TABLE OF CONTENTS

Title	Page
Acknowledgement	iii
Abstract (English)	iv
Abstract (Thai)	vii
List of Tables	xviii
List of illustrations	xix
Abbreviations and Symbols	xxiii
Chapter 1 Introduction	1
1.1) The role of <i>Bacillus</i> sp. in bioprocessing in enzyme production	1
1.1.1 The application of <i>Bacillus</i> sp.	1
1.1.2 The thermostable enzyme from <i>Bacillus</i> sp.	3
1.2) Proteomics	7
1.2.1 The meanings and scope of proteomics	7
1.2.2 The tools of proteomics	7
1.2.2.1 Two dimensional electrophoresis (2DE)	9
1.2.2.2 Comparative proteomics with	
2DE gel image analysis	11
1.2.2.3 Protein identification	14
1.2.2.3.1 In-gel Digestion	15
1.2.2.3.2 Matrix Assisted Laser Desorption	
Ionisation (MALDI) principle	17

Title	Page
1.2.2.3.3 Tandem mass spectrometry (MS/MS)	18
1.2.2.3.4 Peptide Mass Fingerprinting	20
1.2.3 Two dimensional different in-gel electrophoresis	
(2D-DIGE)	22
1.3) Post translational modification	22
1.3.1 Thiol modification	22
1.3.2 Regulatory Roles of Thiol Modifications	26
1.3.3 Prevalence of Regulatory Thiol Modifications	29
1.4) The background of <i>Bacillus stearothermophilus</i> TLS33	31
1.5) The proteome of <i>Bacillus subtilis</i>	32
1.6) The aims of this study	34
Chapter 2 Materials and Methods	39
2.1) Materials	39
2.2) Equipment	42
2.3) Methods	43
2.3.1 Bacterial culture	43
2.3.2 Protein sample preparation	43
2.3.3 Cold Acetone/TCA (trichloroacetic acid) precipitation	44
2.3.4 Protein measurement	45
2.3.5 Bicinchonic acid (BCA) Protein Assay	45
2.3.6 Assay procedure	45
2.3.7 Bio-Rad DC Protein Assay	46

Title	Page
2.3.8 SDS-PAGE gel composition	47
2.3.9 SDS-PAGE running conditions	47
2.3.10 Protein marker composition and preparation	48
2.3.11 Two dimensional electrophoresis (2DE)	48
2.3.12 Protein staining	49
2.3.12.1 Sypro Ruby staining	49
2.3.12.2 Pro Q Diamond phosphoprotein staining	49
2.3.12.3 Fluorescence labeling	50
2.3.12.3.1 Cy3 maleimide and Cy5 maleimide labeling	50
2.3.12.3.2 Cy3 maleimide labeling on oxidized proteins	50
2.3.13 Image analysis	52
2.3.14 Protein identification, database search and bioinformatics	52
2.3.14.1 Tryptic in-gel digestion	52
2.3.14.2 MALDI-TOF	54
2.3.14.3 LC MS/MS	55
2.3.14.4 N-terminal protein sequencing	55
2.3.14.5 Procedure for staining proteins transferred on the	
membrane	55
2.3.14.6 Protein Identification and Database searching	56
Chapter 3 Results	57
3.1) Investigation of protein expression in	
cold shock at different temperatures	57

Title	Page
3.1.1 Growth Profiles of <i>B. stearothermophilus</i> TLS33 under Cold Shock	57
3.1.2 2-D PAGE of cold shock stress at different time	60
3.1.3 Protein Identification and Differential Protein Synthesis	63
3.1.4 Cold Shock Effect on Signaling Pathways	
of B. stearothermophilus TLS33	64
3.2) Stress responses of B. stearothermophillus TLS33	78
3.2.1 Growth profiles in stress conditions	80
3.2.2 2DE, Image analysis and protein identification	80
3.2.3 Protein synthesis and protein level profiles in response	
in each stress condition.	88
3.2.3.1 Protein level profiles in salt stress	88
3.2.3.2 Protein level profiles in ethanol stress	90
3.2.3.3 Protein synthesis profiles in cold stress	93
3.3) The studying on post-translational modification	
of AhpC or Peroxiredoxin (Prx)	96
3.3.1 Bacterial survival of <i>B. stearothermophilus</i> TLS33	
under oxidative stress	96
3.3.2 2-DE analysis of B. stearothermophilus TLS33	
cells and protein identification	97
3 3 3 Acidic shift of peroviredovin isoform	100

