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TECHNICAL DRAWING FOR AN ELECTRICAL MOBILITY SPECTOMETER
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APPENDIX A.1

SIZE SELECTIVE INLET DETIALED DRAWINGS
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ATFENDIX A2

CORONA-NEEDLE CHARGER DETIALED DRAWINGS
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APPENDIX A.3

CORONA-WIRE CHARGER DETIALED DRAWINGS
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APPENDIX A.4

MOBILITY CLASSIFIER DETIALED DRAWINGS
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AFPPENDIX B

SCHEMATIC DIAGRAM OF THE COMPUTER INTERFACE AND
ELECTROMETER CIRCUITS
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Figure B.1. I°C computer interface circuit schematic.
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Figure B.2. DC power supply circuit schematic.
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Figure B.3. Electrometer circuit schematic.

Figure B.4, Relay switching circuit schematic.
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APPENDIX C

OPERATION MANUAL

This Appendix provides the operation manual of the operation of the electrical mobility
spectrometer (EMS). The first Section of the Appendix gives instructions to promote safe of
the EMS, while the second Section provides an overview of how the EMS work. Installing the
EMS software is described in the third Section of the Appendix. The fourth Section describes
how to operate the EMS using the EMS data processing software. In the fifth and sixth
Sections, maintenance procedure and troubleshoot for the EMS are provided. The
specifications of the EMS are also presented in the last Section of the Appendix,

C.1 Safety

This Section gives instructions to promote safe of the EMS. Both the EMS and the
external PC must be connected to the mains supply with an earth connector. The instrument
has been wired to 220-240 V, 50-60 Hz mains voltage. To prevent problems, take these
precautions:

C.1.1 Caution

* Do not remove any parts from the instrument unless you are specifically told
to do so in this manual

¢ Do not remove the instrument housing or covers while power is supplied to
the instrument.

* Do not touch the electrometer connections before making the ground contact.
Static electricity may cause severe damage to the electrometer amplifiers.

C.1.2 Warning

* High voltage is accessible in several locations within this instrument. Make
sure you unplug the power source before removing the cover or performing
maintenance procedures.

C.2 Instrument Overview
C.2.1 Instrument Description

Figure C.1 shows the electrical mobility spectrometer (EMS), is a particle size
spectrometer designed at the Chiang Mai University for measuring aerosol particle size
distribution. The EMS measures particle size from 10 to 1000 nanometers with a sizing
resolution of 10 channels. The EMS is composed of an aerosol generator, a flow system, a
size selective inlet, a particle charger, a size classifier, a signal current detector and a
computer controlled data acquisition and management system. In the EMS, aerosol sample
pass through a charger that sets a charge on the particles and enter a classifier separately but
together with sheath air flow through an annular and exit. Electric field is applied between the
inner and outer electrodes and forces charged particles having specific mobility to deposit on
a designated electrode ring,
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Figure C.1 Electrical Mobility Spectrometer

An array of electrode rings is connected to a series of sensitive electrometers where electrical
current signals are detected and translated into size distributions. For the present study, a
commercial multi-channel electrometer, a Keithley 6517A electrometer incorporating a
Keithley 6522 low current scanner card, were used. The measurement is controlled and data
sampled by an external personal computer via RS-232 serial port cable. Software running on
an external computer was developed, based on Microsoft Visual Basic programming for all
data processing. The software is able to display both size distribution and number
concentration.

C.2.2 Applications

EMS is ideal for the analysis of unstable concentrations and size distributions.
EMS’s fields of applications include:

Basic aerosol research

Combustion aerosol studies

Pollution studies

Particle size distribution measurement in automobile exhaust.
Characterizing sprays, powders, and other generated acrosols

e & @ &
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C.3 Installing the EMS Software

Install the EMS software as described below.

C.3.1 Computer Requirements

To use this software we recommend a personal computer with the following
minimum features, components, and software:

A Pentium®4, 2 GHz processor or higher.

An SVGA color monitor,

Windows XP or newer.

A hard drive large enough to accommodate Windows, the EMS software, and
data files,

A CD-ROM drive.

512 MB or more of RAM,

A mouse,

An RS-232 serial interface port (in addition to the one that may be required
for the mouse).

A Microsoft Windows-compatible printer is optional,

C.3.2 Program Installation

—

Shut down (exit) all programs/applications on the Windows desktop.

With the computer on and Windows running, insert the EMS Software CD-
ROM in your CD drive. To run the setup.exe from the CD.

Follow the instructions as the setup program runs.

When the installation program finishes, remove the CD-ROM and restart
your computer, Store the CD-ROM in a safe place for later use.

The setup program creates a folder (directory) called “EMS” on your hard
disk (assuming you accepted the default folder name). The folder contains the
required program files and sample data files. The setup program also creates
a new item in the Start Menu called “EMS” and an icon on your desktop for
the EMS sofiware.

C.4 Operating the EMS

This Section presents the basics of Instrument operation. Turn the high voltage power
supplies, electrometer, and flow controller on using the power switch. The instrument requires
approximately 10 to 20 minutes to warm-up if the instrument has been in temperature
conditions significantly different from room temperature. While the instrument is warming up,
start the EMS software program. Before you begin, make certain the EMS is connected to the
computer. To start the program, proceed as follows:

1.

ESREEN

From the Windows desktop, press the Start button and select Programs | EMSv2 |
EMS or select the EMS icon from the desktop. The EMS desktop appears as shown in
Figure C.2.

Connect the EMS inlet to the desired sample line,

The EMS setup dialog appears as shown in Figure C.3,

Enter the charger and classifier conditions.

Enter the communications port.
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Figure C.3 EMS setup dialog.
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lecirameter Zeroing

Figure C.4 Electrometer zeroing dialog.

Select the OK button,

Enter run count,

Check/adjust the high voltage power supply of the classifier.

In order to take account of temperature drifting and electrometer bias currents all
electrometer rings are zeroed before actual measurement. Select the Zero button.
Figure C.4 show electrometer zeroing dialog. As a precaution, a procedure the
electrometer zero offset is measured and recorded at the beginning and end of the
measurement,

After zeroing, turn the pump on. Check/adjust the flow rate at the sheath air of the
classifier to 10 I/min and at the outlet of the classifier to 11 I/min.

