍເຮີຍວໃหມ Copyright © by Chiang Mai University All rights reserved

xxiv

ABBREVIATIONS (continued)

Sampling sites of six study localities in five water resources in each site code

Site name	Code
Reservoir of Mae Kuang Udomtara Dam	МК
Houy Yuak Reservoir (open water)	HYr
Houy Yuak Reservoir (small pond)	HYs
Fish pond	FP
Sakon Nakhon sewage oxidation pond	SK
Prawn pond	РР

ลือสิทธิ์มหาวิทยาลัยเชียอไหม่ Copyright © by Chiang Mai University All rights reserved

ABBREVIATIONS (continue)

Sampling time (twice a season)	Code
First	FPR
Second	FPR2
First	FPC
Second	FPC
First	FPS
Second	FPS
First	HYrF
Second	HYrF
First	HYrC
Second	HYrO
First	HYrS
Second	HYr
First	HYsI
Second	HYsI
First	HYs
Second	HYs(
First	HYs
Second	HYs
	Second Conversion Serve

Sampling sites of five study localities in four water resources in each season code

xxvi

ABBREVIATIONS (continue)

Reservoir of Mae Kuang Udomtara Dam	Rainy	First	MKR1
	6	Second	MKR2
	Cool dry	First	MKC1
		Second	MKC2
	Summer	First	MKS1
10 Juliu		Second	MKS2
Sakon Nakhon sewage oxidation pond	Rainy	First	SKR1
		Second	SKR2
	Cool dry	First	SKC1
	¥ /	Second	SKC2
	Summer	First	SKS1
		Second	SKS2
	6		

Sampling sites of five study localities in four water resources in each season code

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

xxvii