Title	Page
3.3.4 Effect of stressed time on modification	
of peroxiredoxin isoforms under	
oxidative stress	104
3.3.5 Post-translational modification by LC-MS/MS of Prx	106
3.4) Using Cy3 Maleimide for detection thiol oxidized proteins in	
B. stearothermophilus TLS33	108
3.4.1 Using Cy3 Maleimide to detect oxidative	
modified Protein	108
3.4.2 Protein identification and protein	
function classification	120
3.4.3 Protein in detoxification	122
3.5) Two dimensional differential in-gel electrophoresis (2D-DIGE)	
of thiol oxidized proteins	128
Chapter 4 Discussion and Conclusion	136
4.1) Discussion	136
4.1.1 Investigation protein expression	
at cold shock different temperatures	136
4.1.1.1 Growth profile of <i>B. stearothermophilus</i> TLS33	
under cold shock	136
4.1.1 2 2DE, protein identification and protein function	137
4.1.2 Stress responses of <i>B. stearothermophilus</i> TLS33	140

Title	Page
4.1.2.1 Growth profile in individual conditions	140
4.1.2.2 2DE, Image analysis and protein Identification	141
4.1.2.3 Protein synthesis and protein level profiles	
in each stress condition	142
4.1.2.3.1 Protein level profiles in salt stress	142
4.1.2.3.2 Protein level profiles in ethanol stress	144
4.1.2.3.3 Protein level profile in cold stress	145
4.1.3 The studying on post-translational modification	
of AhpC or Peroxiredoxin (Prx)	146
4.1.3.1 Bacterial survival of B. stearothermophilus	
TLS33 under oxidative stress	146
4.1.3.2 2DE analysis of B. stearothermophilus	
TLS33 and protein identification	147
4.1.3.3 Acidic shift of Prx Isoform	147
4.1.3.4 Post-translation modification of AhpC or	
Peroxiredoxin (Prx)	148
4.1.4 Using Cy3 Maleimide for detection of thiol	
oxidized proteins in B. stearothermophilus TLS33	149
4.1.4.1 Using Cy3 Maleimide to detect	
oxidative modified protein in vivo.	149
4.1.4.2 Protein identification and	
protein function classification	152
4.1.5 Two-dimensional differential in-gel electrophoresis (2D-DIGE)	153

Title	Page
4.2) Conclusion	155
References	144
Appendix 93226	160
Supporting papers	
1. Functional proteomics and correlated signaling pathway	
of the thermophilic bacterium Bacillus stearothermophilus	
TLS33 under cold-shock stress	174
2. Proteomics viewed on stress response of thermophilic bacterium	
Bacillus stearothermophilus TLS 33	191
3. Bioinformatics, functional genomics and proteomics	
study of Bacillus sp.	200
4. Functional and Structural Analysis of <i>Bacillus</i> proteome	226
5. Differential Gene Expression in Proteome Level of the	
Thermophilic Bacterium Bacillus stearothermophilus	
TLS33 in Environmental Cold stress	260
Vita	274

All rights reserved

LIST OF TABLES

Table	Page
2.1 SDS sample buffer composition	46
2.2 SDS PAGE	47
3.1 Protein identification of cytosolic	
proteins in B. stearothermophilus	68
3.2 Protein identification of four peroxiredoxin isoforms of	
B. stearothermophilus TLS33	98
3.3 The identities of N-terminal sequence of Prx	99
3.4 The identified thiol oxidized proteins with	
labeling with Cy3 Maleimide.	114
3.5 Classification of thiol oxidized proteins in	
B. stearotherothermophilus TLS33	125
4.1 The comparisons of advantages and defects of protein	
visualization method	154

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

LIST OF LILUSTRATIONS

Figure	Page
1.1 Schematic representation of 2D-SDS-PAGE	10
1.2 Quantitation and comparison of spot intensities	12
1.3 Protein identification with peptide mass fingerprinting	16
1.4 Schematic of MALDI Process	18
1.5 MASCOT software for protein identification	20
1.6 Chemical formulate of Cy3 and Cy5 N-hydroxy succinimide	23
1.7 The schematics of CyDye labeling of 2D-DIGE	24
1.8 Reaction scheme of Maleimide cyanide dyes	25
1.9 Formation of Reactive Oxygen Species	27
1.10 Thiol modification proteins	29
3.1 Growth profile of <i>B. stearothermophilus</i> TLS33	
under cold shock stress at 37°C and 25°C for 2 h.	58
3.2 2-D gel patterns of cell extracts from <i>B. stearothermophilus</i> TLS33	59
3.3 Up- and down-regulation of expressed proteins	62
3.4 The 2-D and 3-D viewings of 8 major	
different proteins under cold shock	67
3.5 Activation and deactivation of signaling pathways	76
3.6 Summary of cold shock-induced proteins	77
3.7 The growth profile of <i>B. stearothermophilus</i>	
TI S33 after Salt stress	78

