CHAPTER 3

RESULTS AND DISCUSSION

3.1 Relationship among Carbon Dioxide Concentration with Other Parameters for Standard Curve

The parameters of wine fermentation without nitrogen source supplementation were investigated. The relationships among carbon dioxide concentration and alcohol, reducing sugar, biomass and total soluble solid (°Brix) were plotted.

Time TSS pH (h) (°Brix) - 0 17.8 3.90 3 17.6 3.89	RS (g/L) 193.81 186.90 181.14	Biomass (g/L) 0.13 0.20	Alcohol (g/L) 0.00 0.40	CO ₂ (g/L) 0.0000 0.0000	CO ₂ (g/L-h) 0.0000
0 17.8 3.90 3 17.6 3.89	193.81 186.90 181.14	0.13	0.00	0.0000	0.0000
3 17.6 3.89	186.90 181.14	0.20	0.40	0.0000	0.0000
	181.14				0.0000
6 17.5 3.84		0.23	0.40	0.0980	0.0163
9 17.5 3.82	175.57	0.31	1.20	0.2380	0.0264
12 17.4 3.85	172.49	0.62	2.80	1.1700	0.0975
13 17.4 3.74	169.72	0.57	3.84	1.3850	0.1065
14 17.3 3.71	166.73	0.37	5.04	1.6920	0.1209
15 17.2 3.70	158.86	0.47	5.52	2.0500	0.1367
16 17.1 3.69	155.20	0.57	6.24	2.5300	0.1581
17 17.1 3.66	153.67	0.62	6.40	3.3380	0.1964
18 16.7 3.63	150.98	S 0.49	6.56	3.6180	0.2000
19 16.6 3.65	147.52	0.49	6.72	4.1130	0.2165

 Table 3.1 Parameters of Wine Fermentation without the Addition of Ammonium Salts.

Table 3.1 (continued).

	Time	TSS	pН	RS	Biomass	Alcohol	CO ₂	CO ₂
	(h)	(°Brix)		(g/L)	(g/L)	(g/L)	(g/L)	(g/L-h)
	20	16.4	3.69	144.64	0.37	7.20	5.0120	0.2506
	21	16.2	3.62	140.61	0.40	8.00	5.5640	0.2650
	22	16.0	3.58	137.92	0.45	8.96	6.4170	0.2917
	23	15.6	3.56	134.84	0.48	9.84	7.6380	0.3321
	24	15.5	3.56	132.25	0.52	10.56	8.6430	0.3601
	26	15.2	3.54	128.44	0.57	13.20	10.6650	0.4102
	28	15.0	3.50	125.43	0.64	15.04	12.3880	0.4424
	30	14.5	3.51	121.97	0.71	18.48	15.6570	0.5219
	33	14.1	3.49	119.48	0.73	22.56	18.6080	0.5639
	36	13.5	3.56	109.49	0.75	25.92	22.6800	0.6300
	39	12.3	3.54	96.81	0.81	30.40	26.7420	0.6857
	42	11.6	3.43	94.12	0.89	35.12	31.3780	0.7471
	45	11.3	3.45	77.99	0.95	39.52	35.9840	0.7996
	48	11.0	3.50	72.61	1.06	43.52	39.9160	0.8316
	54	9.5	3.44	64.73	1.20	49.44	47.5370	0.8803
6	60	9.2	3.60	54.17	1.41	55.84	51.8600	0.8643
	66	8.4	3.55	39.95	2.11	62.64	59.4500	0.9008
U U	72	7.5	3.62	24.39	1.63	64.72	64.9770	0.9025
	78	7.1	3.54	21.90	1.83	65.68	68.0960	0.8730
	84	6.7	3.47	18.35	1.90	68.00	69.9050	0.8322

Figure 3.1 Changes of pH, Reducing Sugar, Biomass, Alcohol, Carbon Dioxide Concentration and Total Soluble Solid along with Time during Wine Fermentation without the Addition of Ammonium Salts.

Table 3.1 and figure 3.1 showed pH, reducing sugar, biomass, alcohol, carbon dioxide concentration, and total soluble solid during wine fermentation without supplementation of ammonium salt. Reducing sugar decreased sharply from 193.81 to 24.39 g/L in 72 h and, then, flattened to 18.35 g/L at the end of fermentation. The pH decreased from 3.90 to 3.49 in 39 h of fermentation and, then, remained more or less constant at the end of fermentation. The total soluble solid decreased from 17.8 to 6.7 ^oBrix at the end of fermentation. Biomass concentration increased from 0.13 to 2.11 g/L after 66 h of fermentation, then, decreased to 1.63 g/L at 72 h of fermentation and further increased to 1.90 g/L at the end of fermentation. Alcohol content increased from 0 to 10.56 g/L after 24 h of fermentation. Then, it increased sharply to 64.72 g/L at 72 h of fermentation. After that, it increased from 0 to 8.6430 g/L after 24 h of fermentation increased from 0 to 8.6430 g/L after 24 h of fermentation. After that, it increased from 0 to 8.0960 g/L at 78 h of fermentation and then flattened to the end of fermentation.

âð Coj A

Figure 3.2 Relationship between Time and Rate of Carbon Dioxide Production.

Figure 3.2 showed the rate of carbon dioxide production. It was found that the rate of carbon dioxide production increased during 17 h of fermentation. Then, it dropped very slowly until 19 hrs which is caused by nitrogen deficiency in wine fermentation, then continuous increased sharply until 54 h of fermentation. Then, the rate of carbon dioxide production was constant until the end of fermentation.

Figure 3.3 to figure 3.6 showed the relationship among carbon dioxide concentration (CO₂) with alcohol (alc), reducing sugar (RS), biomass (X) and total soluble solid (TSS). Their equations and R-squares are as follows:

 $y_{co_2}/alc = -0.0053X^2 + 1.5148X$ (R² = 0.9961)

 $y_{co_2/RS} = -2x10^{-6}X^5 + 0.0003X^4 - 0.0217X^3 + 0.6587X^2 - 10.255X + 182.48$ (R² = 0.9937)

 $y_{co_2/X} = -6x10^{-9}X^5 + 6x10^7X^4 + 3x10^{-6}X^3 - 0.0011X^2 + 0.0376X + 0.3323$ (R² = 0.941)

 $y_{co_2/TSS} = 0.0008X^2 - 0.2043X + 17.503 \ (R^2 = 0.9963)$

Figure 3.3 Relationship between Alcohol and Carbon Dioxide Concentrations.

Figure 3.4 Relationship between Reducing Sugar and Carbon Dioxide Concentrations.

Figure 3.5 Relationship between Biomass and Carbon Dioxide Concentrations.

Figure 3.6 Relationship between Total Soluble Solid and Carbon Dioxide Concentration.

3.2 The Suitable Time for Ammonium Salts Supplementation in Wine Fermentation

Slow fermentation is caused by nitrogen deficiency which limits yeast growth and its metabolism. So, the timing of nitrogen addition is very important in the development of wine fermentation. From figure 3.2 shown nitrogen deficiency after 17 hrs of fermentation. In this step, the influences of wine fermentation without and with supplementation of ammonium phosphate at the beginning and after 17 hrs of fermentation were investigated.

Table 3.2 Carbon Dioxide Concentrations during Wine Fermentation without and
with 700 ppm of Ammonium Dihydrogen Phosphate Supplementation at
the beginning and after 17 h of Fermentation.

202	C	arbon dioxide (g/L)
Time		Time of Supp	plementation (h)
(h)	Control	0 h	17 h
0	0.00	0.00	0.00
3	0.00	0.00	0.00
6	0.19	0.17	0.19
9	0.39	0.39	0.39
10	0.67	0.65	0.67
11	0.89	0.87	0.89
12	1.19	1.15	1.19
13	1.49	1.44	1.49
14	1.81	1.72	1.81
15	2.24	2.09	2.24
16	2.82	2.64	2.82
17	2.88	3.16	2.88
18	3.59	4.14	3.96
19	4.12	4.76	5.15
20	4.68	5.44	6.20
21	5.44	6.16	6.96
22	6.19	6.97	7.77
23	7.02	7.81	8.61

BEOLAU University e r v e d Table 3.2 (continued).

	Carbon Dioxide (g/I				
Time		Time of Supplementation (h)			
(h)	Control	0 h	17 h		
24	7.96	8.83	9.63		
26	9.75	10.82	11.62		
28	11.25	12.89	13.71		
30	13.00	14.93	16.08		
33	16.32	18.48	19.44		
36	19.99	22.36	23.21		
39	23.36	26.10	27.24		
42	27.38	30.18	31.41		
45	31.12	34.25	36.10		
48	34.62	38.01	40.63		
54	40.81	44.54	48.22		
60	46.90	50.98	56.88		
66	52.73	57.06	63.90		
72	57.67	62.20	68.40		
78	62.68	67.35	71.47		
84	67.08	71.47	75.08		

The profiles of wine fermentation without and with supplementation 700 ppm of ammonium dihydrogen phosphate at the beginning of the fermentation and after 17 h of fermentation were as follows :

Table 3.2 and figure 3.7 showed carbon dioxide concentrations during wine fermentation. It was found that carbon dioxide concentration increased gradually from 0 to 67.08, 71.47 and 75.08 g/L, respectively.

Figure 3.8 Rates of Carbon Dioxide Production during Wine Fermentation without and with 700 ppm of Ammonium Dihydrogen Phosphate Supplementation at the beginning and after 17 h of Fermentation.

Table 3.3 Rates of Carbon Dioxide Production during Wine Fermentation withoutand with 700 ppm of Ammonium Dihydrogen Phosphate Supplementationat the beginning and after 17 h of Fermentation.

Time		Time of Suppl	ementation (h)
(h)	Control	0 h	17 h
0	0.0000	0.0000	0.0000
3	0.0000	0.0000	0.0000
6	0.0308	0.0289	0.0308
9	0.0437	0.0435	0.0437
10	0.0668	0.0652	0.0668
11	0.0808	0.0792	0.0808
12	0.0988	0.0957	0.0988
13	0.1147	0.1109	0.1147
14	0.1290	0.1231	0.1290
15	0.1493	0.1396	0.1493
16	0.1764	0.1651	0.1764
17	0.1692	0.1859	0.1692
18	0.1996	0.2298	0.2198
19	0.2168	0.2504	0.2712
20	0.2338	0.2720	0.3101
21	0.2588	0.2935	0.3316
22	0.2813	0.3168	0.3531
23	0.3051	0.3396	0.3743
24	0.3316	0.3679	0.4012
26	0.3750	0.4162	0.4470
28	0.4017	0.4605	0.4896
30	0.4334	0.4977	0.5359
33	0.4945	0.5601	0.5891
36	0.5554	0.6210	0.6446
39	0.5991	0.6693	0.6984
42	0.6519	0.7186	0.7478

BEOLAU University e r v e d Table 3.3 (continued).