Select the Measuring button to start measurement. As the program begins collecting
sample data, it is displayed in the particle histogram on the desktop. Figure C.5 shows
sample data. You can stop data collection before the selected run count is complete,
by selecting the Interrupt button on the desktop.

To save sample data, select File | Save or Ctrl+S.

You can export the data to the Microsoft Excel file, by selecting File | Export. Figure
C.6 shows sample export file.

To end the program, select File | Exit or Ctrl+Q
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C.5 Maintenance

This Section provides maintenance procedures for the EMS components, Table C.1
provides a general indication of the maintenance requirements. In applications where high
concentration may be generated, maintenance is required more often.

Table C.1 Maintenance Schedule.

Maintenance Task Hours of Operation

Check/clean the impactor 5 hours of operation or as needed
Check/clean the charger electrodes 5 hours of operation

Clean the high voltage column electrode and | 10 hours of operation

electrometer rings

Replace the sheath air filter cartridges >6000 hours of operation or as needed
Replace the pump filter cartridges 100 hours of operation or as needed

C.5.1 Cleaning the Impactor

To clean the impactor, follow these steps:

I By

awn

Disconnect the sample inlet/outlet tubes.

Remove the impactor screws.

Lift off the impaction plate.

Clean the impaction surface with a soft cloth soaked with isopropyt! alcohol or
water,

Allow the impaction surface and assembly to dry with compressed air.

Apply a very small amount of grease to the impaction surface.

Examine the nozzle orifice under a microscope or powerful magnifying glass.
If the nozzle needs to be cleaned, squirt alcohol through the nozzle hole until
clean. Repeat this for all nozzles.

Reassemble the impactor making sure that the O-ring is properly in place
between the impactor nozzle and body.

C.5.2 Cleaning the Corona Charger

To clean the corona charger, proceed as follows:

1.

2,

OB w

Power off the equipment and wait 30 minutes for the internal capacitors to
discharge.

Disconnect the high-voltage connector on the top of the charger. Use caution
(Note: You should never pull or tug on the high-voltage cable-always grip the
plug to disconnect the cable. You should never use the cable to CaITy or move
the instrument. If the cable breaks, you could be exposed to dangerous high
voltage. A cut or damaged cable should be replaced immediately. Always
switch the instrument off before connecting or disconnecting the high-voltage
connector.).

Disconnect the sample inlet/outlet tubes.

Unscrew the needle holder assembly screws.

Carefully lift off the needle holder. Use cautjon (as you move the assembly,
check that al] cables, house, and screws have been disconnected).

Use compressed air to blow out the needle and outer chassis in isopropy!
alcchol or water.




7.
8.
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Examine the interior outlet orifice to make sure it is clear.
Reassemble and reinstall the charger making sure that the O-ring is properly in
place between the needle holder and outer chassis.

C.5.3 Cleaning the Mobility Classifier

To clean the mobility classifier, follow these steps:

1.

A

10.
11.

i2.

13,
14,

15.

Switch the equipment off and wait 5 minute for the internal capacitor to
discharge.

Disconnect the high-voltage connector on the side of the classifier.

Disconnect the sample aerosol iniet tube at the top of the classifier assembly.
Disconnect the sheath air inlet tube at the top of the classifier assembly.
Disconnect the excess air outlet tube at the bottom of the classifier assembly.
Disconnect the electrometer spade lug connectors. As a precaution, note the
use of an ESD wrist strap.

Loosen the four screws on the top of the flange that hold the base of the
classifier column assembly.

Carefully pull up on the assembly above the flange.

Turn it over and then carefully lift the outer column straight up and out of the
instrument chassis. Take care not to scrape the inner and outer columns
together. Use caution (Note: Be careful to avoid scratching the inner electrode
and the inside of the tubes as you remove it. A small scratch, nick, or burr can
disrupt the electric field inside the classifier column, severely affecting its
performance).

Move the column assembly to a clean work surface.

Although the inner column shouldn’t be dirty since the electric field repels all
particles, you can now clean the inner electrode using a soft, dry, lint-free cloth.
Wipe the electrode using a clockwise motion, not up and down. If the
accumulated particles cannot be removed with the cloth, try using a cloth
dampened with isopropyl alcohol. It is noted that do not immerse the electrode
in any solvent.

Clean the inside rings of the electrometer assembly using a soft, dry, lint-free
cloth. Wipe the ring using a clockwise motion, not up and down. If the
accumulated particles cannot be removed with the cloth, try using a wet cloth
(distilled water first; if that does not remove the particulates, try isopropyl
alcohol). Depending on the size of your hand, it may be necessary 1o clean half
the assembly from the top and then turn it over and clean the other half from
bottom. It is noted that do not immerse the rings in any solvent.

Allow the column and assembly to air dry if necessary,

Reassemble the column in the reverse order of disassembly. Use caution (Note:
Be careful to avoid scratching the inner electrode and the inside of the tubes as
you remove it. A smail scratch, nick, or burr can disrupt the electric field inside
the classifier column, severely affecting its performance).

Afier cleaning reassemble the classifier column and after warm-up, zero the
electrometers. If the problem is still present, try zeroing the electrometers again.
If this still doesn’t help. you may have to clean the column again.



199

C.6 Troubleshooting

C.6.1 Electrometer Noisy Channels

As the electrometer channels become dirty or contaminated with material, the noise
level on all channels may gradually drift up as shown in Figure C.7. This can be seen when
there is a considerable signal even when sampling filtered air. This can be corrected using the
“Zero Electrometers” function from the EMS software program.

Select Setting | Zero Electrometers.

Electrometer Zero window will be displayed.

In general, these values should be below 5 pA. However, it is also important
that the values are stable.

Close the window and repeat the zero procedure.

Compare the values from this reading to the last values from the previous zero,
They should be similar. If they are not, allow the instrument to warm up for
another 1 hours and perform another zero. Repeat this until the readings are
stable. If the reading does not become stable after repeated zero procedures, the
classifier column may need to be cleaned again. Following cleaning, the values
should look more like Figure C.8 with data fluctuating somewhere around 1
pA or less.