Figure	Page
3.8 The growth profile of <i>B. stearothermophilus</i>	
TLS33 after ethanol stress	79
3.9 The growth profile of <i>B. stearothermophilus</i>	
TLS33 after cold stress	79
3.10 2DE gel image of <i>B. stearothermophilus</i> TLS33	
proteins in salt stress (10% w/v NaCl)	82
3.11 2DE gel image of <i>B. stearothermophilus</i> TLS33	
proteins in 10% v/v ethanol.	83
3.12 2DE gel image of B. stearothermophilus TLS33	
proteins in 25°C cold stress	84
3.13 The Scatter plot of 2DE-image analysis of	
salt stress of B. stearothermophilus TLS33	85
3.14 The Scatter plot of 2DE-image analysis of	
10% ethanol stress of B. stearothermophilus TLS33.	86
3.15 The Scatter plot of 2DE-image analysis of 25°C stress of	
B. stearothermophilus TLS33	87
3.16 Synthesis and accumulation of some selected	
proteins in each different time of salt stress	89
3.17 Synthesis and accumulation of some selected	
proteins in each different times of 10% v/v ethanol stress	92
3.18 Synthesis and accumulation of some selected	
proteins in each different time of cold stress	94

Figure	Page
3.19 Survival percentage of B. stearothermophilus TLS33	
after addition of different concentrations of H ₂ O ₂	96
3.20 The identities of N-terminal sequence of Prx	99
3.21 2-DE images of intracellular proteome of <i>B. stearothermophilus</i>	
TLS33 under oxidative stress.	101
3.22 Peroxiredoxin expression in <i>B. stearothermophilus</i>	
TLS33 under oxidative stress by addition	
of different concentrations of H ₂ O ₂	102
3.23 Hypothesis of B. stearothermophilus TLS33	
peroxiredoxin isoforms that are modified by H ₂ O ₂	103
3.24 Peroxiredoxin expression in <i>B. stearothermophilus</i>	
TLS33 under oxidative stress in different stressed times	105
3.25 Collision-induced dissociation spectrum	106
3.26 The Cy3 Maleimide labeling on thiol oxidized proteins	
in B. stearothermophilus TLS 33.	110
3.27 2DE of Cy3 Maleimide labeled on thiol oxidized	
proteins B. stearothermophilus TLS 33	111
3.28 2DE age of identified thiol oxidized proteins	
were labeled with Cy3 Maleimide	113
3.29 The 2DE of Pro Q Diamond staining of intracellular	
proteins of <i>B. stearothermophilus</i> TLS33	117

Figure	Page
3.30The gel images of Cy3 Maleimide labeling on the	
intracellular protein sample with no blocking	
with IAM before labeling.	119
3.31 The protein spots which were visualized by Cy3 Maleimide	120
3.32 Histogram demonstrated proportion of function classification	
of oxidized proteins in B. stearothermophilus TLS33	124
3.33 Pentose phosphate pathway the up-regulated	
proteins which were found in 2DE-gel were shaded	124
3.34 The DIGE technique for detection thiol oxidized proteins	129
3.35 The 2D-DIGE image for 100 M H ₂ O ₂ treated	
B. stearothermophilus TLS33	130
3.36 2D-DIGE gel images of <i>B. stearothermophilus</i> TLS33 proteins	
at treated with H ₂ O ₂	131
3.37 The differentially expressed proteins in 2D-DIGE image involving	
in pentose phosphate pathway	132
3.38 The differentially expressed proteins in 2D-DIGE image involving	
in redox metabolism	133
3.39 The differentially expressed proteins in 2D-DIGE image involving	
Related to chaperone	135

ABBREVIATIONS AND SYMBOLS

gram g mg milligram ng nanogram millilitre ml M molar mMmillimolar picomol pmol min minute hour hr round per minute rpm alpha beta micro delta degree Celsius

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright © by Chiang Mai University All rights reserved