	Rates of Carbon Dioxide (g/L-h)				
Time		Time of Supplementation (h)			
(h)	Control	0 h	17 h		
45	0.6914	0.7611	0.8023		
48	0.7212	0.7919	0.8464		
54	0.7557	0.8248	0.8929		
60	0.7817	0.8497	0.9481		
66	0.7990	0.8646	0.9682		
72	0.8010	0.8639	0.9500		
78	0.8036	0.8634	0.9163		
84	0.7986	0.8509	0.8938		

Table 3.3 and figure 3.8 showed rates of carbon dioxide production during wine fermentation. It was found that the maximum rates of carbon dioxide productions of wine fermentation without and with 700 ppm of ammonium dihydrogen phosphate supplementation at the beginning and after 17 h of fermentation increased gradually from 0 to 0.8036, 0.8646 and 0.9682 g/L-h after 78, 66 and 66 h of fermentation, respectively.

ລິບສິກລິ້ມກາວົກຍາລັຍເຮີຍວໃກມ Copyright © by Chiang Mai University All rights reserved **Table 3.4**Alcohol Concentrations during Wine Fermentation without and with 700ppm of Ammonium Dihydrogen Phosphate Supplementation at the
beginning and after 17 h of Fermentation.

	Alcohol (g/L)					
Time		Time of Suppl	ementation (h)			
(h)	Control	0 h	17 h			
0	0.00	0.00	0.00			
3	0.00	0.00	0.00			
6	0.27	0.26	0.27			
9	0.57	0.59	0.57			
10	0.98	0.99	0.98			
11	1.30	1.32	1.30			
12	1.73	1.73	1.73			
13	2.17	2.17	2.17			
14	2.63	2.60	2.63			
15	3.25	3.15	3.25			
16	4.09	3.96	4.09			
17	4.17	4.73	4.17			
18	4.86	6.18	5.91			
19	5.45	7.09	7.66			
20	6.17	8.08	9.19			
21	7.15	9.13	10.29			
22	8.12	10.30	11.45			
23	9.18	11.51	12.65			
24	10.38	12.96	14.10			
26	12.63	15.77	16.89			
28	14.49	18.65	19.77			
30	16.65	21.44	22.98			
33	20.64	26.19	27.45			
36	24.94	31.22	32.30			
39	28.78	35.93	37.33			
42	33.21	40.89	42.35			

BEOLINU University e r v e d

Table 3.4 (continued)

	Alcohol (g/L)					
Time		Time of Suppl	ementation (h)			
(h)	Control	0 h	17 h			
		700 ppm	700 ppm			
45	37.19	45.67	47.79			
48	40.81	49.93	52.80			
54	46.93	56.97	60.73			
60	52.59	63.47	69.04			
66	57.69	69.20	75.18			
72	61.76	73.74	78.84			
78	65.65	78.01	81.22			
84	68.88	81.23	83.89			

Table 3.4 and figure 3.9 showed alcohol concentrations during wine fermentation. It was found that alcohol concentrations of wine fermentation without and with 700 ppm of ammonium dihydrogen phosphate supplementation at the beginning and after 17 h of fermentation increased gradually from 0 to 68.88, 81.23 and 83.89 g/L, respectively. The specific rates of substrate formation (q_p) and yield coefficients of product formation from substrate ($Y_{p/s}$) were 0.013, 0.016, 0.021 g/L-h and 0.397, 0.444, 0.443 g/g, respectively.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม่ Copyright © by Chiang Mai University All rights reserved

Figure 3.10 Biomass Concentrations during Wine Fermentation without and with 700 ppm of Ammonium Dihydrogen Phosphate Supplementation at the beginning and after 17 h of Fermentation.

Table 3.5	Biom	ass	Concentration	is during Win	e Fermentat	ion without and w	rith	700
	ppm	of	Ammonium	Dihydrogen	Phosphate	Supplementation	at	the
	begin	ning	g and after 17	h of Fermenta	tion.			

	Biomass (g/L)					
Time		Time of Supplementation (h				
(h)	Control	0 h	17 h			
0	0.3475	0.3475	0.3475			
3	0.3475	0.3475	0.3475			
6	0.3544	0.3540	0.3544			
9	0.3621	0.3621	0.3621			
10	0.3721	0.3716	0.3721			
11	0.3801	0.3794	0.3801			
12	0.3905	0.3892	0.3905			
13	0.4011	0.3995	0.4011			
14	0.4118	0.4091	0.4118			
15	0.4263	0.4215	0.4263			
16	0.4450	0.4392	0.4450			
17	0.4467	0.4555	0.4467			
18	0.4686	0.4846	0.4794			
19	0.4841	0.5021	0.5128			
20	0.4998	0.5205	0.5399			
21	0.5203	0.5390	0.5583			
22	0.5396	0.5584	0.5766			
23	0.5596	0.5775	0.5946			
24	0.5808	0.5991	0.6149			
26	0.6172	0.6367	0.6503			
28	0.6440	0.6703	0.6822			
30	0.6719	0.6990	0.7138			
33	0.7168	0.7427	0.7538			
36	0.7602	0.7882	0.7988			
39	0.8008	0.8387	0.8564			
42	0.8588	0.9103	0.9367			
45	0.9302	1.0083	1.0637			

Beolnu University erved Table 3.5 (continued).

	Biomass (g/L)						
Time		Time of Supplementation (h					
(h)	Control	0 h	17 h				
48	1.0188	1.1286	1.2311				
54	1.2388	1.4146	1.6187				
60	1.5424	1.7898	2.1878				
66	1.9043	2.2000	2.6526				
72	2.2425	2.5473	2.8830				
78	2.5775	2.8374	2.9775				
84	2.8248	2.9776	2.9906				
			2				

Table 3.5 and figure 3.10 showed biomass concentrations during wine fermentation. It was found that biomass concentrations of wine fermentation without and with 700 ppm of ammonium dihydrogen phosphate supplementation at the beginning and after 17 h of fermentation increased gradually from 0.3475 to 2.8248, 2.9776 and 2.9906 g/L, respectively. The specific growth rates (μ) and yield coefficients of biomass formation from substrate (Y_{x/s}) were 0.034, 0.037, 0.047 h⁻¹, and 0.0143, 0.0144, 0.0140 g/g, respectively.

ລິບສິກລິ້ມກາວົກຍາລັຍເຮີຍວໃກມ Copyright © by Chiang Mai University All rights reserved **Table 3.6** Reducing Sugar Concentrations during Wine Fermentation without and with700 ppm of Ammonium Dihydrogen Phosphate Supplementation at thebeginning and after 17 h of Fermentation.

	Reducing Sugar (g/L)					
Time	00	Time of Supplementation (h)				
(h)	Control	0 h	17 h			
0	192.96	192.96	192.96			
3	192.96	192.96	192.96			
6	191.81	191.88	191.81			
9	190.54	190.55	190.54			
10	188.90	188.99	188.90			
915	187.62	187.72	187.62			
12	185.95	186.16	185.95			
13	184.28	184.54	184.28			
14	182.61	183.04	182.61			
15	180.40	181.13	180.40			
16	177.56	178.43	177.56			
17	177.31	175.99	177.31			
18	174.05	171.70	172.47			
19	171.77	169.14	167.58			
20	169.48	166.47_	163.64			
21	166.49	163.78	160.93			
22	163.68	160.91	158.20			
23	160.75	158.06	155.46			
24	157.57	154.76	152.26			
26	151.88	148.65	146.29			
28	147.39	142.61	140.29			
30	142.30	136.83	133.61			
33	132.93	126.87	124.18			
36	122.63	116.00	113.62			
39	113.17	105.54	102.42			
42	102.02	94.45	91.22			
45	91.98	83.95	79.42			

BEOLKU University erved

Table 3.6	(continued).
-----------	--------------

Reducing Sugar (g/L)						
	Time of Suppl	lementation (h)				
Control	0 h	17 h				
83.04	74.93	69.08				
68.69	60.98	53.96				
56.41	48.97	38.69				
45.90	38.38	25.93				
37.31	29.15	16.75				
28.26	18.99	9.83				
19.55	9.82	3.58				
	Control 83.04 68.69 56.41 45.90 37.31 28.26 19.55	Time of Supp. 0 h 83.04 74.93 68.69 60.98 56.41 48.97 45.90 38.38 37.31 29.15 28.26 18.99 19.55 9.82				

Table 3.6 and figure 3.11 showed the decrease of reducing sugar concentrations during wine fermentation. It was found that reducing sugar concentrations of wine fermentation without and with 700 ppm of ammonium dihydrogen phosphate supplementation at the beginning and after 17 h of fermentation decreased gradually from 192.96 to 19.55, 9.82 and 3.58 g/L, respectively. The specific rates of substrate formation (q_s) were 2.38, 2.57 and 3.36 g/g-h, respectively.

ລິບສິກລົ້ມກາວົກຍາລັຍເຮີຍວໃກມ Copyright © by Chiang Mai University All rights reserved

Figure 3.11 The Decrease of Reducing Sugar Concentrations during Wine Fermentation without and with 700 ppm of Ammonium Dihydrogen Phosphate Supplementation at the beginning and after 17 h of Fermentation.

Figure 3.12 The Decrease of Total Soluble Solid during Wine Fermentation without and with 700 ppm of Ammonium Dihydrogen Phosphate Supplementation at the beginning and after 17 h of Fermentation.

Table 3.7 Total Soluble Solid during Wine Fermentation without and with 700 ppmof Ammonium Dihydrogen Phosphate Supplementation at the beginningand after 17 h of Fermentation.

	Total Soluble Solid (^o Brix)					
Time	a b	Time of Supplementation (h)				
(h)	Control	0 h	17 h			
0	17.8	17.8	17.8			
3	17.8	17.8	17.8			
6	17.8	17.8	17.8			
9	17.7	17.7	17.7			
10	17.7	17.7	17.7			
11	17.6	17.6	17.6			
12	17.6	17.6	17.6			
13	17.5	17.5	17.5			
14	17.4	17.5	17.4			
15	17.3	17.4	17.3			
16	17.2	17.3	17.2			
17	17.2	17.2	17.2			
18	17.1	17.0	17.0			
19	17.0	16.8	16.8			
20	16.9	16.7	16.6			
21	16.7	16.6	16.4			
22	16.6	16.4	16.3			
23	16.4	16.3	16.1			
24	16.2	16.1	15.9			
26	15.9	15.7	15.5			
28	15.6	15.3	15.1			
30	15.3	14.9	14.7			
33	14.7	14.3	14.1			
36	14.0	13.6	13.5			
39	13.5	13.0	12.8			
42	12.8	12.4	12.2			
45	12.2	11.7	11.5			

Seolny University erved Table 3.7 (continued).