Figure C.8 Raw electrometer data after cleaning.
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C.6.2 Charger Current/Voltage Too Low/High

I

2.

3.

Check that flowmeter connector did not come loose during shipping, or has a
loose connection

The charger current is not stable or has hit a voltage limit to meet the required
current, ‘

Clean the charger assembly and clean or replace the charger corona electrode.

C.6.3 Sheath Flowrate Too Low/High

1.

The sheath flow filters may be loaded. Try replacing the filters

Check that flowmeter connector did not come loose during shipping, or has a
loose connection.

Disconnect the instrument from any external air flow. The vacuum pump may
be off, but the flow is being forced through the flowmeter by an external
source,

C.6.4 Total Flowrate Too Low/High

The total flow filters may be loaded. Try replacing the filters

Check that flowmeter connector did not come loose during shipping, or has a
loose connection.

Disconnect the instrument from any extemnal air flow. The vacuum pump may
be off, but the flow is being forced through the flowmeter by an external
source,
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The EMS Operating specifications are as Tollows:

Table C.2 Specifications of the EMS.

Specifications

Particle size range

Particle concentration range
Time response

Charger type

Charging mode of operation
Particle detector
Electrometer channels

Inlet impactor 50% Cutpoint
Aerosol flow rate

Sheath air flow rate
Operating pressure
Computer requirements
Computer operating system
Communications

Electrode applied voltage
Aerosol inlet

Exhaust outlet

Operation conditions, instrument

Aerosol conditions

Electric power

10 to 1,000 nm

10" to 10" particles/m?

305

Corona charger

Unipolar diffusion and field charging

Electrometers

10

' nm

1 Vmin

10 Ymin

34.5kPa

Pentium® 4 processor or better

Windows XP or newer

9-pin RS-232

500 Vio3 kv

R 3/8

R 378

* Ambient temperature: 5° to 40° C

*  Ambient humidity: 0 to 90% RH (non-
condensing)

Gas temperature: < 60 °C

220-240 V, 50 Hz
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Approach to Characterization of a Diode Type Corona Charger
for Aerosol Size Measurement

Panich Intra* and Nakorn TippayawongT

Abstract - A semi-empirical method to determine the electrostatic characteristics of a diode type
corona aerosol charger based on ion current measurement and electrostatic charging theory was
presented. Resuits from mathematical model were in agreement with those from experimental
investigation of the charger. Current-voltage characteristics, Nyt product and charge distribution against
aerosol size were obtained. It was shown that the space charge was significant and must be taken into
account at high ion number concentration and low flow rate. Additionally, significant particle [oss was
evident for particles smaller than 20 nm in diameter where their. electrical mobility was high. Increase
in charging efficiency may be achieved by introducing surrounding sheath flow and applying AC high
voltage. Overall, the approach was found to be useful in characterizing the aerosol charger.

Keywords: aerosol, corona, charger, unipolar charging

. Introduction

Corona discharges are among the most common
techniques to produce high ion concentrations and there
have been numerous extensive studies in the past. The
phenomenon is used in many industrial applications such
as clectrostatic coating and precipitation[1]. Electrostatic
charging by the corona dischargers is also commenly used
in determining aerosol size distribution by elecirical
mobility analysis. During this process, aerosol flow is
directed across the corona discharge field and is charged by
random collisions between the ions and particles due to
Brownian motion of ions in space. The amount of ion
deposition on the particle surface depends on resident time,
particle radius and shape, electric field, etc. The process
can be characterized as unipolar or bipolar depending on
the polarity of the ions in the gas. The technique has been
applied successfully and several designs of wire-cylinder
corona charger are employed and described in the
published literature, both wire-cylinder corona[2—4] and
necedle chargersf5}. A number of particle sizing instruments
employ unipolar corona chargers{6-10] as important
upstream component to impart known charge to the aerosol
system. The charger performance of these instruments
depends on the stable operation of their chargers. Aerosol
charging is a function of the ion concentration, N, and the
mean residence time of the particles to the ions, 1. For this
reason, a well-designed corona charger should provide a
stable V¢ product that can be accurately determined for any

T Comesponding Author; Dept. of Mechanical Engineering, Chiang
Mai University, Thailand. (nakom@dome.eng cmu.ac.th}

* Dept. of Mechanical Engineering, Chiang Mai University,
Thailand. (panich_intra@yahoo.com)

Received 24 June, 2005 ; Accepted 24 August, 2005

given operating condjtions.

In the present study, the diode type corona charger was
chosen. The main advantages of this charger type are the
high efficiency and the simple construction. The elec-
trostatic characteristics of the corona charger were evaluated
at different operating conditions. A semi-empirical method
was used based on ion current measurement and electrostatic
charging theory. Average and spatial distribution of ion
concentrations in the charging region of the corona charger
were calenlated. The space charge effect was also
considercd. Distribution of the Ny product as well as
particle penetration and average elementary charge on
particle against its diameter were computed and discussed,

2. Theory

2.1 Spatial Distribution of Ion Concentration

Derivation of the theoretical current-voltage relation
proceeds from Poisson’s equation which governs all
clecirostatic phenomena and is given as [11]

v’»*:-gﬁ (1)
1]

where ¥ is the applied voltage, p is the space-charge

density, and &, is the dielectric constant of vacuum

(8.854 x 107" F/m). Assuming no axial variation, the above
equation can be expressed in cylindrical coordinates as

ld—V(r-‘ﬁ}r 20 _g @
rdr\ dr &
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Considering that the ion current density is
} = pu, (3)

where u(r)=ZE(r) is the mean ionjc velocity, the space-
charge density for the cylindrical corona js given by

Iian
piry= 2erlZ,E () )
where
av
E(r)=- S, %)

Noting that j=7_/2zrL . 7 s the measured ion
current at distance r from the corona-wire in the charger

with charging length L,and Z, the electrical mobility of

ion

the ions, Substituting () and £(r) into equation (2)

gives
dE(r) 3 1,
E(ry el ——lim  _gq
)= Y 2nle,Z, ©

This equation is readily integrated to

I ¢
E(ry= o +— 7
) 2rle,Z, ¥ @)

This describes the electric field under space charge
conditions where ¢ is the integration constant which is
constrained (o the interval

