TABLE OF CONTENTS

	Page
Acknowledgement	i ii
Abstract (in English)	v
Abstract (in Thai)	viii
List of tables	xvi
List of illustrations	xxii
Abbreviations	xxv
Chapter 1 Introduction	
1.1 Statement and significance of the problem	4
1.2 Objectives	2
1.3 Scope of study	2
1.4 Literature review	4
1.4.1 Plants	4
1.4.1.1 Guttiferae	4
1.4.1.1.1 Hypericum	4
1.4.1.1.2 Calophyllum	10
Copyr 1.4.1.1.3 Cratoxylum Chiang Mai Uni	iversity
A 1.4.1.1.4 Garcinia S Resemble	¹¹ e d
1.4.1.2 Schisandraceae	13
1.4.1.3 Plant under studied	16
1.4.2 Biological activity assay	23

1.4.2.1 DPPH free radical scavenging activity	23
1.4.2.2 Sulforhodamine B assay	27
1.4.2.3 Lymphocyte proliferation assay	31
Chapter 2 Materials and methods	
2.1 Materials and equipments	34
2.1.1 Plants	34
2.1.2 Chemicals / tumor cell lines	34
2.1.3 Equipments	36
2.2 Methods	37
Part 1: Collection of the plants	395
Part 2: Preparation of the crude extracts and bioactivities screening	44
test	
2.2.1 Preparation of the crude extracts	44
2.2.2 Free radical scavenging activity study of crude extract	46
(DPPH assay)	
2.2.3 An antitumor activity study of crude extracts	46
(SRB assay)	
Part 3: Extraction, isolation, purification and structure elucidation	47
of the selected plants	
3.1 Extraction, isolation purification and structure elucidation	47
of Hypericum hookerianum	vec
3.2 Extraction, isolation, purification and structure elucidation	48
of Schisandra varruculosa	

Part 4: Bioactivities of the isolated compounds	49
4.1 Tumor cell growth assay	49
4.2 Human lymphocytes proliferation assay	50
4.3 Cell viability determination by trypan blue exclusion assay	50
4.4 Free radical scavenging activity	50
Chapter 3 Results and discussion	
Part 1: Collection of the plants	51
Part 2: Preparation of the crude extracts and bioactivities screening test	52
2.1 Preparation of the crude extracts	52
2.2 Free radical scavenging activity study of crude extracts	53
(DPPH assay)	
2.3 An antitumor activity study of crude extracts (SRB assay)	58
Part 3: Extraction, isolation, purification and structure elucidation	62
of the selected plants	
3.1 Extraction, isolation, purification and structure elucidation	66
of Hypericum hookerianum	
3.1.1 Preparation of the extract	66
3.1.2 Fractionation of the extract	66
3.1.3 Isolation and Purification of the pure compounds	68
3.1.4 Structure elucidation	71
3.2 Extraction, isolation, purification and structure elucidation	91 e C
of Schisandra verruculosa	
3.2.1 Preparation of the extract	91

3.2.2 Chlorophyll elimination of the chloroform fraction of the	91
methanol extract	
3.2.3 Fractionation of the extract	91
3.2.4 Isolation and purification of the constituents	92
3.2.5 Fractionation of the crude extract	93
3.2.6 Isolation and purification of the constituents	94
3.2.7 Structure elucidation	98
Part 4: Bioactivities of the isolated compounds	115
4.1 Tumor cell growth assay	115
4.2 Human lymphocytes proliferation assay	118
4.3 Free radical scavenging activity	120
Chapter 4 Conclusion	122
	//-
References	125
Appendix	
Appendix A	138
A.1 Calculation of the percentage yield of the methanol and	138
chloroform fraction of the methanol crude extracts	
A.2 Calculation of 50% free radical scavenging activity (IC ₅₀) of the	142
methanol and chloroform fraction of themethanol extracts	
A Appendix B	145
B.1 Optimum cell density of HeLa, KB and B16F10 cell line in	145
SRB assay	
150	

B.2 Calculation of the 50% growth inhibition (GI_{50}) of the crude	147
extracts and positive control on cancer cell lines	
Appendix C	151
C.1 Spectrum of the isolated compounds	151
Appendix D	164
D.1 The 50% cell growth inhibition of isolated compounds and	164
positive control on MCF-7,NCI-H460, SF-268 and UACC-62	
cancer cell lines	
D.2 Lymphocyte proliferation assay and cell viability	168
Curriculum vitae	5 171