	Total Soluble Solid (^o Brix)						
Time		Time of Suppl	lementation (h)				
(h)	Control	90 h	17 h				
48	11.7	11.2	10.8				
54	10.8	10.3	9.8				
60	10.0	9.5	8.8				
66	9.3	8.7	8.0				
72	8.7	8.2	7.6				
78	8.1	7.7	7.3				
84	7.7	7.3	7.0				
			2				

Table 3.7 and figure 3.12 showed the decrease of total soluble solid (^oBrix) during wine fermentation. It was found that total soluble solid of wine fermentation without and with 700 ppm of ammonium dihydrogen phosphate supplementation at the beginning and after 17 h of fermentation decreased gradually from 17.8 to 7.7, 7.3 and 7.0 ^oBrix, respectively.

âðânຣົ້ມหາວົກອາລັອເອີຍວໃหມ່ Copyright © by Chiang Mai University All rights reserved Table 3.8 Comparison of Kinetic Parameters in Wine Fermentation without and with 700 ppm of Ammonium Dihydrogen Phosphate Supplementation at the beginning and after 17 h of Fermentation.

N S S S S S S S S S S S S S S S S S S S	Time of Supplementation (h)			
Kinetic Parameters	control	0 h	17 h	
The specific growth rate(μ), h^{-1}	0.034	0.037	0.047	
The specific rate of substrate consumption (q _s), g/g-h	2.38	2.57	3.36	
The specific rate of product	0.013	0.016	0.021	
formation (q _p), g/g-h	5	E	24	
Yield coefficient of biomass formation from substrate $(Y_{x/s})$, g/g	0.0143	0.0144	0.0140	
Yield coefficient of product formation from substrate $(Y_{p/s})$, g/g	0.397	0.444	0.443	
Alcohol (g/L)	68.88 c	81.23 b	83.89 a	

Mean separation within row by Duncan's multiple range test, p < 0.05.

Table 3.8 showed kinetic parameters of wine fermentation. It was found that wine fermentation supplemented with 700 ppm of ammonium dihydrogen phosphate after 17 h of fermentation was superior to wine fermentation without and with 700 ppm of ammonium dihydrogen phosphate supplementation at the beginning, respectively. Fermentation kinetics of wine fermentation supplemented with 700 ppm of ammonium phosphate after 17 h of fermentation were calculated out. It was revealed that the specific growth rate (μ) was 0.047 h⁻¹, the specific rate of substrate consumption (q_s) was 3.36 g/g-h, the specific rate of product formation (q_p) was 0.021 g/g-h, yield coefficient of biomass from substrate (Y_{x/s}) was 0.0140 g/g and yield coefficient of production from substrate (Y_{p/s}) was 0.443 g/g. Alcohol content of 83.89 g/L and the final total soluble solid of 7.0 °Brix in wine were obtained.

The timing of the addition of ammonium salts appears to be important. Ribereau-Gayon *et. al.*, (1975) had suggested their addition in must before the initiation of fermentation. Yeasts react best to stimuli during the growth phase in a medium containing little ethanol. They witnessed an assimilation of ammoniacal nitrogen (100 mg/L) varying between 100 and 50 per cent when the addition was made before the initiation of fermentation or on the forth day. The addition of nitrogen is not significantly effective for accelerating a slow fermentation in its final stage and even less so for restarting a stuck fermentation. Sablayrolles *et. al.*, (1996b) demonstrated that nitrogen added at mid-fermentation at the same time as an aeration gave the best results. This dual operation had more effect on fermentation kinetics than aeration alone.

Nitrogen and oxygen deficiencies are of major problems. Oxygen is required by yeasts for synthesis of cellular compounds, particularly sterols and unsaturated fatty acids while assimilable nitrogen, which is usually considered to include ammonium salt and α -amino acids are necessary for protein synthesis and yeast growth. The additions of these two nutrients are very effective if the amount added and the timing of addition is controlled. The best time for oxygen addition is at the end of the cell growth phase (Sablayrolles *et. al.*, 1996b). While nitrogen is most effective when added at the halfway of fermentation process (Bely *et. al.*, 1990a). Sablayrolles *et. al.*, (1996b) showed that the combined addition 5 mg/L oxygen at the end of the cell growth phase and 300 mg/L diammonium phosphate at the halfway fermentation process was very effective in preventing stuck and sluggish fermentations.

Ammonium ion is consumed preferentially by yeasts to FAN amino acids. Therefore, timing of nutrient addition is important. One large addition of diammonium phosphate at the beginning of fermentation may delay/inhibit uptake of amino acids. Multiple addition sources are preferred. First addition should be a nutrient mix, such as Super Food or Fermaid K, followed by diammonium phosphate. Adding nutrient supplements all at once can lead to too fast a fermentation rate, and an imbalance in uptake and usage of nitrogen compounds. Supplement added to late (after mid-fermentation) may not be used by the yeasts, in part because the alcohol

65

prevents their development. For the same reason, adding nutrients to a stuck fermentation seldom does any good at all (http:// www.vtwines.info, 2001).

Watunyoo (2003) studied wine and brandy productions from dried longan. It was found that longan wine was supplemented with triammonium phosphate of 0.15 per cent (w/v) was the best condition for longan wine production. Wine sample showed that it contained alcohol of 84.0 g/L, the specific growth rate (μ) was 0.019 h⁻¹, the specific rate of substrate consumption (q_s) was 0.38 g/g-h, the specific rate of product formation (q_p) was 0.17 g/g-h, yield coefficient of biomass from substrate ($Y_{x/s}$) was 0.05 g/g and yield coefficient of production from substrate ($Y_{p/s}$) was 0.44 g/g.

3.3 The Effects of Various Concentrations of Ammonium Dihydrogen Phosphate Supplementation in Wine Fermentation

The concentration of nitrogen salt is as very important as the timing of nitrogen salt addition in the development of wine fermentation. Previous results (topic 3.2) revealed that kinetic parameters of wine fermentation supplemented with 700 ppm of ammonium dihydrogen phosphate after 17 h of fermentation was superior to wine fermentation without and with 700 ppm of ammonium dihydrogen phosphate supplementation at the beginning of fermentation. In this study, the influence of wine fermentation supplemented with various concentrations of ammonium dihydrogen phosphate after 17 h of fermentation supplemented with various concentrations of ammonium dihydrogen phosphate after 17 h of fermentation were investigated.

ลือสิทธิ์มหาวิทยาลัยเชียงไหม Copyright © by Chiang Mai University All rights reserved

Table 3.9 Carbon Dioxide Concentrations during Wine Fermentation Supplementedwith Various Concentrations of Ammonium Dihydrogen Phosphate after17 h of Fermentation.

	Carbon Dioxide (g/L)						
Time	Ammonium Dihydrogen Phosphate (ppm)						
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm	
0	0.00	0.00	0.00	0.00	0.00	0.00	
3	0.00	0.00	0.00	0.00	0.00	0.00	
6	0.18	0.18	0.18	0.18	0.18	0.18	
9	0.38	0.38	0.38	0.38	0.38	0.38	
10	0.65	0.65	0.65	0.65	0.65	0.65	
211	0.87	0.87	0.87	0.87	0.87	0.87	
12	1.17	1.17	1.17	1.17	1.17	1.17	
13	1.47	1.47	1.47	1.47	1.47	1.47	
14	1.78	1.78	1.78	1.78	1.78	1.78	
15	2.21	2.21	2.21	2.21	2.21	2.21	
16	2.78	2.78	2.78	2.78	2.78	2.78	
17	2.84	2.84	2.84	2.84	2.84	2.84	
18	3.35	3.80	3.84	4.05	3.97	3.99	
19	3.87	4.12	4.37	4.63	4.49	4.57	
20	4.42	4.61	4.97	5.27	5.10	5.18	
21	5.17	5.18	5.68	6.01	5.83	5.91	
22	5.92	6.05	6.38	6.74	6.63	6.77	
23	6.74	6.83	7.21	7.60	7.27	7.65	
24	7.67	7.69	8.14	8.54	8.23	9.24	
26	9.44	9.14	9.86	10.31	9.87	10.69	
28	10.92	10.89	11.77	512.36	11.82	12.70	
30	12.66	12.85	13.81	14.46	14.01	15.03	
33	15.93	15.78	17.08	17.67	17.02	18.36	

Table 3.9 (continued).

	Carbon Dioxide (g/L)							
Time	Ammonium Dihydrogen Phosphate (ppm)							
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm		
36	19.56	19.45	20.83	21.42	20.65	22.29		
39	22.90	22.96	24.52	25.29	24.56	26.35		
42	26.87	26.90	28.50	29.44	28.64	30.40		
45	30.56	30.93	32.97	34.03	33.22	35.08		
48	34.02	34.79	37.08	38.39	37.85	39.33		
54	40.14	41.25	44.48	46.28	45.06	47.39		
60	46.16	47.95	51.61	54.29	53.50	55.97		
66	51.93	54.31	58.10	61.54	61.15	64.42		
72	56.81	59.67	63.39	66.74	66.87	70.55		
78	61.76	65.31	68.12	71.01	72.30	75.14		
84	66.11	70.18	71.45	73.79	74.60	77.49		

The profiles of wine fermentation without (control) and with supplementation 100, 300, 500, 700, and 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation were as follows :

Table 3.9 and figure 3.13 showed carbon dioxide concentrations during wine fermentation. It was found that carbon dioxide concentrations increased gradually from 0 to 66.11, 70.18, 71.45, 73.79, 74.60, and 77.49 g/L, respectively.

ລື**ປສື່ກຣົບหາວົກຍາລັຍເຮີຍວໄหມ** Copyright © by Chiang Mai University All rights reserved

Figure 3.14 Rate of Carbon Dioxide Production during Wine Fermentation Supplemented with Ammonium Dihydrogen Phosphate of 100, 300, 500, 700, and 1000 ppm after 17 h of Fermentation.

Table 3.10Rates of Carbon Dioxide Production during Wine FermentationSupplemented with Various Concentrations of AmmoniumDihydrogen Phosphate after 17 h of Fermentation.