]io;-’i2 < v i
{MZEguLZIJSC_[In(G/r;)] (8)

The space charge can, at most, compensate the electric
field at the inner electrode to zero. The limiting case,
E{5)= 0, corresponds to the lower limit for ¢. The other

extreme of no space charge implies that 7., = 0 and the

expression for the electric field in a concentric clectrode
8ap, if the space charge effect is neglected, is determined

by

14

0= #in(r /r)

6]

[nserting E(r) in equation (7) gives the upper limit for ¢.
The integral equation (7) along the radial distance in the

charging region of the charger is equal to the voltage
difference

V= _[ E(r)dr (10)

The integration limits for the case of the jon generation
zone are the corona-wire r and the outer electrode 1,
radii, respectively. In the same way, ¥ is the voltage
difference between the corona-wire and the outer electrode
of the charger. Integrating the above equation results in

Forc>0
Iry
Tig r+2¢
2zle,Z,
I
V= on__ 2t 2c~2¢ 1]
c szoz,. ri42e—V2e (1)
A
< N 3
2120442
\/ 2rle,z, ¢ Ve ,
Fore<@
fan r’+2¢
2xle,Z,
V=

(12)
e~ arccos |- AcTELZ,
—2¢ s Iinn A

The electric field strength at the surface of the wire at
corona discharge onset, E, , has been experimentally

evajuated by Peek [12] and fitted empirically by relation as

E,=E (5+A5/%) (13)
where
s=L7 (14)
TH

E, denotes the breakdown field in air at normal conditions
(3.10 x 10® V/m for negative corona, and 3.37 x 10® V/m
for positive corona, at standard temperature and pressure),
4 is a dimensioned constant (0.0308 m'"? for negative
corona, and 0.0241 m'? for postlive corona), & is the
relative density of air relative to normal conditions (1.205
kg/m® for air), T is the absolute temperature of room air,
£, 1s the normal atmosphere pressure, and T and P are the

operating temperature and pressure of the air. I space-
charge effect is neglected, the corona onset voltage y can

be calculated from equation (9) as
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Vo = EyiIn(r, /1) (15)

The average current density J at the outer electrode

surface area as a function of the potential at the corona
discharge electrode, can be expressed by:

_ 452
7 In(r, /r)

viy-v,) (16)

This approximation was originally proposed by Townsend
[13]. The current density in equation (16) can be expressed
in term of the jon current I, toward the outer electrode

wall surface area as

Sre,Z,

= V(¥ -V (17
rz’ln(rzlrg)( +)

Assuming that the distortion of the field distribution due to
the ion space charge effect js neglected, the corona current
of equation (17) is equal to

Lion =27r,neZ E(r) (18)

Hence, the density is expressed by

4,
ne{e b V>N (19)
0, V<,

It is clear that calculation of the jon current from voltage
difference at the corona discharge electrode depends on the
assumption of the ion properties. Alihough the exact
physicochemical mechanism of the formation of the jons in
corona discharges is not wel] known, there is evidence that
primary ions formed in the corona region undergo a
process of clustering reactions (o produce ions of higher
molecular weight {14]. I has been suggested that the
average value for the positive and negative ion electrical
mobility at atmospheric pressure were z; =14 x 1¢9°

m*/V s and Z7 =22 x 0% m%/V s, respectively [15].

These are the average mobilities used throughout the
calculations presented in this paper.

2.2 Estimation of the Nt Product

The particle charging performance depends on the
product of the ion concentration N; and the mean residence
time ¢ of the particles to the jons in the charger. This N

product is the main charging parameter. Therefore, prior to
any modeling of the charging process, it is necessary to

estimate the Ny product established in the charging

region under any operating conditions (corona voltages and
sample flow rates). The ion concentration distribution is
calculated by

L
i =. o0 2
) 2arLZeE(r) . (20)

The mean residence time of the particles in the charger is
given by

f:%ﬂ (21)

where L s the length of the charging region, and 0, is

the aerosol flow rate. For the standard aerosol flow of 5.0
litet/min, the mean residence time of the particle in the
charger is 0.085 s at atmospheric pressure. In calculation of
variation of the particle residence time along the radial
distance in the charging region, the flow velocity profile
has to be taken into account. The parabolic velocity profile
u(r) for stationary laminar flow through the charger was
assumed since the obstruction of the flow caused by the
wire electrode is neglected due to the very thin (7 <<n,)

wire electrode. The expression for the velocity profile is
given, using “flow in a pipe” approximation, as

)= -Z—f%{ ] —(rLJ J 22)

where 4 is the viscosity of the gas, and dp/dz is the
constant pressure gradient. The charging residence time
with the parabolic velocity profile is given by

L

23
s (23)

Hry=

2.3 Estimation of the Penetration through the
Charger

The particle loss inside the charger due to the
electrostatic loss is defined as the ratio of the charged
particles concentration at the outlet over the total
concentration of uncharged particle at the inlet of the
charger. The particle penetration through the charger can be
calcuiated by Deutsch-Anderson equation as [16]

(24}

~22PEr)

i

FP= exp[

where Z, is the electrical mobility of particle, £ is the
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electric field, ¢ is the mean residence time, and r, is the

outer electrode radius. In this study, the particle loss inside
the charger is primarily due to the strong electric field
caused by the corona discharge. Diffusion and gravitational
losses are not significant.