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	างมยนต์	age
1.1	Summary of the selected Thai plants in family Guttiferrae and	22
	Schisandraceae	
1.2	A list of 60 human cell lines and inoculation density used in the	29
	screening and maintenance at NCI	
1.3	List of additional cell lines evaluated for use in the screening of	30
	cytotoxicity	
3.1	The percentage yield of methanol and chloroform fraction of the methanol	52
	extracts from various parts of the selected Thai plants in family	
	Guttiferrae and Schisandraceae	
3.2	The IC ₅₀ values of the selected Thai plant extracts	57
3.3	Effect of methanol and chloroform fraction of the methanol extracts from	59
	wood of the selected Thai plants in family Guttiferrae and Schisandraceae	
	on the growth of human cancer cell lines	
3.4	Effect of methanol and chloroform fraction of the methanol extracts from	60
	leaves of the selected Thai plants in family Guttiferrae and Schisandraceae	
	on the growth of human cancer cell lines	
3.5	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 5-hydroxy-2-methoxyxanthone	73 E
3.6	COSY spectrum (CDCl ₃ , 300 MHz) of 5-hydroxy-2-methoxyxanthone	72
3.7	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of 5-hydroxy-2-	73
	methoxyxanthone	

3.8	HMBC spectrum (CDCl ₃ , 500 MHz) of 5-hydroxy-2-methoxyxanthone	74
3.9	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 2-hydroxy-3-methoxyxanthone	75
3.10	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of 2-hydroxy-3-	76
	methoxyxanthone	
3.11	HMBC spectrum (CDCl ₃ , 500 MHz) of 5-hydroxy-2-methoxyxanthone	77
3.12	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of trans-kielcorin	78
3.13	COSY spectrum (CDCl ₃ , 300 MHz) of trans-kielcorin	79
3.14	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of trans-kielcorin	80
3.15	HMBC spectrum (CDCl ₃ , 500 MHz) of trans-kielcorin	81
3.16	NOSY spectrum (CDCl ₃ , 300 MHz) of trans-kielcorin	82
3.17	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 4-hydroxy-3-methoxyphenyl	83
	ferulate	
3.18	COSY spectrum (CDCl ₃ , 300 MHz) of 4-hydroxy-3-methoxyphenyl	84
	ferulate	
3.19	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of 4-hydroxy-3-	84
	methoxyphenyl ferulate	
3.20	HMBC spectrum (CDCl ₃ , 500 MHz) of 4-hydroxy-3-methoxyphenyl	85
	ferulate	
3.21	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 3β-O-caffeoylbetulinic acid	87
3.22	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of 3β-O-caffeoyl	88
	betulinic acid rights reser	
3.23	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of vanillic acid	99
3.24	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of vanillic acid	100
3.25	HMBC spectrum (CDCl ₃ , 300 MHz) of vanillic acid	100

3.26	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of abscisic acid	101	
3.27	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of abscisic acid	102	
3.28	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of methyl 4-hydroxybenzoate	103	
3.29	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of methyl 4-	103	
	hydroxybenzoate		
3.30	HMBC spectrum (CDCl ₃ , 500 MHz) of methyl 4-hydroxybenzoate	104	
3.31	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 4-hydroxybenzaldehyde	104	
3.32	COSY spectrum (CDCl ₃ , 300 MHz) of 4-hydroxybenzaldehyde	105	
3.33	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of 4-hydroxy	105	
	benzaldehyde		
3.34	HMBC spectrum (CDCl ₃ , 500 MHz) of 4-hydroxybenzaldehyde	105	
3.35	¹ H NMR spectrum (CDCl ₃ , 500 MHz) of 3-methyl 3,4-dihydroxybenzoate	106	
3.36	COSY spectrum (CDCl ₃ , 300 MHz) of 3-methyl 3,4-dihydroxybenzoate	106	
3.37	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of 3-methyl 3,4-	107	
	dihydroxybenzoate		
3.38	HMBC spectrum (CDCl ₃ , 300 MHz) of 3-Methyl 3,4-dihydroxybenzoate	107	
3.39	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 1-(4-hydroxy-3-methoxy	108	
	phenyl)-3-hydroxy-propan-1-one		
3.40	COSY spectrum (CDCl ₃ , 300 MHz) of 1-(4-hydroxy-3-methoxyphenyl)-	109	
	3-hydroxy-propan-1-one		
3.41	¹³ CNMR and HSQC spectrum (CDCl ₃ , 125.77 MHz) of 1-(4-hydroxy-3-	109	
	methoxyphenyl)-3-hydroxy-propan-1-one		
3.42	HMBC spectrum (CDCl ₃ , 500 MHz) of 1-(4-hydroxy-3-methoxyphenyl)-	110	