	Rates of Carbon Dioxide (g/L-h)						
Time	ab	Ammonium Dihydrogen Phosphate (ppm)					
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm	
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
6	0.0295	0.0295	0.0295	0.0295	0.0295	0.0295	
9	0.0425	0.0425	0.0425	0.0425	0.0425	0.0425	
10	0.0654	0.0654	0.0654	0.0654	0.0654	0.0654	
115	0.0793	0.0793	0.0793	0.0793	0.0793	0.0793	
12	0.0971	0.0971	0.0971	0.0971	0.0971	0.0971	
13	0.1129	0.1129	0.1129	0.1129	0.1129	0.1129	
14	0.1271	0.1271	0.1271	0.1271	0.1271	0.1271	
15	0.1472	0.1472	0.1472	0.1472	0.1472	0.1472	
16	0.1740	0.1740	0.1740	0.1740	0.1740	0.1740	
17	0.1669	0.1669	0.1669	0.1669	0.1669	0.1669	
18	0.1863	0.2111	0.2135	0.2253	0.2203	0.2216	
19	0.2039	0.2168	0.2301	0.2437	0.2365	0.2403	
20	0.2212	0.2303	0.2484	0.2634	0.2552	0.2592	
21	0.2464	0.2467	0.2703	0.2861	0.2775	0.2815	
22	0.2691	0.2749	0.2900	0.3063	0.3015	0.3077	
23	0.2930	0.2968	0.3136	0.3305	0.3163	0.3324	
24	0.3196	0.3203	0.3390	0.3557	0.3427	0.3849	
26	0.3631	0.3515	0.3793	0.3965	0.3797	0.4110	
28	0.3900	0.3889	0.4205	0.4416	0.4223	0.4537	
30	0.4218	0.4282	0.4603	0.4820	0.4669	0.5008	
33	0.4828	0.4782	0.5175	0.5353	0.5157	0.5563	
36	0.5435	0.5401	0.5785	0.5949	0.5737	0.6192	

Table 3.10 (continued).

		Rat	tes of Carbo	on Dioxide ((g/L-h)	
Time		Aı	nmonium I	Dihydrogen	Phosphate (j	ppm)
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm
39	0.5871	0.5886	0.6286	0.6484	0.6299	0.6757
42	0.6397	0.6405	0.6786	0.7010	0.6820	0.7239
45	0.6791	0.6874	0.7326	0.7562	0.7383	0.7796
48	0.7088	0.7248	0.7725	0.7999	0.7886	0.8194
54	0.7433	0.7639	0.8237	0.8571	0.8345	0.8775
60	0.7694	0.7992	0.8602	0.9048	0.8916	0.9329
66	0.7868	0.8228	0.8803	0.9324	0.9265	0.9761
72	0.7890	0.8287	0.8804	0.9269	0.9287	0.9798
78	0.7918	0.8373	0.8734	0.9103	0.9269	0.9634
84	0.7870	0.8355	0.8506	0.8784	0.8881	0.9225

Table 3.10 and figure 3.14 showed rates of carbon dioxide production during wine fermentation. It was found that the maximum rates of carbon dioxide production of wine fermentation without (control) and with supplementation 100, 300, 500, 700, and 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation increased gradually from 0 to 0.7918, 0.8373, 0.8804, 0.9324, 0.9287, and 0.9798 g/L-h after 78, 78, 72, 66, 72, and 72 h of fermentation, respectively.

ລິບສິກລົ້ມກາວົກຍາລັຍເຮີຍວໃກມ Copyright © by Chiang Mai University All rights reserved

Table 3.11Alcohol Concentrations during Wine Fermentation Supplemented with
Various Concentrations of Ammonium Dihydrogen Phosphate after 17
h of Fermentation.

		Alcohol (g/L)						
Time	Ammonium Dihydrogen Phosphate (ppm)							
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm		
0	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.26	0.26	0.26	0.26	0.26	0.26		
9	0.56	0.56	0.56	0.56	0.56	0.56		
10	0.96	0.96	0.96	0.96	0.96	0.96		
	1.27	1.27	1.27	1.27	1.27	1.27		
12	1.70	1.70	1.70	1.70	1.70	1.70		
13	2.14	2.14	2.14	2.14	2.14	2.14		
14	2.59	2.59	2.59	2.59	2.59	2.59		
15	3.21	3.21	3.21	3.21	3.21	3.21		
16	4.03	4.03	4.03	4.03	4.03	4.03		
17	4.11	4.11	4.11	4.11	4.11	4.11		
18	4.54	5.68	5.74	6.05	5.92	5.96		
19	5.13	6.15	6.52	6.90	6.70	6.81		
20	5.84	6.86	7.40	7.83	7.59	7.71		
21	6.81	7.70	8.43	8.91	8.65	8.77		
22	7.78	8.97	9.45	9.97	9.81	10.01		
23	8.83	10.09	10.65	11.21	10.74	11.27		
24	10.01	- 11.33	11.98	12.55	12.10	13.54		
26	12.24	13.40	14.42	15.05	14.44	15.58		
28	14.09	15.87	17.10	17.92	17.17	18.39		
30	-16.22	-18.59	19.91	20.80	20.18	21.57		
33	20.18	22.58	24.32	25.11	24.25	26.02		
36	24.45	27.45	29.25	30.01	29.03	31.14		
39	28.25	31.99	33.96	34.92	34.02	36.24		
42	32.65	36.92	38.87	40.01	39.05	41.16		

	Alcohol (g/L)					
Time		At	nmonium I	Dihydrogen	Phosphate (ppm)
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm
45	36.61	41.79	44.18	45.42	44.48	46.63
48	40.21	46.29	48.89	50.36	49.75	51.39
54	46.28	53.48	56.90	58.77	57.51	59.90
60	51.93	60.47	64.08	66.63	65.89	68.20
66	57.01	66.65	70.14	73.17	72.83	75.61
72	61.07	71.54	74.75	77.52	77.62	80.52
78	64.95	76.35	78.63	80.87	81.85	83.93
84	68.18	80.24	81.21	82.95	83.54	85.60

Table 3.11 (continued).

Table 3.11 and figure 3.15 showed alcohol concentrations during wine fermentation. It was found that alcohol concentrations of wine fermentation without (control) and with supplementation 100, 300, 500, 700, and 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation increased gradually from 0 to 68.18, 80.24, 81.21, 82.95, 83.54, and 85.60 g/L, respectively. The specific rates of substrate formation (q_p) and yield coefficients of product formation from substrate ($Y_{p/s}$) were 0.014, 0.016, 0.018, 0.019, 0.019, 0.021 g/L-h, and 0.398, 0.445, 0.444, 0.439, 0.438, 0.445 g/g, respectively.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม่ Copyright © by Chiang Mai University All rights reserved

Figure 3.16 Biomass Concentrations during Wine Fermentation Supplemented with Ammonium Dihydrogen Phosphate of 100, 300, 500, 700, and 1000 ppm after 17 h of Fermentation.

	Biomass (g/L)							
Time	Ammonium Dihydrogen Phosphate (ppm)							
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm		
0	0.3687	0.3687	0.3687	0.3687	0.3687	0.3687		
3	0.3687	0.3687	0.3687	0.3687	0.3687	0.3687		
6	0.3753	0.3753	0.3753	0.3753	0.3753	0.3753		
9	0.3829	0.3829	0.3829	0.3829	0.3829	0.3829		
10	0.3928	0.3928	0.3928	0.3928	0.3928	0.3928		
11	0.4007	0.4007	0.4007	0.4007	0.4007	0.4007		
12	0.4110	0.4110	0.4110	0.4110	0.4110	0.4110		
13	0.4215	0.4215	0.4215	0.4215	0.4215	0.4215		
14	0.4321	0.4321	0.4321	0.4321	0.4321	0.4321		
15	0.4464	0.4464	0.4464	0.4464	0.4464	0.4464		
16	0.4650	0.4650	0.4650	0.4650	0.4650	0.4650		
17	0.4666	0.4666	0.4666	0.4666	0.4666	0.4666		
18	0.4826	0.4960	0.4972	0.5034	0.5008	0.5015		
19	0.4982	0.5053	0.5125	0.5198	0.5160	0.5180		
20	0.5140	0.5191	0.5291	0.5371	0.5328	0.5349		
21	0.5346	0.5348	0.5478	0.5563	0.5517	0.5539		
22	0.5541	0.5573	0.5655	0.5742	0.5717	0.5749		
23	0.5742	0.5763	0.5853	0.5941	0.5867	0.5951		
24	0.5956	0.5960	0.6059	0.6143	0.6077	0.6285		
26	0.6325	0.6266	0.6405	0.6488	0.6407	0.6555		
28	0.6596	0.6591	0.6740	0.6834	0.6748	0.6886		
30	0.6879	0.6908	0.7049	0.7139	0.7076	0.7215		
33	0.7332	0.7312	0.7473	0.7543	0.7465	0.7624		
36	0.7765	0.7751	0.7911	0.7981	0.7891	0.8086		
39	0.8161	0.8168	0.8372	0.8479	0.8378	0.8636		
42	0.8717	0.8723	0.8993	0.9169	0.9019	0.9362		

Table 3.12Biomass Concentrations during Wine Fermentation Supplemented with
Various Concentrations of Ammonium Dihydrogen Phosphate after 17
h of Fermentation.

	Biomass (g/L)										
Time		Ammonium Dihydrogen Phosphate (ppm)									
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm					
45	0.9394	0.9474	0.9953	1.0234	1.0019	1.0535					
48	1.0232	1.0449	1.1171	1.1638	1.1441	1.1996					
54	1.2320	1.2792	1.4326	1.5289	1.4630	1.5914					
60	1.5223	1.6244	1.8516	2.0302	1.9766	2.1459					
66	1.8723	2.0316	2.2930	2.5257	2.4997	2.7045					
72	2.2040	2.4005	2.6430	2.8296	2.8358	2.9772					
78	2.5397	2.7551	2.8928	2.9887	3.0123	3.0109					
84	2.7977	2.9669	2.9984	3.0215	3.0174	2.9427					

Table 3.12 (continued).

Table 3.12 and figure 3.16 showed biomass concentrations during wine fermentation. It was found that biomass concentrations of wine fermentation without (control) and with supplementation 100, 300, 500, 700, and 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation increased gradually from 0.3687 to maximum amounts of 2.7977, 2.9669, 2.9984, 3.0215, 3.0174, and 3.0109 g/L after 84, 84, 84, 84, 84, and 78 h of fermentation, respectively. The specific growth rates (μ) and yield coefficients of biomass formation from substrate (Y_{x/s}) were 0.034, 0.037, 0.040, 0.044, 0.044, 0.047 h⁻¹, and 0.0142, 0.0144, 0.0144, 0.0141, 0.0139, 0.0134 g/g, respectively.

ລິບສິກຣົມหາວົກຍາລັຍເຮີຍວໄหມ Copyright © by Chiang Mai University All rights reserved Table 3.13Reducing Sugar Concentrations during Wine FermentationSupplemented with Various Concentrations of AmmoniumDihydrogen Phosphate after 17 h of Fermentation.