2.4 Estimation of the Average Charge per Particle

Upon entering a region of unipolar ions, the submicron
particle will acquire some net charge within this region.
The magnitude of the charge depends upon the size of the
particle, the unipolar ion density encountered, and the fime
that particle spends within this region. In the absence of
any appreciable electric field, this particle will be
diffusionally charged by the Brownian random motion of
the ions with respect to the particle. This diffusion charging,
first characterized by White[15] and more recently
modified by Pui[14], can be expressed in a convenient
analytic form. For an initially neutral particle immersed in
a unipolar ion cloud, the flux of jons impinging on the
particle surface area is given by

J=dra? (ALE] 25)

where a is the particle radius, N, is the concentration of
ions above the surface and ¢ is the mean thermal speed

of the ijons. The spatiai distribution of ions is given by the
classical Boltzmann distribution for the equilibrium state.
Neglecting the image force attraction between the ions and
the particle, the Boltzmann distribution at the particle
surface is given by

2
N, =N, e)q:{-v!(’,'r ":";_] (26)
. a

where N, is the ion concentration at infinity, 7, is the

particle charge, e is the elementary unit of charge, K =
1Axe, with the vacyum permittivity, & is the Boltzmana’s
constant (1.380658 x 107 JK), and T is the operating
temperature of the system. Substituting equation (26) into
equation (25) gives

ne’ 7
J=ra’EN,exp| -k, 2 (27)
cornen| .22
The above equation was originally derived by White[15].
The charging rate expression can be described by the
system of differential equation as

an, _, @28)

at
With the initial condition that H,=0at ¢ =0 for the

charging of an aerosol (initially neutral), the average
charge of particle can be integrated analytically to give

¢
n, = [Jdt (29)
o

Thus, the average charge, R » caused by the diffusion
charging in 2 time period, I, by a particle diameter d,.

can be found from

- 2

", = dka In 1+71'K5dpc,.e .NJ (30)
7K, AT

where d, is the particle diameter. The effect of the finite

electric field used in the charging region can be estimated
by the classical field charging equation derived by White
[15], the saturation charge, n,, of a particle (diameter,

d, and dielectric constant, £) in an electric field £ is

given by

L =(1+2€_—1J( Ed; J G1)

The charging rate, dn,/dt, is

dn n : 32
—L = K eZ,N,| 1--2 (32)
d! L 1 T nJ

If the particle is initially neutral, the average number of

charge, ».,., acquired in an average electric field £ is
BE Mpas 20

given by

(12 s—IJ Ed; \( zK.eZNg (33)
fieed e+2 { 4K e N1+ 2K eZ Nt

where & is the particle dielectric constant. In this study,
&= 3.0 is arbiirarily assumed for the dielectric constant of
the particle. Both field and diffusion charging occur at the
same time. This is known as continuum charging where
particle charge is the sum of the contributions from
combined field and diffusion charging[17).
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3. Experimental Setup

The charger in the present study is based on an electrical
discharge generated between a corona-wire and an outer
electrode. A schematic diagram of the unipolar corona
charger is illustrated in Fig. 1. Its geometrical configuration
is similar to the charger used by Lethtimaki[i8] and
Keskinen et al[8]. It consists of a coaxial corona-wire
electrode placed along the axis of a metallic cylinder(28
mm in diameter and 10 mm in length). The wire electrode
is made of stainless steel, 150 pm in diameter and 10 mm
long. DC high voltage is used to produce the corona
discharge on the wire electrode while the outer metallic
cylinder is grounded. An adjustable DC high voltage power
supply (Leybold Didactic model 521721, 500 mV peak-to-
peak ripple) is used io maintain this voltage difference,
generally in the range between 1-25 kV. The corona
discharge generates ions which move rapidly in the strong
corona discharge field (>10°V/m) toward the outer
electrode wall. Aerosol flow is regulated and controlled by
means of a mass flow meter and controiler. The flow is
directed across the corona discharge field and is charged by
ion-particle collisions. This process is called diffusion
charging which provides good resolution for submicron
sized particles. If the ions are subjected to a strong
electrical field, they will move rapidly in response to the
field, greatly increasing the rate of collision between
particle and ions. This is referred to as filed charging which
is significant for supermicron sized particles.The perfor-
mance of the charger is a function of the fon concentration in

Corona Voltage

A,

N\

R

§§ Corona Wire
§(lJ.lS min dia.) Z
g N o
Charging Zone \
-
A

A ]
~= Outer Elecrrode =

Fig. 1 Schematic diagram of the diode type corona charger

Mass Flow Controller High Vebtage Power Supgly

{Leybold Didactic 521721}

P90
I )
Corona =
Charger - Elecirometer
Keithley 6517
0 8ocoo

Fig. 2 Experimental setup of the jon-current measurement

the charging zone, therefore continuous monitoring of the
ion current from the corona-wire to the outer electrode is
necessary. The electrometer (Keithley model 6517A) is
used to measure the jon current from the corona-wire via
the outer electrode. Fig. 2 shows a typical experimental
setup. The current measurements are translated inio ion
concentrations given the mean ionic mobility and the
electric field strength in the charging zone. The jonic
concentration is then used as an input for the charging
models,

4, Results and Discussion

Fig. 3 shows the relationship between ion current and

- the applied voltage for the charger for both positive and

negative ions. Theoretical prediction was also plotted along
side the ion current measurement results. Similar patterns
for both positive and negative ions were produced,
showing higher current for negative ions due to their hi gher
mobility than that of positive ions. A good match of theory
to the experimental curve was obtained from corona onset
voltage up to about 8 kV. Large discrepancy was evident

] T T

n theory, positive ion
------ theory, negative ion (=}
O experiment, positive jon

O experiment, negative ion

s
T
o]

E
T
L

ion curtent, eA
D

corona voltage, kV
Fig. 3 Current-voitage characteristic of the positive and
negalive ions in the charging zone
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Fig. 4 Comparison of ion number concentration as a
function of the corona-wire voltage

beyond this value of corona voliage where ion number
concentration was high, in the region of 5 x 10° jons/m®.
The main reason may be explained by the fringe and the
space charge effects.

The space charge effect on the ion number concentration
as a function of the corona-wire applied voltage was
depicted in Fig. 4. Slight differences in ion number
concentration with and without considering the space
charge effect were found. The difference appeared 10
increase with increasing applied corona voltage. Similarly,
spatial distribution of electric field strength and ion number
concentration was shown in Fig. 5. Increase in radial
distance away from the central wire resulted in marked
discrepancy in the field strength and ion concentration with
and without the space charge effect. It was clear that space

charge effect was significant in the corona discharge region.

If the space effect was neglected, a significant error was
produced. It should be noted that the influence of aerosol
particles can be neglected because the particle number
concentration was assumed to be much smaller than the jon
number concentration.