	3-hydroxy-propan-1-one	
3.43	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 1,2-bis(4-hydroxy-3-methoxy	111
	phenyl) -3-hydroxy-propan-1-one	
3.44	COSY spectrum (CDCl ₃ , 300 MHz) of 1,2-bis(4-hydroxy-3-methoxy	112
	phenyl)-3-hydroxy-propan-1-one	
3.45	¹³ CNMR and HSQC spectrum (CDCl ₃ , 125.77 MHz) of 1,2-bis(4-hydroxy	112
	-3-methoxyphenyl)-3-hydroxy-propan-1-one	
3.46	HMBC spectrum (CDCl ₃ , 300 MHz) of 1,2-bis(4-hydroxy-3-methoxy	113
	phenyl)-3-hydroxy-propan-1-one	
3.47	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 4-hydroxybenzoic acid	114
3.48	¹³ CNMR and HSQC spectrum (CDCl ₃ , 75.47 MHz) of 4-hydroxybenzoic	114
	acid	
3.49	The IC ₅₀ of compounds from <i>Hypericum hookerianum</i> on the growth of	116
	human cancer cell lines	
3.50	The IC ₅₀ of compounds from <i>Shisandra verruculosa</i> on the growth of	117
	human cancer cell lines	
3.51	The IC ₅₀ of compounds from <i>Hypericum hookerianum</i> on proliferation of	118
	human lymphocytes assay	
3.52	The IC ₅₀ of compounds from <i>Shisandra verruculosa</i> on proliferation	119
	of human lymphocytes assay	
3.53	The IC ₅₀ of compounds from <i>Hypericum hookerianum</i> on DPPH free	120
	radical scavenging activity assay	
3.54	The IC ₅₀ of compounds from <i>Shisandra verruculosa</i> on DPPH free	121
	radical scavenging activity assay	

A.1	Calculation of the percentage yields of methanol and chloroform fraction	138
	of the methanol wood extract of Hypericum hookerianum	
A.2	Calculation of the percentage yield of methanol and chloroform fraction	138
	of the methanol leaf extract of Garcinia speciosa	
A.3	Calculation of the percentage yield of methanol and chloroform fractin	139
	Of the methanol wood extract of Garcinia speciosa	
A.4	Calculation of the percentage yield of methanol and chloroform fraction	139
	of the methanol leaf and wood extract of Garcinia xanthochymus	
A.5	Calculation of the percentage yield of methanol and chloroform fraction	140
	of methanol fruit extract of Garcinia xanthochymus	
A.6	Calculation of the percentage yield of methanol and chloroform fraction	140
	of the methanol leaf and wood extract of Cratoxylum formosum ssp.	
	pruniflorum	
A.7	Calculation of the percentage yield of methanol and chloroform fraction	141
	of the methanol leaf and wood extract of Calophyllum polyanthum	
A.8	DPPH radical scavenging activity (%) of the extracts	143
B.1	Inoculation densities of cell lines	145
B.2	The 50% growth inhibition of the methanol and chloroform fraction of	148
	the methanol wood extracts on cell lines	
B.3	The 50% growth inhibition of the methanol and chloroform fraction of	149
	the methanol leave extracts on cell lines	
B.4	The 50% growth inhibition of doxorubicin on cancer cell lines	151
D.1	The GI_{50} of the compounds from H . hookerianum on MCF-7 cell line	164
D.2	The GI_{50} of the compounds from H . hookerianum on NCI-H460 cell lines	165

