CHAFTER 2

THEORY

In this Chapter, some of the basic fundamentals of aerosol particle properties and theories
needed to characterize the performance of the electrical mobility spectrometer (EMS) are
presented briefly. The first Section of the Chapter covers some fundamental properties of
aerosol particles. The second Section describes briefly a theory of the particle motion in a gas.
In the third Section, a brief review of the particle charging mechanisms, and the unipolar
diffusion and unipolar field chargings are described. The flow field and electric field
modelings are described in the fourth and last Sections of the Chapter, respectively.

2.1 Aerosol Properties

Aerosol is defined as a suspension of any solid or liquid particles (or a combination of
both) in a gas with diameter in the range between 1 nm and 100 pm (Hinds 1999). The most
important parameter for characterizing the behavior of aerosols is the particle size. The
behavior, chemical composition and physical properties of aerosol particles vary strongly as a
function of the particle size. Most aerosols consist of a number of different particle sizes.
Monodisperse aerosols by definition consist of particles that have all the same size and can be
produced in the laboratory for use as test aerosols. However, most aerosols are polydisperse,
with a wide range of particle sizes, and statistical measures should be used to characterize
their particle size. The distribution of particle sizes within the aerosol is referred to as the
aerosol size distribution. Usually, polydisperse aerosol size distributions are well described by
a lognormal distribution function. There is no theoretical basis for the application of the
lognormal distribution function; its particular suitability has been arrived at through a great
deal of empirical experience. The lognormal distribution function is given by the following
equation (Hinds 1999):
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where d, is the particle diameter, d is the count median diameter, and o, is the geometric

standard deviation given by the equation
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where d, is the number weighted geometric mean diameter, or the count mean diameter, is
given by (Hinds 1999).

d, =exp[z—rx%] (2.3)
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Figure 2.1 Atmospheric aerosol size distributions (Flagan 1998).

where #, is the number of particles in group #, having a midpoint of size d,, and N is the total

number of particles (Hinds 1999).

The most common way to present the particle size distribution of aerosol is in terms of
the three modes, referred to as the nuclei, accumulation, and coarse particie modes, shown in
Figure 2.1. The nuclei mode is composed of particles which have equivalent diameters of less
than about 100 nm. Nuclei mode particles are produced from recent source emissions and
particles formed in the atmosphere by gas-to-particle conversion and condensation processes.
They are present in great quantity and thus dominate the number weighted aerosol size
distribution. However, since the nuclei mode particles are so small, they have every little
mass associated with them and consequently contribute very little to the mass weighted size
distribution. The accumulation mode is composed of particles which have equivalent
diameters in the size range between approximately 100 nm and 1 pm, primarily sulphuric acid,
ammonium sulphate and ammonium nitrate, organic products, smog particles, combustion
particles, and nuclei mode particles that have coagulated with accumulation mode particles,
This mode is where most of the mass of atmospheric aerosol is, and it is this size range that
acts as the cloud condensation nuclei. Because accumulation mode particles are formed
primarily through the agglomeration of the smaller nuclei mode particles, they are present in
much smaller (though still highly significant) numbers. Because of their greater size,
accumulation mode particles carry significant mass with them, allowing them to dominate to
mass weighted particle size distribution. The coarse mode is composed of particles which
have equivalent diameters greater than approximately 1 pm, such as windblown dust, crustal
material, large sea-salt particles from sea spray, and mechanically generated anthropogenic
particles such as those from agriculture and surface mining. Even though coarse mode
particles are highly massive (when compared with nuclei and accumulation mode particles),
they are present in negligible number compared to nuclei and accumulation mode particles;
consequently, they do not contribute significantly to either the number or mass weighted size
distributions.
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The shape of aerosol particles is another factor that varies considerably. Liquid aerosol
particles are nearly always spherical, while solid aerosol particles usually have complex
shapes; most other types of particles are nonspherical. Some have regular geometric shapes,
such as cubic, cylindrical, single crystals, or clusters of spheres. The shape of a particle
affects its drag force and setiling velocity. For the most application, an aerosol is usually
assumed to be spherical in nature, leading to the concept of the equivalent diameter, which is
the diameter of the sphere that has the same value of a particular physical property as that of
an irregular particle. For approximate analysis, shape can usually be ignored. Particle with
extreme shapes, such as long, thin fibers, are treated as simplified nonspherical shapes in
different orientations. A correction factor called the dynamic shape factor is applied to
Stokes’s law to account for the effect of shape on particle motion. It is defined as the ratio of
the actual resistance force of the nonspherical particle to the resistance force of a sphere
having the same volume and velocity as the nonspherical particle, and is given by

P (2.4)
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where £, is the actual resistance force, 7 is the gas viscosity, ¥ is the particle velocity, and
d, is the equivalent diameter. The shape of aerosol particles having a complex structure, such

as an agglomerated metal fume or soot particle, can be characterized in terms of a fractal
dimension. The fractal dimension relates a property such as the perimeter or surface area of
an object to the scale of the measurement (Hinds 1999).