¥ T T b T
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w0’
== jon concentration, with space charge

10*

electric field strength, Vim
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------ electric field, with space charge
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Fig. 5 Radial variation of the electric field strength and ion
concentration in the charging region
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Fig. 6 Radial variation of the Ny product in the charging
region at different operating aerosol rate and applied
corona voltage

Particle charging depends on the product of the ion
concentration and the average time the aerosol particles
spend in the charger. Fig. 6 shows the radial variation of
the N¢ product for different operating aerosol flows and
applied corona voltages. The resultant products were
evaluated for 5 ~ 15 liter/min and 8 — 10 kV, considering
the space charge effect. The obtained results were expected
for the effects of aerosol flow and corona voltage. The
higher flow rate, hence the shorter residence time gave rise
to lower Ny product. Increase in corona voltage produced a
monotonic increase in ion concentration, hence the Nyt
product. Overall, the Ny product did not show strong radial
variation except at very close to the outer wall. The
identical operating conditions were used to compute
particle electrical mobility distribution and penetration

10° T Y
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------ 10 Ipm, 8 kv
S |1 % 13
== lpm, 9 kv
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=
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electrical mobility, m¥V 5

1 10 100 1000
particle diameter, nm
Fig. 7 Variation of particle electrical mobility with particle
diameter at different operating aerosol flow rate and
applied corona voltage
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Fig, 8 Variation of particle penetration with particle
diameter at different operating acrosol flow rate and
applied corona voltage

through the charger as a function of particle size, shown in
Figs. 7 and 8.

Long residence time and high voltage appeared to cause
high level of charging, hence high electrical mobility and
high deposition rate. Significant particle {oss to the wall of
the charger was found. Ways to overcome this high
precipitation may be by (i) introduction of surrounding
sheath flows at the boundary between the aerosol stream
and the wall to allow more space for particle random paths,
(ii) application of an AC high voltage to the electrode
instead of DC voltage. The AC field was shown to produce
high charging efficiencies due to lower particle losses [2,
19}

Fig. 9 shows number of elementary charge acquired
versus particle size at different operating conditions. The
curves were already corrected for space charge effect and
particle penetration. It was clear that the number of charge
increases monotonically with particle size. However, the
relationship was not a linear (d) or quadratic {(d°) function
of particle size as described by field and diffusion charging,
respectively. In the size range considered, the combined
field and diffusion charging are operating in a complicated
manner. The value of charge distribution on particle is used
to evaluate particle concentration and the information is
useful in determining aerosol size distribution.

5. Conclusions

In this study, a diode type, wire-cylinder corena aerosol
charger was built and tested. Experimental investigation of
the voltage-current characteristics of the charger was
compared with theoretical prediction. Results were used to
characterize the electrostatic properties of the charger. A

5
T

—51pm, 8kV
------ 10 lpm, 8 kv
--------- 15 lpm, 8 kv
-5 lpm, 9KV

e 10 lpm, 9 kv
"""""" 15 lpm, 9 KV
—35Ipm, 10 kV |
——10 lpm, 10 kV
~—— 15 Ipm, 10 kV

3
:

number of elementary charpges

1w

¥ 1o 100 1000

particle diameter, nm
Fig. 9 Variation of number of charge with particle diameter
at different operating aerosol flow rate and applied
corona voltage

semi-empirical method to calculate ion concentrations in
the aerosol charger based on the ion current measurements
was presenied. Analytical expressions were derived io
vield the radial distribution of the N¢ product, the
corresponding particle penetration and average charge on
particle of different sizes for the chosen charger geometry.
lon number concentration and electric field sirength as a
function of corona voltage were evaluated. The Nt product
and resulting particle size - charge distribution were
presenied. It was also shown that the ionic space charge
has a significant influence on the electrostatic properties of
the charger and particle loss due to electrostatic attraction
was not negligible. The needs for surrounding sheath flows
to the aerosol stream and AC high voltage supply to
increase charging efficiency were also discussed. Overall,
the approach proved to be useful in characterizing the
electrostatic characteristics of the acrosol charger.
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Abstract

An electrical mobility spectrometer (EMS) is used fo classify airborne,
electrically charged particles in nanometer ranges. It is capable of measuring
the electrical mobility of the particles ranging from 10 ~ 700 nanometers, under
the influence of an electric field. The EMS design can be described as an
assembly of two concentrically cylindrical electrodes with an air gap between
the walls. In the EMS, air and aerosol flows enter from one end, pass through
the annular and exit the other end. Electric field is applied between the inner
and outer electrodes. Particles having specific mobility are collected on a
designated electrode ring where electrical signals are measured to obtain size
distributions. Flow condition and electric field pattern are important factors
influencing accurate particle size distribution measurements. In this study, a
computational model of the instrument was developed to predict the behavior of
the flow and electric fields under various design parameters, including ratios of
sheath air and aerosol flow rates, Reynolds numbers, electrode ring width, ring
separation and arrangement and type of flow guide materials. The
incompressible Navier-Stokes equation and the Maxwell's equation are
numerically calculated for the flow and the electric fields, respectively, with a
commercial computational fluid dynamic software package, CFDRC™, The
software was based on finite volume method. It was found that the numerical
simulation results exhibited a qualitatively well-agreed trend with the published
results in the literature. Prediction of flow and electric field conditions was
particularly useful in the instrument design. A prototype of the particle size
spectrometer is planned to be built and tested, based on the results of this
model.
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Abstract

Accurate measurements of aerosol size distribution
are desirable in order to investigate atmospheric
aerosol processes. In the present paper, an electrical
mobility spectrometer for measurement of number-
weighted particle size distribution in sub-micrometer
size range is described. The spectrometer consists of a
size selective inlet, an aerosol charger, an electrostatic
classifier, a signal detection system, a flow
arangement  system and a computer controled
interface system. Particle charging is accomplished by
exposing aerosol sample to the cloud of unipolar
corona jons, and then charged via ion-particle
collisions. The charged aerosol passes into the
clectrostatic  eclassifier, configured as coaxially
cylindrical electrodes. There are two separate streams,
aerosol and sheath air flows. The charged aerosols
enter the analyzer column. They are then deflected
radially outward and collected on electrically isolated
electrometer rings, positioned at the inner surface of
the outer electrode. Electrometers connecied to these
electrode rings measure currents corresponding to the
number concentration of particles of a given mobility
which is related to the particle size. Signal currents
are then recorded and processed by a data acquisition
system. A prototype of the spectrometer was built and
experimentally tested. From preliminary test resnlts,
the spectrometer has been found to be promising for
determining particle size distribution.