	Reducing Sugar (g/L)										
Time	ab	osphate (ppr	n)								
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm					
0	193.81	193.81	193.81	193.81	193.81	193.81					
3	193.81	193.81	193.81	193.81	193.81	193.81					
6	192.71	192.71	192.71	192.71	192.71	192.71					
9	191.45	191.45	191.45	191.45	191.45	191.45					
10	189.83	189.83	189.83	189.83	189.83	189.83					
	188.56	188.56	188.56	188.56	188.56	188.56					
12	186.91	186.91	186.91	186.91	186.91	186.91					
13	185.26	185.26	185.26	185.26	185.26	185.26					
14	183.60	183.60	183.60	183.60	183.60	183.60					
15	181.41	181.41	181.41	181.41	181.41	181.41					
16	178.60	178.60	178.60	178.60	178.60	178.60					
17	178.35	178.35	178.35	178.35	178.35	178.35					
18	175.96	173.99	173.81	172.90	173.27	173.17					
19	173.67	172.63	171.56	170.51	171.06	170.77					
20	171.35	170.61	169.15	167.98	168.62	168.31					
21	168.34	168.32	166.42	165.19	165.86	165.55					
22	165.52	165.04	163.84	162.57	162.94	162.46					
23	162.57	162.26	160.92	159.60	160.71	159.46					
24	159.38	159.32	157.83	156.54	157.55	154.33					
26	153.69	154.63	152.39	151.04	152.37	149.90					
28	149.21	149.30	146.70	144.99	146.55	144.01					
30	144.15	143.60	140.85	139.01	140.29	137.42					
33	134.87	135.30	131.66	130.01	131.82	128.07					
36	124.68	125.02	121.14	119.49	121.63	117.03					

Table 3.13	(continued).
-------------------	--------------

	Reducing Sugar (g/L)									
Time		Ammonium Dihydrogen Phosphate (ppm)								
(h)	Control	100 ppm	300 ppm	300 ppm 500 ppm		1000 ppm				
39	115.33	115.16	110.80	108.65	110.67	105.71				
42	104.28	104.18	99.82	97.28	99.43	94.71				
45	94.30	93.31	88.04	85.35	87.39	82.74				
48	85.37	83.47	77.95	74.90	76.15	72.78				
54	70.99	68.59	61.95	58.44	60.80	56.35				
60	58.67	55.30	48.71	44.04	45.42	41.12				
66	48.16	44.01	37.41	31.23	31.95	25.77				
72	39.66	34.63	27.76	21.10	20.84	12.82				
78	30.83	24.00	18.19	11.76	8.71	6.31				
84	22.40	13.66	10.72	5.07	3.01	1.66				

Table 3.13 and figure 3.17 showed the decrease of reducing sugar concentrations during wine fermentation. It was found that reducing sugar concentrations of wine fermentation without (control) and with supplementation 100, 300, 500, 700, and 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation decreased gradually from 193.81 to 22.40, 13.66, 10.72, 5.07, 3.01, and 1.66 g/L, respectively. The specific rates of substrate formation (q_s) were 2.39, 2.57, 2.78, 3.12, 3.17, and 3.51 g/g-h, respectively.

ລິ**ປສິ່ກຣິນหາວົກຍາລັຍເຮີຍວ[หม** Copyright © by Chiang Mai University All rights reserved

Figure 3.18 The Decrease of Total Soluble Solid during Wine Fermentation Supplemented with Ammonium Dihydrogen Phosphate of 100, 300, 500, 700, and 1000 ppm after 17 h of Fermentation.

Table 3	8.14	Total Soluble Solid during Wine Fermentation Supplemented with
		Various Concentrations of Ammonium Dihydrogen Phosphate after 17
		h of Fermentation.

				Total Solubl	e Solid ([°] Brix	:)	
1	Гime		A	mmonium D	ihydrogen Ph	osphate (ppr	n)
	(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm
	0	17.8	17.8	17.8	17.8	17.8	17.8
	3	17.8	17.8	17.8	17.8	17.8	17.8
	6	17.8	17.8	17.8	17.8	17.8	17.8
S	9	17.7	17.7	17.7	17.7	17.7	17.7
5	10	17.7	17.7	17.7	17.7	17.7	17.7
	11	17.6	17.6	17.6	17.6	17.6	17.6
	12	17.6	17.6	17.6	17.6	17.6	17.6
	13	17.5	17.5	17.5	17.5	17.5	17.5
	14	17.4	17.4	17.4	17.4	17.4	17.4
	15	17.4	17.4	17.4	17.4	17.4	17.4
	16	17.2	17.2	17.2	17.2	17.2	17.2
	17	17.2	17.2	17.2	17.2	17.2	17.2
	18	17.1	17.0	17.0	17.0	17.0	17.0
	19	17.0	17.0	16.9	16.9	16.9	16.9
	20	16.9	16.9	16.8	16.7	16.8	16.8
	21	16.8	16.8	16.7	16.6	16.6	16.6
	22	16.6	16.6	16.5	16.5	16.5	16.5
	23	16.5	16.4	16.4	16.3	16.4	16.3
Onv	24	16.3	16.3	16.2	16.1	16.2	16.0
	26	15.9	16.0	15.9	15.8	15.9	15.7
	28	15.7	0 15.7	15.5	15.4	15.5	15.3
	30	15.3	0 15.3	15.1	15.0	15.1	14.9
	33	14.7	14.8	14.5	14.4	14.6	14.3
	36	14.1	14.1	13.9	13.8	13.9	13.6
	39	13.5	13.5	13.3	13.1	13.3	13.0
	42	12.9	12.9	12.6	12.5	12.6	12.3

Table 3.14	(continued).
-------------------	--------------

	Total Soluble Solid (°Brix)										
Time		Ammonium Dihydrogen Phosphate (ppm)									
(h)	Control	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm					
45	12.3	12.2	11.9	11.8	11.9	11.6					
48	11.8	11.7	11.3	11.1	11.2	11.0					
54	10.9	10.7	10.3	10.1	10.2	9.9					
60	10.1	9.8	9.4	9.1	9.2	8.9					
66	9.3	9.1	8.6	8.3	8.3	8.0					
72	8.8	8.5	8.1	7.7	7.7	7.4					
78	8.2	7.9	7.6	7.3	7.2	7.0					
84	7.8	7.4	7.3	7.1	7.0	6.8					

Table 3.14 and figure 3.18 showed the decrease of total soluble solid (°Brix) during wine fermentation. It was found that total soluble solid of wine fermentation without (control) and with supplementation 100, 300, 500, 700, and 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation decreased gradually from 17.8 to 7.8, 7.4, 7.3, 7.1, 7.0, and 6.8 °Brix, respectively.

ລິ<mark>ປສົກຂົ້ນກາວົກຍາລັຍເຮີຍວໃหມ່</mark> Copyright © by Chiang Mai University All rights reserved Table 3.15Comparison of Kinetic Parameters in Wine Fermentation Supplemented with
Various Ammonium Dihydrogen Phosphate Concentrations after 17 h of
Fermentation.

Vinatia Paramatara	318	Ammoniu	m Dihydro	gen Phosp	hate (ppm)	
Killetic Farameters	control	100	300	500	700	1000
The specific growth rate $(\mu),h^{-1}$	0.034	0.037	0.040	0.044	0.044	0.047
The specific rate of substrate consumption (q _s), g/g-h	2.39	2.57	2.78	3.12	3.17	3.51
The specific rate of product formation (q _p), g/g-h	0.014	0.016	0.018	0.019	0.019	0.021
Yield coefficient of biomass formation from substrate (Y _{x/s}), g/g	0.0142	0.0144	0.0144	0.0141	0.0139	0.0134
Yield coefficient of product formation from substrate (Y _{p/s}), g/g	0.398	0.445	0.444	0.439	0.438	0.445
Alcohol (g/L)	68.18 e	80.24 d	81.21 c	82.95 b	83.54 b	85.60 a

Mean separation within row by Duncan's multiple range test, p < 0.05.

Table 3.15 showed kinetic parameters of wine fermentation. It was found that wine fermentation supplemented with 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation was superior to wine fermentation with 700, 500, 300, and 100 ppm of ammonium dihydrogen phosphate supplementation after 17 h of fermentation and control, respectively. Fermentation kinetics of wine fermentation supplemented with 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation with 1000 ppm of ammonium dihydrogen phosphate supplementation after 17 h of fermentation and control, respectively. Fermentation kinetics of wine fermentation supplemented with 1000 ppm of ammonium dihydrogen phosphate after 17 h of fermentation were calculated out. It was revealed that the specific growth rate (μ) was

0.047 h⁻¹, the specific rate of substrate consumption (q_s) was 3.51g/g-h, the specific rate of product formation (q_p) was 0.021 g/g-h, yield coefficient of biomass formation from substrate ($Y_{x/s}$) was 0.0134 g/g and yield coefficient of product formation from substrate ($Y_{p/s}$) was 0.445 g/g. Alcohol concentration of 85.60 g/L and the final total soluble solid of 6.8 °Brix in wine were obtained.

Insufficient levels of yeast nutrient have been considered to lead to a reduced yeast tolerance of ethanol, and of these nutrients, assimilable nitrogen levels can be critical. Additives of assimilable nitrogen have been shown to increase sugar usage and ethanol formation (Allen and Auld, 1988)

Yeast hulls, or yeast ghosts, have been reported to enhance fermentation rates and prevent stuck or sluggish fermentations. These act as adsorbing agents lowering the concentration of toxic substances in fermentation medium. Yeast hull additions (0.2 g/L) can stimulate fermentation not simply by detoxification as was previously believed, but by supplying unsaturated fatty acid (C-16, C-18) as an oxygen substitute (Munoz and Ingledew, 1990).

3.4 The Effects of Various Concentrations of Ammonium Sulfate in Wine Fermentation

The species of nitrogen were as important as the timing addition and concentration of nitrogen in the development of wine fermentation. Timing of nitrogen addition in wine fermentation in topic 3.2 revealed that kinetic parameter of wine fermentation supplemented with 700 ppm of ammonium phosphate after 17 h of fermentation was superior to wine fermentation without and with 700 ppm of ammonium phosphate supplementation at the beginning of fermentation. In addition, the result in topic 3.3 revealed that kinetic parameter of wine fermentation supplemented with 1000 ppm of ammonium phosphate after 17 h of fermentation supplemented with 1000 ppm of ammonium phosphate after 17 h of fermentation was superior to wine fermentation. In this study, the influences of ammonium phosphate after 17 h of fermentation. In this study, the influences of ammonium sulfate of 700 ppm at the beginning of fermentation and 100, 300, 500, 700, and 1000 ppm after 17 h of fermentation were investigated.