D.3	The GI_{50} of the compounds from <i>H. hookerianum</i> on SF-268 cell line	165
D.4	The GI_{50} of the compounds from H . hookerianum on UACC-62 cell lines	166
D.5	The GI ₅₀ of the compounds from S. verrucolosa on MCF-7 cell lines	166
D.6	The GI ₅₀ of the compounds from <i>S. verrucolosa</i> on NCI-H460 cell lines	167
D.7	The GI ₅₀ of the compounds from <i>S. verrucolosa</i> on SF-268 cell lines	167
D.8	The 50% growth inhibition of doxorubicin on cancer cell lines	168
D.9	The IC ₅₀ of the compounds from <i>H. hookerianum</i> on human lymphocyte	169
D.10	The IC ₅₀ of the compounds from <i>S. verrucolosa</i> on human lymphocyte	169
D.11	Cell viability by trypan blue exclusion assay	170

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figure 919191		Page
1.1	Hypericum hookerianum Wight & Arn	16
1.2	Garcinia speciosa Wall	17
1.3	Garcinia xanthochymus Hook. F. ex T. Anderson	18
1.4	Cratoxylum formosum ssp. pruniflorum (Kurz) Gogel	19
1.5	Calophyllum polyanthum Wall ex Choisy	20
1.6	Schisandra verruculosa Gagnap	5 21
1.7	Structure of DPPH	24
1.8	Structure of MTT and their corresponding reaction products	32
2.1	Scope of the Part 1 to Part 4 study	37
2.2	The herbarium specimen of Hypericum hookerianum	38
2.3	The herbarium specimen of Garcinia speciosa	39
2.4	The herbarium specimen of Garcinia xanthochymus	40
2.5	The herbarium specimen of Cratoxylum formosum ssp. pruniflorum	41
2.6	The herbarium specimen of Calophyllum polyanthum	42
2.7	The herbarium specimen of Schisandra verruculosa	43
2.8	Diagram of the preparation of crude extract	44
3.1	Comparison of free radical scavenging activity (%) of the methanol	53
	wood extracts of the six selected Thai plants with the standard antioxida	ants
3.2	Comparison of free radical scavenging activity of the chloroform fracti	on 54
	of the methanol wood extracts of the six selected Thai plants with the	

	standard antioxidants	
3.3	Comparison of free radical scavenging activity (%) of the methanol	55
	leaves extracts of the six selected Thai plants with the standard antioxida	nts
3.4	Comparison of free radical scavenging activity (%) of the chloroform	56
	Fraction of the methanol leaves extracts of the six selected Thai plants with	th
	the standard antioxidants	
3.5	Diagram of the isolation and purification of the compounds from	63
	Hypericum hookerianum	
3.6	Diagram of the isolation and purification of the isolated compounds from	64
	S. verruculasa	
3.6	Diagram of the isolation and purification of the isolated compounds from	65
	Schisandra verruculasa	
3.7	The structure of 5-hydroxy-2-methoxyxanthone	72
3.8	Chemical shifts and coupling constant of 5-hydroxy-2-methoxyxanthone	74
3.9	The structure of 2-hydroxy-3-methoxyxanthone	75
3.10	Chemical shifts and coupling constant of 5-hydroxy-2-methoxyxanthone	77
3.11	The structure of <i>trans</i> -kielcorin	78
3.12	Chemical shifts and coupling constant of trans-kielcorin	72
3.13	The structure of 4-hydroxy-3-methoxyphenyl ferulate	83
3.14	Chemical shifts and coupling constant of 4-hydroxy-3-methoxyphenyl	86
	ferulate rights reser	
3.15	The structure of 3β-O-caffeoylbetulinic acid	87
3.16	Chemical shifts and coupling constant of 3β-O-caffeoylbetulinic acid	90
3.17	The structure of vanillic acid	99