Keywords: aerosol, electrical mobility, size analyzer

1. Introductory Remarks

Development of acrosol measurement methods
has been primarily motivated by the need to find
better means of monitoring and controlling indoor and
outdoor aerasols for pollution and process control
industry. A number of different methods are able to
provide information about the size spectrum of these
fine particles in sub-micrometer size range f[I].
However, electrical mobility analysis is one of most
efficient and widely used techniques. Flagan [2]
offers a good review of the historical development of
this technique. Developments in the past several
decades have led to the electrical aerosol analyzer [3],

the scanning mobility particle sizer [4], the bipolar
charge aerosol classifier [5], the electrical aerosol
spectrometer [6] and the differential mobility
spectrometer [7]. These instruments are based on
electrical mobility analysis and designed to measure
airborne particle size distribution. Nonetheless, they
are different in terms of specific applications,
construction, cost, measurement range, as well as time
response and resolution.

The present paper reports a continuation from
previous works [8, 9] whose aim was to design and
develop an in-house, sub-micrometer aerosol
instrument. This paper focuses on description and
construction of a prototype for an electrical mobility
spectrometer. Preliminary laboratory test results were
also presented.

2, Principle of Operation

In an electrical mobility spectrometer (EMS),
aerosol sample pass through a charger that sets a
charge on the particles and enter a classifier
separately but together with sheath air flow through
an annular and exit. Electric field is applied between
the inner and outer electrodes and forces charged
particles having specific mobility to deposit on a
designated etectrode ring. An array of electrode rings
is connected to a series of sensitive electrometers
where electrical current signals are detected and
translated into size distributions.

3. Components and Description

Figure 1 depicts schematically an experimental
setup of the EMS, developed in this study. The setup
is composed of an aerosol generator, a flow system, a
size selective inlet, a particle charger, a size classifier,
a signal current detector and a computer controlled
data acquisition and management system.
3.1 Flow system

In the present study, acrosol and sheath air flows
are regulated and controlled by means of mass flow
meters and controllers with a vacuum pump. The
upstream air flow was conditioned by a perforated
screen to ensure uniform laminar flow, prior to it
entrance to the classifying column.
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Figure 1. Experimental setup of the electrical mobility spectrometer system.

3.2 Particle generator

The combustion aerosol generator was used to
produce a polydisperse carbonaceous diffusion flame
aerosol in this investigation. Polydisperse aerosols are
generated by a laminar diffusion burner with paraffin
fuel in the nominal *pre-sooting” condition, Aerosol
sampling was carried out isokinetically and fed to the
EMS. Stable polydisperse aerosols with particle
number concentrations of approximately 10'
particles/m’ were obtained. The mean particle size
obtained by electron microcopy was in the range
between 10 - 500 nm.
3.3 Size selective inlet

The inertial impactor was used to remove
particles larger than a known aerodynamic size,
upstream of the EMS. The acrodynamic particle size
at which the particles are separated is called the cut-
point diameter. In the impactor, the aeroso! flow is
accelerated through a nozzle directed at a flat plate,
The impaction plate deflects the flow streamlines to a
90° bend. Particles with sufficient inertia are unable to
follow the streamlines and impact on the plate,
Smaller particles are able to follow the streamlines
and avoid contact with the plate and exit the impactor.
3.4 Particle charger

The particle charger in the present study consists
of a coaxial corona-needle electrode placed along the
axis of a cylindrical tube with tapered ends. The
needle electrode is made of a stainless steel rod 3 mm
in diameter and 49 mm length, ended in a sharp tip.
The angle of the needle cone was about 9° and the tip
radius was about 50 pm, as estimated under a
microscope. The ouler cylindrical is made of
aluminum tube 3¢ mm in diameter and 25 mm length
with conical shape. The angle of the cone was about

30° and the orifice diameter was about 4 mm. The
distance between the needle electrode and the cone
apex is 2 mm, The corona electrode head is connected
to & DC high voltage supply, while the outer electrode
is grounded. An adjustable DC high voltage power
supply is used to maintain the corona voltage
difference, typically of the order of 1.0 — 5.0 kV. The
corona discharge generates ions which move rapidly
in the strong corona discharge field toward the outer
electrode wall. Aecrosol flow is directed across the
corona discharge field and is charged by ion-particle
collisions via diffusion charging and field charging
mechanisms, The mean charging current from the
corona electrode tip was measured with the sensitive
electrometer via the outer electrode. A wire-cylinder
charger configuration has been tried [10). But, the
needle .charger was later adopted due to its higher
charging efficiency.
3.5 Mobility classifier

The aerosol size classifier has one short
column which consists of coaxially cylindrical
electrodes. The outer electrode is made of a stainless
steel tube with 50 mm diameter and the central
electrode is made of aluminum rod with 20 mm
diameter and 131 mm in length. The advantage of
cylindrical geometry is that distortion of electric field
between electrodes is minimal due to the absence of
corners and edges. There are two streams which are
the aerosol and sheath air flows. Inner walls of flow
paths and curvatwe at the transition into the
classifying section were designed such that smooth
and turbulence free merging of the two gas flows
were obtained. The central rod of the classifier is
maintained at a positive voltage while the outer
chassis of the classifier is grounded. An adjustable
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DC high voltage power supply (Leybold Didactic
model 521721, 500 mV peak-to-peak ripple voltage)
is used to maintain this voltage difference, generally
in the range between 1.0 — 10 kV. It should be noted
that the applied high voltage is maintained at a lower
value than the corona onset voltage to avoid
unintentional charging of the particles within the
classifier. The charged particles enter the analyzer
column near the central rod by z continutous flow of
air. Since the central rod is kept at a positive high
voltage, the charged particies are deflected outward in
a radial direction. They are collected on a series of 10
electrically isolated metallic rings positioned at the
inner surface of the outer electrode of the column.
Table 1 shows the positions and their corresponding
mobility diameters of deposited aerosols for a typical
operating condition. The particle mobility diameter
deposit on each electrometer ring can be calculated by
the following equation