2.2 Particle Motion in Gases

The following paragraphs describe the theory of the particle motion in a gas. These
include the gas viscosity, the Reynolds number and annular flow velocity profile, the
molecular and particle velocity, the mean free path and Knudsen number, the particle
Reynolds number, the settling velocity and mechanical mobility, the Stokes number and
inertial impaction, the electrical mobility, the Brownian motion and thermal diffusion and the
particle losses.

2.2.1 Gas Viscosity

Viscosity is the constant of proportionality for relationship between shear stress
and velocity gradient for a Newtonian fluid:

du
dy

Fa (2.5)

The dynamic viscosity for air at 20°C is 1.81 x 107 Pas. Viscosity can be related to a
reference viscosity, 77,, at a reference temperature, 7, , as following equation (Willeke and
Baron 1993):
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where § is the Sutherland interpolation constant (Willeke and Baron 1993). It should be noted
that viscosity is independent of pressure.
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2.2.2 Reynolds Number and the Annular Flow Velocity Profile

The fluid flow inside the electrical mobility classifier is operated at laminar flow
conditions. To obtain that, the Reynolds number has to be kept within the laminar regime,
The Reynolds number is a dimensionless number that characterizes a fluid flow through a
pipe. The most commonly used classifier employ annular flows and the Reynolds number in
the annular flows geometries is defined as (Janna 1993):
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where r, is the radius of the outer cylinder of the annulus, x is the diameter ratio of the inner

over the outer cylinder, I/ is the mean (axial) flow velocity, and p is the gas density. The
velocity profile in the annular flow geometries is given by
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where dp/dz is the constant pressure gradient (Janna 1993).

2.2.3 Molecular and Particle Velocity

Derived from the ideal gas law, the square root of the mean square velocity of
every particle or molecule of the gas is given by

€ = ﬂ for molecules 2.9
M

Crms = £ for particles (2.10)
m

where R is the gas constant, M is the molecular weight of the gas, k is Boltzmann’s constant,
m is the molecular mass of the gas and T is the absolute temperature. Because aerosol
particles exchange energy with the surrounding gas molecules they have the same kinetic
energy. The kinetic energy of one molecule of particle within the gas is given by the
following equation

KE:%Z (2.11)

However, all molecules or particles do not have the same velocity at an instant time in the gas.

Assuming a Maxwell-Boltzmann velocity distribution for the molecular velocity along any
direction is given by
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where f(c)de is the fraction of velocities between ¢ and ¢+ de (Hinds 1999). The average

mean molecular or particle velocity is given by integrating Equation 2.12 over all possible
speeds
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2.2.4 Mean Free Path and Knudsen Number

the average distance it has traveled in that second, is given by

where n, is the average number of collisions between molecules is given by
n, =\ 2nzde (2.15)

where # is the concentration of molecules, the number per unit volume, d_ is the collision

diameter of the pérticle, defined as the distance between the centers of two molecules at the
instant of collision. Combining Equation 2.14 and 2.15 gives

1
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For air at 20°C and atmospheric pressure, the mean free path of air is 0.066 um (Hinds 1999).
Willeke (1976) showed that the mean free path of a certain aerosol as a function of pressure,
P, and temperature, 7, is given by the following equation

ety

where 4 is the mean free path at the reference conditions, P, and 7, are the pressure and

temperature in the reference condition, respectively, and § is the Sutherland constant.

The aerosol transport regime as defined by the Knudsen number, Kn. This defines
how the fluid suspending the particle views the particle. It is defined as the ratio of the gas
mean free path to the diameter of the particle is given by

Kn=2" (2.18)

where d, is the diameter of the particle and A is the gas mean free path. For acrosol particles,
this is taken as the mean free path of air. The Knudsen number is used to define which the
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transport regime and associated equations should be used when dealing with aerosols. There
are three cases: the free molecular regime (d,<<A), the continuum regime (d,>>A4) and the

transition regime (d, = 4).

2.2.5 Particle Reynolds Number

Particle Reynolds number is an important parameter used in the classification of
aerosol dynamics, which describes the aerodynamic properties of the particle. It is defined as
the ratio of the inertial forces to the frictional forces acting on the particle, and is given by
(Willeke and Baron 1993):

_ prd,
7
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where p is the gas density, ¥ is the relative velocity between the fluid and particle, d, is the

particle diameter and 7 is the gas viscosity. Generally, if Re < 1, the flow around the particle
can be described as laminar flow, which will be a requirement for many practical applications.