xxiv

3.18	The structure of abscisic acid	101
3.19	The structure of methyl 4-hydroxybenzoate	103
3.20	The structure of 4-hydroxybenzaldehyde	104
3.21	The structure of 3-methyl 3,4-dihydroxybenzoate	106
3.22	The structure of 1-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-propan-1-one	e107
3.23	The structure of 1,2-bis(4-hydroxy-3-methoxyphenyl)-3-hydroxy-propan-	111
	1-one	
3.24	The structure of 4-hydroxybenzoic acid	114
B.1	Optimum cell density of HeLa cell line in SRB assay	145
B.2	Optimum cell density of KB cell line in SRB assay	146
B.3	Optimum cell density of B16F10 cell line in SRB assay	146
C.1	¹ H-, ¹³ C-NMR analysis of 5-hydroxy-2-methoxyxanthone	151
C.2	¹ H-, ¹³ C-NMR analysis of 2-hydroxy-3-methoxyxanthone	152
C.3	¹ H-, ¹³ C-NMR analysis of <i>trans</i> -kielcorin	153
C.4	¹ H-, ¹³ C-NMR analysis of 4-hydroxy-3-methoxyphenyl ferulate	154
C.5	¹ H-, ¹³ C-NMR analysis of 3β-O-caffeoylbetulinic acid	155
C.6	¹ H-, ¹³ C-NMR analysis of vanillic acid	156
C.7	¹ H-, ¹³ C-NMR analysis of abscisic acid	157
C.8	¹ H-, ¹³ C-NMR analysis of methyl 4-hydroxybenzoate	158
C.9	¹ H-, ¹³ C-NMR analysis of 4-hydroxybenzaldehyde	159
C.10	¹ H-, ¹³ C-NMR analysis of 3-methyl 3,4-dihydroxybenzoate	160
C.11	¹ H-, ¹³ C-NMR analysis of 1-(4-hydroxy-3-methoxyphenyl)-3-	161
	hydroxyl-propan-1-one	

C.12 ¹H-, ¹³C-NMR analysis of 1,2-bis- (4-hydroxy-3-methoxyphenyl)-3- hydroxyl-propan-1-one

C.13 ¹H-, ¹³C-NMR analysis of 4-hydroxybenzoic acid 163

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxvi

ABBREVIATION

¹³C NMR Carbon thirteen Nuclear Magnetic Resonance

CDCl₃ Deuterated chloroform

CHCl₃ Chloroform

CNS Central nervous system

Co-115 Colon carcinoma cell line: Co-115

COLO-205 Colon carcinoma cell line: COLO-205

COSY Correlated Spectroscopy

d doublet

dd double doublet

DMSO Dimethylsulfoxide

DPPH 1,1-Diphenyl-2-picryhydracyl

EBV-EA Epstein-Barr virus early antigen

EI-MS Electron Impact Mass Spectrometry

FBS Fetal bovine serum

FCS Fetal calf serum

GI₅₀ Concentration which inhibits cell growth by 50%

HBeAg Hepatitis B antigen

HeLa Cervical cancer cell line: HeLa

HEPA Hepatoma cell line: HEPA

HepG2 Human hepatoma cell line: HepG2

Hep-2 Larynx epithelium carcinoma cell line: Hep-2

¹H NMR Proton Nuclear Magnetic Resonance

xxvii

HIV Human Immunodeficiency Virus

HL-60 Human leukemia cell: HL-60

HMBC Heteronuclear Multiple Bond Correlation

HRMS High Resolution Mass Spectrometry

HSQC Heteronuclear Single Quantum Coherence

Hz Hertz

IC50 Concentration giving 50% inhibition

J Coupling constant in Hz

KB Human oral epidermoid carcinoma cell line: KB

LL/2 Mouse Lewis lung carcinoma cell line

m multiplet

m/z mass per charge

MCF-7 Human breast carcinoma cell line: MCF-7

MeOH Methanol

MHz Mega hertz

MTT 3-(4,5-Dimethylthiazole-2-yl)-2,5-dimethyltetrazolium bromide

NBT Nitroblue tetrazolium

NCI National Cancer Institute

NCI-H460 Non-small cell lung cancer cell line: NCI-H460

NGF Nerve growth factor

nm Nanometer

NMR Nuclear Magnetic Resonance

NOESY Nuclear Overhauser and Exchange Spectroscopy

OMe Methoxy

xxviii

PAF Platelet-activating factor

PHA Phytohemagglutinin

P388 Mouse lymphoid neoplasm cell line: P388

ppm parts per million

s singlet

SF-268 CNS cancer cell line: SF-268

sp. Species (singular)

spp. Species (plural)

SRB Sulphorodamine B

T triplet

TCA Trichloroacetic acid

TPA 12-o-tetradeconaylphorbal-13-acetate

TK-10 Renal cancer cell line: TK-10

TLC Thin layer chromatography

Tris (hydroxymethyl)aminomethane

UACC-62 Melanoma cell line: UACC-62

δ Chemical shift value in ppm

Wavelength in nanometer

°C Celcius degree

μg Microgram

μl Microliter

Wehil 64 Mouse fibrosarcoma: Wehil 64