			Ca	rbon Dioxic	de (g/L)						
Time		Time of Supplementation (h)									
(h)	Control	0 h		17 h							
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm				
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
6	0.18	0.17	0.18	0.18	0.18	0.18	0.18				
9	0.39	0.41	0.39	0.39	0.39	0.39	0.39				
10	0.66	0.63	0.66	0.66	0.66	0.66	0.66				
Gir-	0.88	0.85	0.88	0.88	0.88	0.88	0.88				
12	1.18	1.15	1.18	1.18	1.18	1.18	1.18				
13	1.49	1.49	1.49	1.49	1.49	1.49	1.49				
14	1.80	1.80	1.80	1.80	1.80	1.80	1.80				
15	2.23	2.20	2.23	2.23	2.23	2.23	2.23				
16	2.82	2.73	2.82	2.82	2.82	2.82	2.82				
17	2.87	3.28	2.87	2.87	2.87	2.87	2.87				
18	3.39	4.04	3.79	4.44	4.65	4.68	4.60				
19	3.92	4.98	4.33	5.38	5.64	5.75	5.76				
20	4.48	5.70	4.91	6.09	6.35	6.47	6.51				
21	5.24	6.54	5.57	6.93	7.25	7.43	7.41				
22	5.99	7.34	6.48	7.86	8.13	8.33	8.30				
23	6.82	8.18	7.37	8.82	9.18	9.34	9.30				
24	7.76	9.23	8.32	9.96	10.37	10.56	10.45				
26	9.55	11.09	9.87	12.01	12.49	12.72	12.49				
28	11.05	13.09	11.71	14.15	14.71	14.88	14.69				
30	12.80	15.08	13.66	16.53	17.14	17.32	16.91				
33	16.12	18.67	17.05	20.08	20.94	21.17	20.60				

Table 3.16Carbon Dioxide Concentrations during Wine Fermentation Supplementedwith Various Concentrations of Ammonium Sulfate.

Table 3.16 (continued).

			Ca	rbon Dioxid	de (g/L)					
Time		Time of Supplementation (h)								
(h)	Control	0 h 9	1817	6	17 h					
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm			
36	19.79	22.72	20.76	24.14	25.02	25.31	24.55			
39	23.16	26.60	24.34	28.11	29.11	29.30	28.66			
42	27.18	30.98	28.47	32.55	33.71	33.86	33.19			
45	30.92	35.70	32.54	37.24	38.69	38.91	38.33			
48	34.42	40.35	36.35	41.61	43.58	43.76	43.13			
54	40.61	48.74	43.01	49.06	51.80	52.62	51.71			
60	46.70	57.43	49.76	56.45	59.67	61.35	60.63			
66	52.53	64.72	55.97	62.97	66.42	68.01	68.69			
72	57.47	69.50	61.26	68.14	71.09	72.41	74.18			
78	62.48	72.91	66.72	72.34	74.63	75.58	76.96			
84	66.88	74.95	71.31	75.27	77.33	77.60	78.90			

The profiles of wine fermentation without the addition of ammonium sulfate (control) and wine fermentation supplemented with 700 ppm at the beginning of fermentation and 100, 300, 500, 700, and 1000 ppm of ammonium sulfate after 17 h of fermentation were showed in table 3.16 and figure 3.19. It was found that carbon dioxide concentrations increased gradually from 0 to 66.88, 74.95 71.31 75.27, 77.33, 77.60, and 78.90 g/L, respectively.

adansun 1910-1910-1901 nu Copyright © by Chiang Mai University All rights reserved

Figure 3.20 Rates of Carbon Dioxide Production during Wine Fermentation Supplemented with Ammonium Sulfate of 700 ppm at the beginning and 100, 300, 500, 700, and 1000 ppm after 17 h of Fermentation.

	Rates of Carbon Dioxide (g/L-h)											
Time		Time of Supplementation (h)										
(h)	Control	0 h										
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm					
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
6	0.0298	0.0282	0.0298	0.0298	0.0298	0.0298	0.0298					
9	0.0430	0.0454	0.0430	0.0430	0.0430	0.0430	0.0430					
10	0.0662	0.0631	0.0662	0.0662	0.0662	0.0662	0.0662					
915	0.0803	0.0770	0.0803	0.0803	0.0803	0.0803	0.0803					
12	0.0983	0.0958	0.0983	0.0983	0.0983	0.0983	0.0983					
13	0.1142	0.1150	0.1142	0.1142	0.1142	0.1142	0.1142					
14	0.1286	0.1286	0.1286	0.1286	0.1286	0.1286	0.1286					
15	0.1489	0.1468	0.1489	0.1489	0.1489	0.1489	0.1489					
16	0.1761	0.1706	0.1761	0.1761	0.1761	0.1761	0.1761					
17	0.1688	0.1930	0.1688	0.1688	0.1688	0.1688	0.1688					
18	0.1885	0.2246	0.2107	0.2468	0.2581	0.2599	0.2554					
19	0.2063	0.2619	0.2281	0.2830	0.2969	0.3025	0.3030					
20	0.2238	0.2849	0.2457	0.3043	0.3173	0.3237	0.3256					
21	0.2493	0.3113	0.2652	0.3302	0.3450	0.3539	0.3528					
22	0.2722	0.3334	0.2947	0.3575	0.3696	0.3786	0.3771					
23	0.2964	0.3556	0.3204	0.3834	0.3989	0.4063	0.4045					
24	0.3233	0.3845	0.3466	0.4150	0.4323	0.4398	0.4354					
26	0.3673	0.4264	0.3798	0.4621	0.4803	0.4891	0.4802					
28	0.3946	0.4676	0.4184	0.5053	0.5254	0.5313	0.5246					
30	0.4268	0.5025	0.4554	0.5510	0.5714	0.5774	0.5638					
33	0.4884	0.5657	0.5165	0.6084	0.6347	0.6416	0.6242					
36	0.5498	0.6311	0.5768	0.6704	0.6949	0.7031	0.6818					
39	0.5939	0.6821	0.6240	0.7208	0.7463	0.7513	0.7349					
42	0.6471	0.7376	0.6780	0.7750	0.8025	0.8061	0.7903					

Table 3.17 Rates of Carbon Dioxide Production during Wine FermentationSupplemented with Various Concentrations of Ammonium Sulfate.

Table	3.17	(continued)).
-------	------	-------------	----

	Rates of Carbon Dioxide (g/L-h)									
Time			Τ	ime of Sup	plementatio	n (h)				
(h)	Control	0 h	17 h							
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm			
45	0.6870	0.7933	0.7231	0.8276	0.8597	0.8648	0.8517			
48	0.7170	0.8406	0.7573	0.8668	0.9078	0.9116	0.8985			
54	0.7520	0.9026	0.7965	0.9085	0.9592	0.9745	0.9577			
60	0.7784	0.9572	0.8293	0.9408	0.9945	1.0225	1.0104			
66	0.7960	0.9806	0.8481	0.9542	1.0063	1.0305	1.0408			
72	0.7983	0.9653	0.8509	0.9464	0.9873	1.0057	1.0303			
78	0.8010	0.9347	0.8554	0.9274	0.9568	0.9689	0.9867			
84	0.7962	0.8922	0.8489	0.8960	0.9206	0.9238	0.9393			

Table 3.17 and figure 3.20 showed rates of carbon dioxide production during wine fermentation. It was found that the maximum rates of carbon dioxide production of wine fermentation without the addition of ammonium salt (control) and wine fermentation supplemented with 700 ppm at the beginning of fermentation and 100, 300, 500, 700 and 1000 ppm of ammonium sulfate after 17 h of fermentation increased gradually from 0 to 0.8010, 0.9806, 0.8554, 0.9542, 1.0063, 1.0408, and 1.0408 g/L-h after 78, 66, 78, 66, 66, 66, and 66 h of fermentation, respectively.

ລິບສິກລິ້ມກາວົກຍາລັຍເຮີຍວໃກມ່ Copyright © by Chiang Mai University All rights reserved

	Alcohol (g/L)										
Time		9/13	TIZE	ime of Sup	plementation	n (h)					
(h)	Control	0 h		•	17 h						
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm				
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
6	0.26	0.26	0.26	0.26	0.26	0.26	0.26				
9	0.57	0.62	0.57	0.57	0.57	0.57	0.57				
10	0.97	0.95	0.97	0.97	0.97	0.97	0.97				
915	1.29	1.28	1.29	1.29	1.29	1.29	1.29				
12	1.72	1.73	1.72	1.72	1.72	1.72	1.72				
13	2.16	2.25	2.16	2.16	2.16	2.16	2.16				
14	2.62	2.71	2.62	2.62	2.62	2.62	2.62				
15	3.24	3.31	3.24	3.24	3.24	3.24	3.24				
16	4.08	4.09	4.08	4.08	4.08	4.08	4.08				
17	4.16	4.91	4.16	4.16	4.16	4.16	4.16				
18	4.59	6.04	5.67	6.63	6.92	6.97	6.85				
19	5.18	7.41	6.47	7.99	8.38	8.53	8.55				
20	5.91	8.46	7.31	9.02	9.40	9.58	9.64				
21	6.89	9.68	8.27	10.25	10.70	10.97	10.93				
22	7.86	10.83	9.60	11.59	11.97	12.25	12.20				
23	8.93	12.04	10.87	12.95	13.45	13.69	13.63				
24	10.12	13.53	12.24	14.56	15.15	15.40	15.25				
26	12.38	16.14	14.44	17.43	18.09	18.41	18.09				
28	14.25	18.93	17.02	20.37	21.14	21.36	21.11				
30	16.40	21.63	19.71	23.59	24.41	24.65	24.11				
33	20.40	26.44	24.28	28.28	29.40	29.70	28.96				
36	24.71	31.68	29.17	33.48	34.58	34.95	33.99				
39	28.55	36.55	33.73	38.40	39.61	39.84	39.07				
42	32.99	41.85	38.84	43.70	45.04	45.22	44.45				

Table 3.18Alcohol Concentrations during Wine Fermentation Supplemented with
Various Concentrations of Ammonium Sulfate.

Table 3.18 (continued).

	Alcohol (g/L)									
Time		Time of Supplementation (h)								
(h)	Control	0 h	17 h							
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm			
45	36.98	47.33	43.68	49.07	50.68	50.93	50.28			
48	40.61	52.50	48.07	53.86	55.96	56.15	55.48			
54	46.74	61.26	55.36	61.57	64.26	65.05	64.18			
60	52.41	69.54	62.26	68.64	71.54	73.01	72.38			
66	57.52	75.86	68.20	74.40	77.26	78.54	79.07			
72	61.60	79.71	72.93	78.64	80.93	81.93	83.24			
78	65.50	82.30	77.50	81.88	83.57	84.25	85.22			
84	68.74	83.79	81.10	84.02	85.48	85.67	86.56			

Table 3.18 and figure 3.21 showed alcohol concentrations during wine fermentation. It was found that alcohol concentrations of wine fermentation without the addition of ammonium salt (control) and wine fermentation supplemented with 700 ppm at the beginning of fermentation and 100, 300, 500, 700, and 1000 ppm of ammonium sulfate after 17 h of fermentation increased gradually from 0 to 68.74, 83.79, 81.10, 84.02, 85.48, 85.67, and 86.56 g/L, respectively. The specific rates of substrate formation (q_p) and yield coefficients of product formation from substrate ($Y_{p/s}$) of them were 0.013, 0.021, 0.017, 0.019, 0.023, 0.022, 0.023 g/L-h, and 0.397, 0.439, 0.444, 0.441, 0.448, 0.448, 0.452 g/g, respectively.

