CHAPTER 4

CONCLUSIONS

Batchwise amperometric method, FI amperometric system and FI amperometric system with a sample pretreatment column have been developed. It was based on the molybdenum blue reaction with electrochemical detection. Amperometric detection was made at an applied voltage of 220 mV versus Ag/AgCl. No reduction peak due to arsenate was observed, which a reduction peak of arsenate was found at 250 mV versus Ag/AgCl. This would indicate that no inferences due to silicate nor arsenate, especially in natural water sample which would contain very trace arsenate. Table 4.1 summarized analytical characteristics of the 3 procedures. A sample through put of 60 h^{-1} for ppb PO₄-P could be achieved with a detection limit of 7 ppb PO₄-P for the FI without a pretreatment sample column while the FI system with a column with 5 min loading time results in a detection limit of 2 ppb PO₄-P. A sample of a lower concentration could be determined by having a longer period of loading. A single standard calibration can be employed by plotting a graph of peak area versus ng PO₄-P. A detection limit was 10 ng PO₄-P. The developed procedures have been applied to purified water samples and certified rain.

âðânຣົ້ມກາວົກຍາລັຍເຮີຍວໃກມ Copyright © by Chiang Mai University All rights reserved

System	Linear range	Equation	Detection limit
Batchwise amperometry	5-25 ppm PO ₄ -P	$y = 8 \times 10^{-3} x + 3 \times 10^{-2}$ $R^2 = 0.9986$	3 ppm PO ₄ -P
Flow injection amperometry	20-100 ppb PO ₄ -P	$y = 9 \times 10^{-2} x + 1$ $R^2 = 0.9961$	7 ppb PO₄-P
Flow injection amperometric with pretreatment column	2-20 ppb PO ₄ -P (10-100 ng PO ₄ -P 20-500 ppb PO ₄ -P (100-2500 ng PO ₄ -P)	$y = 6 \times 10^{-2} x + 5 \times 10^{-1}$ R ² = 0.9984 $y = 5 \times 10^{-2} x + 1$ R ² = 0.9988	2 ppb PO ₄ -P (10 ng PO ₄ -P) (5 min loading time)
TAC.	AI UNI	VERSIT	

 Table 4.1 Summarized analytical characteristics of the 3 procedures.

ີລິບສິກສິ້ນກາວົກຍາລັຍເຮີຍວໃหມ່ Copyright © by Chiang Mai University All rights reserved