2VLn,eC,

i 3#Q, in (rzlfi) (I)
where ¥ is the central rod voltage, L; is the axial
position between the aerosol entry location and the
midpoint of the electrometer ring, 7, is the net number
of charges per particle, ¢ is the elementary charge on
an electron, C, is the Cunningham slip correction
factor, u is the air viscosity, ; is the total flow rate
through the classifier column (sum of aerosol flow, O,
and sheath air flow, Q.), r; is the central rod electrode
radius, and r; is the outer electrode radius,

Table 1. Electrode positions along the classification
column and their coresponding particle electrical
mobility diameter, (Q, = 1.5 Ipm, Q;=10lpm, v =
2.0kV, P =0.342 bar)

Electrode Midpoint Mobility diameter

ring number _ location (mm) {nm)
1 7 5.67

2 20 32.15

3 33 61.86

4 46 93.89

5 59 1284

6 72 165.7

7 85 206.4

8 98 251.1

9 i1 300.7

10 124 3564

Electrometers connected to these electrodes
Imeasure currents corresponding to the number
concentration of particles of a given mobility which is
related to the particle size. Electrical current detection
method was considered to be easier and faster than
direct particle detection measurements. The size range
and resolution of particle collected on the
electrometer rings can be varied by adjusting the
sheath air and aeroso! flow rates, the voltage applied
to the inner electrode, and the operating pressure.
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3.6 Sensitive electrical current meter

An electrometer is used to measure the electric
signal current from deposited charged particles on
each electrometer ring along the inner surface of the
outer electrode of the classifier column. These
measure currents corresponding to the total number
concentration of particles. The aerosol number
concentration, N, ,, of particles in related to the signal

current, /,, at each electrometer ring is given by

N = 4

P Pn,eQ, 2)

where P is the particle penetration thru the charger.

For the present study, a commercial multi-
channel electrometer, a Keithley 6517A electrometer
incorporating a Keithley 6522 low current scanner
card, were used. The Keithley 6517A electrometer has
a special low current input amplifier with an input
bias current of < 3 fA with just 0.75 fA p-p (peak-to-
peak) noise, < 20 pV burden voltage on the lowest
range, and the current measurement range of 1 fA to
20 mA. For the multi-channel measurement, the
Keithley 6522 low current scanner cards for a
Keithley 6517A was used. This scanner card is a 10-
channel multiplexer, has a offset current on each
channel is < 1 pA and high isolation is maintained
between each channel (> 10" 2 ).
3.7 Data acquisition and processing system

The measurement is controlled and data sampled
by an extemal personal computer via RS-232 serial
port cable. Software running on an external computer
was developed, based on Microsoft Visual Basic
programming for all data processing. The software is
able to display both size distribution and number
concentration.

4. Size Calibration and Testing

Figure 2. Laboratory setup for testing of the electrical
mobility spectrometer.



A laboratory test facility was developed and
constructed to evaluate performance of a prototype
EMS. s picture was taken and shown in Figure 2. In
this study, thin copper plates were placed on surfaces
of those electrode rings. The deposited particies inside
the spectrometer at each electrometer ring were later
analyzed for their sizes using a scanning electron
microscope (SEM). Particle imaging was carried out
using a JEOL JSM-6335F Field Emission Scanning
Electron Microscope. The SEM projected surface area
distribution was obtained first, by thresholding the
original SEM image and next, by calculating the
projected surface area of each particle, Image
processing was carried out using image), a public
domain image analysis software which was developed
at the National Institute of Health, USA {11}
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Figure 3. Comparison of resultant mean particle
diameters between the EMS and SEM measurements,

[T STV EIRR

B e T @ % w oy

Figure 4. Typical measured electrical signals from
cach clectrode ring at a given operating condition,
registered by the EMS data processing system.
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Figure 3 provides comparison of geometric
midpoint mobility diameter from EMS measurement
with geometric mean equivalent sphere projected area
diameter from SEM measurement at each
electrometer ring. Similar methods of particle size
comparison have been conducted and reported by Ku
and Maynard [12] and Rogak and coworkers [13]1. It
was suggested that valid comparison can be made
between electrical mobility diameter and mean
equivalent sphere projected area diameter from SEM
in the size range below about 500 nm. The data
presented in Figure 3 covers particles in the size range
between 150 — 450 nm. Combustion aerosols were
used as test particles. It was found that the diameters
derived from projected surface area of agglomerates
analyzed by the SEM agreed very well with those
mobility diameters given by the EMS. The largest
difference observed was about 15 % at 190 nm. At
other sizes, the differences were within 5 %. Finer
size comparison experiments (< 150 nm) have been
planed to carry out shortly. It is expected to reveal
similar trend and degree of agreement, as previously.

Preliminary experimental test runs with
combustion aerosol were obtained and one typical
result was depicted in Figure 4. The spectrometer was
operated at central electrode voltage of 2.0 kV,
acrosol flow rate of 1.5 lpm, pre-filtered sheath air
flow of 10.0 Ipm, and operating pressure of 0.342 bar.
Signal current for the distribution of the test aerosol
size spectrum for each electrode was clearly shown,
their values of the signal current was in similar order
of magnitude to those reported in the literature {14]
for similar type of aerosol. The signal current was
then used to evaluate number concentration and size
distribution. An example of processed data,
representing size distribution of combustion aerosol
measured by the EMS was shown in Figure 5. The log
normal nature of distribution was clearly illustrated.
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Figuare 5. Typical log normal size distribution of
combustion aerosols measured by the EMS.



S. Concluding Remarks

The electrical mobility spectrometer developed
at Chiang Mai University has been presented and
described in this paper. The measuring method was
based on electrical mobility. analysis and it has
multiple size detection channels’ capability. It was
able to measure particles in the sub-micrometer size
range.

A prototype of the spectrometer has been
constructed and calibrated against standard electron
microscopic measurements. Results obtained were
very promising, It was demonsirated that the
spectrometer can be used successfully in obtaining
aerosol size distributions. Future ongoing research
will put emphasis on field testing of the instrument in
actual environment, possibly along side a standard
aerosol sizing instrument,
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2) Electrical aerosol spectrometer (EAS)
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