Copyright [©] by Chiang Mai University All rights reserved

Figure 3.22 Biomass Concentrations during Wine Fermentation Supplemented with Ammonium Sulfate of 700 ppm at the beginning and 100, 300, 500, 700, and 1000 ppm after 17 h of Fermentation.

	Biomass (g/L)									
Time	Time of Supplementation (h)									
(h)	Control	0 h	17 h							
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm			
0	0.3546	0.3546	0.3546	0.3546	0.3546	0.3546	0.3546			
3	0.3546	0.3546	0.3546	0.3546	0.3546	0.3546	0.3546			
6	0.3613	0.3609	0.3613	0.3613	0.3613	0.3613	0.3613			
9	0.3690	0.3698	0.3690	0.3690	0.3690	0.3690	0.3690			
10	0.3790	0.3779	0.3790	0.3790	0.3790	0.3790	0.3790			
H	0.3869	0.3857	0.3869	0.3869	0.3869	0.3869	0.3869			
12	0.3974	0.3964	0.3974	0.3974	0.3974	0.3974	0.3974			
13	0.4080	0.4084	0.4080	0.4080	0.4080	0.4080	0.4080			
14	0.4187	0.4187	0.4187	0.4187	0.4187	0.4187	0.4187			
15	0.4332	0.4321	0.4332	0.4332	0.4332	0.4332	0.4332			
16	0.4519	0.4491	0.4519	0.4519	0.4519	0.4519	0.4519			
17	0.4536	0.4663	0.4536	0.4536	0.4536	0.4536	0.4536			
18	0.4697	0.4890	0.4817	0.5004	0.5061	0.5070	0.5047			
19	0.4854	0.5152	0.4974	0.5259	0.5328	0.5355	0.5358			
20	0.5013	0.5343	0.5135	0.5441	0.5506	0.5537	0.5546			
21	0.5221	0.5553	0.5309	0.5647	0.5720	0.5762	0.5757			
22	0.5417	0.5740	0.5540	0.5858	0.5916	0.5958	0.5951			
23	0.5620	0.5926	0.5748	0.6060	0.6132	0.6165	0.6157			
24	0.5835	0.6142	0.5956	0.6283	0.6359	0.6391	0.6372			
26	0.6205	0.6484	0.6266	0.6638	0.6712	0.6747	0.6712			
28	0.6477	0.6804	0.6589	0.6955	0.7032	0.7054	0.7029			
30	0.6760	0.7080	0.6887	0.7265	0.7339	0.7361	0.7312			
33	0.7214	0.7520	0.7328	0.7683	0.7784	0.7811	0.7744			
36	0.7650	0.7998	0.7763	0.8180	0.8300	0.8342	0.8235			

 Table 3.19 Biomass Concentrations during Wine Fermentation Supplemented with

 Various Concentrations of Ammonium Sulfate.

Table 3.19 (continued).
--------------	-------------

	Biomass (g/L)									
Time		Time of Supplementation (h)								
(h)	Control	0 h	17 h							
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm			
39	0.8054	0.8534	0.8207	0.8784	0.8964	0.9000	0.8881			
42	0.8626	0.9343	0.8848	0.9708	1.0005	1.0045	0.9870			
45	0.9330	1.0582	0.9705	1.1085	1.1607	1.1693	1.1472			
48	1.0201	1.2267	1.0787	1.2808	1.3732	1.3821	1.3513			
54	1.2374	1.6572	1.3458	1.6764	1.8498	1.9041	1.8442			
60	1.5382	2.2330	1.7193	2.1647	2.3868	2.4992	2.4510			
66	1.8981	2.7076	2.1318	2.6032	2.7993	2.8741	2.9018			
72	2.2357	2.9313	2.4934	2.8796	2.9764	2.9996	3.0063			
78	2.5719	3.0044	2.8146	2.9987	3.0031	2.9892	2.9501			
84	2.8223	2.9995	2.9813	2.9948	2.9356	2.9239	2.8532			

Table 3.19 and figure 3.22 showed biomass concentrations during wine fermentation. It was found that biomass concentrations of wine fermentation without the addition of ammonium salt (control) and wine fermentation supplemented with 700 ppm at the beginning of fermentation and 100, 300, 500, 700, and 1000 ppm of ammonium sulfate after 17 h of fermentation increased gradually from 0.3546 to maximum amounts of 2.8223, 3.0044, 2.9813, 2.9987, 3.0031, 2.9996, and 3.0063 g/L after 84, 78, 84, 78, 78, 72, and 72 h of fermentation, respectively. The specific growth rates (μ) and yield coefficients of biomass formation from substrate (Y_{x/s}) were 0.034, 0.048, 0.038, 0.044, 0.052, 0.049, 0.051 h⁻¹, and 0.0143, 0.0139, 0.0144, 0.0139, 0.0131 g/g, respectively.

	Reducing Sugar (g/L)									
Time		Time of Supplementation (h)								
(h)	Control	0 h		•	17 h					
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm			
0	193.19	193.19	193.19	193.19	193.19	193.19	193.19			
3	193.19	193.19	193.19	193.19	193.19	193.19	193.19			
6	192.07	192.13	192.07	192.07	192.07	192.07	192.07			
9	190.80	190.68	190.80	190.80	190.80	190.80	190.80			
10	189.17	189.35	189.17	189.17	189.17	189.17	189.17			
	187.89	188.09	187.89	187.89	187.89	187.89	187.89			
12	186.22	186.38	186.22	186.22	186.22	186.22	186.22			
13	184.54	184.49	184.54	184.54	184.54	184.54	184.54			
14	182.87	182.88	182.87	182.87	182.87	182.87	182.87			
15	180.66	180.82	180.66	180.66	180.66	180.66	180.66			
16	177.82	178.24	177.82	177.82	177.82	177.82	177.82			
17	177.57	175.67	177.57	177.57	177.57	177.57	177.57			
18	175.17	172.32	173.40	170.65	169.82	169.69	170.02			
19	172.86	168.50	171.10	166.94	165.94	165.54	165.50			
20	170.52	165.73	168.75	164.29	163.35	162.89	162.75			
21	167.49	162.66	166.21	161.27	160.19	159.56	159.64			
22	164.64	159.88	162.85	158.11	157.23	156.59	156.70			
23	161.67	157.08	159.77	155.03	153.90	153.37	153.50			
24	158.46	153.73	156.62	151.47	150.22	149.67	150.00			
26	152.73	148.10	151.74	145.38	144.01	143.35	144.02			
28	148.21	142.27	146.25	139.27	137.68	137.21	137.74			
30	143.10	136.66	140.65	132.57	130.85	130.35	131.49			
33	133.73	126.57	131.13	122.62	120.19	119.55	121.16			
36	123.42	115.21	120.69	111.24	108.78	107.97	110.10			
39	113.96	104.39	110.68	100.25	97.56	97.04	98.76			
42	102.80	92.57	99.27	88.48	85.54	85.17	86.84			

 Table 3.20 Reducing Sugar Concentrations during Wine Fermentation Supplemented

 with Various Concentrations of Ammonium Sulfate.

Table 3.20 (continued).

	Reducing Sugar (g/L)										
Time	Control		Time of Supplementation (h)								
(h)		0 h	17 h								
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm				
45	92.74	80.62	88.52	76.95	73.61	73.10	74.44				
48	83.76	69.91	79.06	67.21	63.13	62.77	64.05				
54	69.35	53.23	64.28	52.65	47.76	46.32	47.91				
60	57.02	37.96	51.39	39.68	34.00	30.95	32.28				
66	46.48	24.56	40.50	27.93	21.15	17.81	16.34				
72	37.89	14.56	31.12	17.53	10.96	9.82	8.45				
78	28.87	6.61	20.52	7.99	5.62	5.32	4.63				
84	20.19	2.54	10.44	2.67	2.43	2.08	1.87				

Table 3.20 and figure 3.23 showed the decrease of reducing sugar concentrations during wine fermentation. It was found that reducing sugar concentrations of wine fermentation without the addition of ammonium sulfate (control) and wine fermentation supplemented with 700 ppm at the beginning of fermentation and 100, 300, 500, 700, and 1000 ppm of ammonium sulfate after 17 h of fermentation decreased gradually from 193.19 to 20.19, 2.54, 10.44, 2.67, 2.43, 2.08, and 1.87 g/L, respectively. The specific rates of substrate consumption (q_s) were 2.38, 3.45, 2.64, 3.17, 3.85, 3.65, and 3.89 g/g-h, respectively.

ลือสิทธิมหาวิทยาลัยเชียอไหม Copyright © by Chiang Mai University All rights reserved

Figure 3.24 The Decrease of Total Soluble Solid during Wine Fermentation Supplemented with Ammonium Sulfate of 700 ppm at the beginning and 100, 300, 500, 700, and 1000 ppm after 17 h of Fermentation.

	Total Soluble Solid (°Brix)										
Time		008	I E I	ime of Sup	plementatio	n (h)					
(h)	Control	0 h		17 h							
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm				
0	17.8	17.8	17.8	17.8	17.8	17.8	17.8				
3	17.8	17.8	17.8	17.8	17.8	17.8	17.8				
6	17.8	17.8	17.8	17.8	17.8	17.8	17.8				
9	17.7	17.7	17.7	17.7	17.7	17.7	17.7				
10	17.7	17.7	17.7	17.7	17.7	17.7	17.7				
291	17.6	17.6	17.6	17.6	17.6	17.6	17.6				
12	17.6	17.6	17.6	17.6	17.6	17.6	17.6				
13	17.5	17.5	17.5	17.5	17.5	17.5	17.5				
14	17.4	17.4	17.4	17.4	17.4	17.4	17.4				
15	17.3	17.4	17.3	17.3	17.3	17.3	17.3				
16	17.2	17.2	17.2	17.2	17.2	17.2	17.2				
17	17.2	17.1	17.2	17.2	17.2	17.2	17.2				
18	17.1	17.0	17.0	16.9	16.9	16.9	16.9				
19	17.0	16.8	16.9	16.7	16.7	16.7	16.7				
20	16.9	16.7	16.8	16.6	16.5	16.5	16.5				
21	16.8	16.5	16.7	16.4	16.4	16.3	16.3				
22	16.6	16.3	16.5	16.2	16.2	16.2	16.2				
23	16.4	16.2	16.3	16.1	16.0	16.0	16.0				
24	16.3	16.0	16.2	15.8	15.8	15.7	15.8				
26	15.9	15.6	15.9	15.5	15.4	15.3	15.4				
28	15.6	15.3	15.5	15.1	15.0	14.9	15.0				
30	15.3	14.9	15.2	14.6	14.5	14.5	14.6				
33	14.7	14.3	14.6	14.0	13.9	13.8	13.9				
36	14.1	13.6	13.9	13.3	13.2	13.1	13.3				

 Table 3.21
 Total Soluble Solid during Wine Fermentation Supplemented with Various

 Concentrations of Ammonium Sulfate.

Table 3.21 (continued).

	Total Soluble Solid (^o Brix)									
Time		Time of Supplementation (h)								
(h)	Control	0 h	17 h							
		700 ppm	100 ppm	300 ppm	500 ppm	700 ppm	1000 ppm			
39	13.5	12.9	13.3	12.7	12.5	12.5	12.6			
42	12.8	12.2	12.6	12.0	11.8	11.8	11.9			
45	12.2	11.5	12.0	11.3	11.1	11.1	11.1			
48	11.7	10.9	11.4	10.7	10.4	10.4	10.5			
54	10.8	9.7	10.5	9.7	9.4	9.3	9.4			
60	10.0	8.7	9.6	8.8	8.5	8.3	8.4			
66	9.3	7.9	8.9	8.1	7.8	7.6	7.5			
72	8.7	7.5	8.3	7.6	7.3	7.2	7.0			
78	8.2	7.2	7.7	7.2	7.0	6.9	6.8			
84	7.7	7.0	7.3	7.0	6.8	6.8	6.7			

Table 3.21 and figure 3.24 showed the decrease of total soluble solid (°Brix) during wine fermentation. It was found that total soluble solid of wine fermentation without the addition of ammonium salt (control) and wine fermentation supplemented with 700 ppm at the begining of fermentation and 100, 300, 500, 700, and 1000 ppm of ammonium sulfate after 17 h of fermentation decreased gradually from 17.8 to 7.7, 7.0, 7.3, 7.0, 6.8, 6.8, and 6.7 °Brix, respectively.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

Table 3.22 Comparison of Kinetic Parameters in Wine Fermentation Supplementedwith Various Ammonium Sulfate Concentrations at the beginning andafter 17 h of Fermentation.

	181	E H	Tim	e of Suppl	ementatio	n (h)			
Kinetic Parameters	control	0 h	0 h 17 h						
		700	100	300	500	700	1000		
		ppm	ppm	ppm	ppm	ppm	ppm		
The specific growth $rate(\mu),h^{-1}$	0.034	0.048	0.038	0.044	0.052	0.049	0.051		
The specific rate of substrate consumption (q _s), g/g-h	2.38	3.45	2.64	3.17	3.85	3.65	3.89		
The specific rate of product formation (q _p), g/g-h	0.013	0.021	0.017	0.019	0.023	0.022	0.023		
Yield coefficient of biomass formation from substrate (Y _{x/s}), g/g	0.0143	0.0139	0.0144	0.0139	0.0135	0.0134	0.0131		
Yield coefficient of product formatiom from substrate (Y _{p/s}), g/g	0.397	0.439	0.444	0.441	0.448	0.448	0.452		
Alcohol (g/L)	68.74 e	83.79 c	81.10 d	84.02 c	85.48 b	85.67 b	86.56 a		

Mean separation within row by Duncan's multiple range test, p < 0.05.

Table 3.22 showed kinetic parameters of wine fermentation. It was found that wine fermentation supplemented with 1000 ppm of ammonium sulfate after 17 h of fermentation was superior to wine fermentation supplemented with other concentrations of ammonium sulfate at the beginning of fermentation and after 17 h of fermentation. Fermentation kinetics of wine fermentation supplemented with 1000 ppm of ammonium sulfate after 17 h of fermentation were carried out. It was revealed that the specific growth rate (μ) was 0.051 h⁻¹, the specific rate of substrate consumption (q_s) was 3.89 g/g-h, the specific rate of product formation (q_p) was 0.023 g/g-h, yield coefficient of biomass formation from substrate (Y_{x/s}) was 0.0131 g/g and yield coefficient of product formation from substrate (Y_{p/s}) was 0.452 g/g. Alcohol content of 86.56 g/L, and the final total soluble solid of 6.7 °Brix in wine were obtained.

A deficiency of assimilable nitrogen in must has been linked to poor yeast growth, stuck fermentations and production of hydrogen sulfide. Pre-fermentation processing of musts may lower the concentration of essential yeast nutrients, thereby increasing the possibility of a sluggish or stuck fermentation and reduced yeast growth (Eglinton and Henschke, 1993). In brewing, stuck and sluggish batch fermentation in very high gravity worts seemed to be caused by insufficient level of yeast nutrients and the effect of these nutrients on tolerance of the culture to ethanol (Ingledew and Kunkee, 1985). Many high gravity worts are known to be nitrogen can increase fermentation rate and can reduce time required for fermentation completion (Bely *et. al.*, 1990b). It is generally accepted that 150 mg/L of free amino nitrogen (FAN) is required in a wort for a normal fermentation. Enologists have demonstrated that large amounts (over 500 mg/L) of assimilable nitrogen when present with oxygen (and/or substitutes), resulted in very rapid batch fermentations of musts and worts of very high initial sugar concentrations (Ingledew *et. al.*, 1986).

Ammonium Salts	Concentration	Alcohol
- 018	(ppm)	(g/L)
Ammonium dihydrogen phosphate	100	80.24 f
	300	81.21 e
	500	82.95 d
	700	83.54 cd
	1000	85.60 b
Ammonium sulfate	100	81.10 e
	300	84.02 c
	500	85.48 b
	700	85.67 b
	1000	86.56 a

Table 3.23Comparison of Alcohol Concentrations in Wine FermentationSupplemented with Various Concentrations of Ammonium Salts.

Mean separation within column by Duncan's multiple range test, p < 0.05.

Table 3.23 showed alcohol concentrations in wine fermentation. It was found that alcohol concentrations of wine fermentation supplemented with 1000 ppm of ammonium dihydrogen phosphate, and 500 and 700 ppm of ammonium sulfate were not significantly different at p < 0.05. In addition, alcohol concentrations of wine fermentation supplemented with 100 ppm of ammonium dihydrogen phosphate and 1000 ppm of ammonium sulfate were the lowest and the highest at p < 0.05, respectively.

Copyright © by Chiang Mai University All rights reserved

3.5 Conclusions

1. The equations and R-square values of carbon dioxide concentration (CO₂) with alcohol (alc), reducing sugar (RS), biomass (X) and total soluble solid (TSS) are as follows :

 $y_{co_2/alc} = -0.0053X^2 + 1.5148X \ (R^2 = 0.9961)$

 $y_{co_2/RS} = -2x10^{-6}X^5 + 0.0003X^4 - 0.0217X^3 + 0.6587X^2 - 10.255X + 182.48$ (R² = 0.9937)

 $y_{co_2/X} = -6x10^{-9}X^5 + 6x10^7X^4 + 3x10^{-6}X^3 - 0.0011X^2 + 0.0376X + 0.3323$ (R² = 0.941)

 $y_{co_2/TSS} = 0.0008X^2 - 0.2043X + 17.503 (R^2 = 0.9963)$

2. The suitable time for supplementation of ammonium salt was after 17 h of fermentation. It was better than supplementation at the beginning of the fermentation. It was found that the specific growth rate (μ) was 0.047 h⁻¹, the specific rate of substrate consumption (q_s) was 3.36 g/g-h, the specific rate of product formation (q_p) was 0.021 g/g-h, yield coefficient of biomass formation from substrate ($Y_{x/s}$) was 0.0140 g/g and yield coefficient of production formation from substrate ($Y_{p/s}$) was 0.443 g/g. The alcohol of 83.89 g/L and the final total soluble solid of 7.0 °Brix in wine were obtained in wine fermentation supplemented with 700 ppm of ammonium dihydrogen phosphate after 17 h of fermentation.

3. The optimum concentration of ammonium dihydrogen phosphate as nitrogen sources for *Saccharomyces cerevisiae* was 1000 ppm. It was better than those of 100, 300, 500, and 700 ppm. The fermentation kinetics were higher than that obtained from other concentrations. It was found that the specific growth rate (μ) was 0.047 h⁻¹, the specific rate of substrate consumption (q_s) was 3.51 g/g-h, the specific rate of product formation (q_p) was 0.021 g/g-h, yield coefficient of biomass formation from substrate (Y_{x/s}) was 0.0134 g/g and yield coefficient of product formation from substrate (Y_{p/s}) was 0.445 g/g. The alcohol concentration of 85.60 g/L and the final total soluble solid of 6.8 °Brix in wine were obtained.

4. The optimum concentration of ammonium sulfate as nitrogen source for *Saccharomyces cerevisiae* was 1000 ppm. The fermentation kinetics were higher than that obtained from other concentrations. It was found that the specific growth rate (μ) was 0.051 h⁻¹, the specific rate of substrate consumption (q_s) was 3.89 g/g-h, the specific rate of product formation (q_p) was 0.023 g/g-h, yield coefficient of biomass formation from substrate (Y_{x/s}) was 0.0131 g/g and yield coefficient of product formation from substrate (Y_{p/s}) was 0.452 g/g. The alcohol concentration of 86.56 g/L and the final total soluble solid of 6.7 °Brix in wine were obtained.

5. Comparison of wine fermentation kinetics supplemented with ammonium sulfate and ammonium dihydrogen phosphate at the same concentration, it was found that the kinetics of wine fermentation supplemented with ammonium sulfate was superior to wine fermentation supplemented with ammonium dihydrogen phosphate.

6. Alcohol concentrations of wine fermentation supplemented with 1000 ppm of ammonium dihydrogen phosphate, 500 and 700 ppm of ammonium sulfate were not significantly different at p < 0.05. Though, wine supplemented with ammonium sulfate of 1000 ppm after 17 h of fermentation as nitrogen source for *Saccharomyces cerevisiae*, the alcohol concentration was the highest at 86.56 g/L. In addition, wine supplemented with ammonium sulfate of 500 ppm after 17 h of fermentation, the alcohol of 85.48 g/L was obtained. For economic point of view and health concern, 500 ppm of ammonium sulfate supplementation after 17 h of fermentation as nitrogen sources are recommended.

ลือสิทธิ์มหาวิทยาลัยเชียงไหม Copyright © by Chiang Mai University All rights reserved