2.2.6 Settling Velocity and Mechanical Mobility

When an aerosol particle moving with a net velocity corresponding to the carrier
gas which it is suspended in, the particle is subject to the gas resistance force or drag force,
£y, . This provides the following Stoke’s law formulation for drag as

F,=3aqV,d, (2.20)

where V is the velocity of the particle and d, is the particle diameter. Stoke’s law is a

specific solution to the generally insoluble Navier-Stokes equations. The Navier-Stokes
equations are the general differential equations describing fluid motion and are used to
describe the drag force acting on a particle, with the assumptions that inertial force are small
when compared with viscous force (Re <1, i.e. particle Reynolds number is small), motion is
constant, the particle is a rigid sphere with no walls or other particles nearly, the fluid is
incompressible, and the fluid velocity is zero at the particle surface. For the size of particles
and flow conditions being dealt with here, all of the above assumptions are valid, except for
the assumption of zero fluid velocity at the particle surface. As particle size approaches the
gas mean free path, the particles experience “slip” at their surface (i.e. the velocity of the
surrounding fluid at the particle surface is not zero). In order to account for this surface slip,
the empirical correction factor, C,, the Cunningham slip correction factor, is therefore

introduced as a correction factor to allow for this, giving Stokes’ law as

3V d
A =_% (2.21)

[+

The value of C_ has been reevaluated over the year. It was first derived by Cunningham
(1910) and later by Allen and Raabe (1982) who reanalyzed the earlier data of Millikan from
experiments carried out between 1909 and 1923, giving C_ as
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2 d
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P

For air at 20°C and atmospheric pressure, C, has a value of 224332 fora I nm particle and
1155 for a 1 pm particle (Hinds 1999). The terminal settling velocity, ¥, of a particle

suspended in a sill gas can be determined by equating the Stokes drag force to the
gravitational force (i.e. F,=F_). Neglecting buoyancy force, this terminal settling velocity

becomes

d’gC
mzpp p8Cc (2.23)
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where p, is the particle density and g is gravitational acceleration. It should be noted that

the settling velocity is not significant for particles smaller than 1.0 pmt in diameter (Hinds
1999).

The ability of a particle to move in the suspending gas and a specific force field is
referred to as the particle mobility. The particle mobility, B, is defined as the radio of the
terminal velocity of particle (with respect to carrier gas) to the magnitude of the drag force
exerted on the particle, and for small particles is given by

y__C (2.24)
Fy  3mnd,

where the definition of diameter being used is that of aerodynamic diameter. The particle
mobility has unit of m/Ns and is often called mechanical mobility. Knowing the mobility of
any particle in the gas its terminal velocity can be calculated given the acting force.

2.2.7 Stokes Number and Inertial Impaction

If the particle is accelerated to some initial velocity ¥V, by a force which is then

removed, the aerodynamic drag force will tend to accelerate the particle until it is traveling at
the same velocity as the fluid, V,. The distance which the particle travels as it accelerates

from ¥, to ¥, in the absence of external forces is given by the stopping distance, §:
§=BmJV, (2.25)

where B is the particle mobility and m‘; is the particle mass. This stopping distance is

typically quite small; for a particle with an initial velocity of 1000 cm/sec in a stationary fluid,
the stopping distance is 3.6 x 107 ¢m for a 1000 nm particle and 6.8 x 10 cm for a 10 nm
particle, ‘
When the aerosol flow comes to an obstruction (e.g. a bend in a tube), the fluid
flow must change its direction. However, because the aerosol particles have a greater
momentum than the gas molecules, they will not be able to change their direction of travel as
quickly as the gas. If particle momentum is sufficiently high, it will not be able 1o follow the
path of the gas flow: the particle will then cross the gas streamlines and impact on the
obstruction (e.g., the tube wall). The tendency of a particle to either follow gas streamiines or
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impact inertially is measured by the particle Stokes number, Stk . The Stokes number is
defined as the ratio of particle stopping distance to the characteristic dimension, d., of the
obstruction is given by the following equation

P, V,C.

2.26
187d, (2.26)

Sth=2 =
dt‘

where the Stokes definition of particle diameter is used. It has been experimentally
determined that significant impaction losses occur for particles with Stokes numbers greater
than 0.6.

2.2.8 Electrical Mobility

When a charged particle enters the presence of an electrostatic field, a charged
particle will experience a net electrostatic force, F.,is given by

F. =nek 2.27)

where n is the net number of elementary charges on the particle and e is the value of
elementary charge on an electron and £ is the electric field strength. In the absence of any
other external forces (generally F, >> F,), the electrostatic force will be balanced by the

Stokes drag force (i.e. F, =F,), resulting in a terminal electrostatic velocity of a charged
particle, Vy,, is given by

Vip == =neEB (2.28)

The ability of a charged particle to move in the presence of an electrostatic field is referred to
as the electrical mobility of particles, Z »» the velocity of a charged particle in an electric field

of unit strength is given by

7 Ve meC, .

» for Re <1 (2.29)
E  3mnd,

and is directly related in terms of the particle mechanical mobility as

Z,=qB=neB ; (2.30)

2.2.9 Brownian Motion and Thermal Diffusion

The random motion of particles due to collision with gas molecules is the
Brownian motion. This random motion causes particle diffusion in a concentration gradient.
Hence, there is a net transport from higher to lower concentrations with the gas. The net flux
of particles, J, is in the direction of lower concentration and characterized by the particle
diffusion coefficient, D. The larger the value of D, results in the more vigorous the Brownian
motion, and the more rapid the mass transfer in a concentration gradient. This motion, in the
absence of external forces, is described by Fick’s first law of diffusion is given by
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dn
J=-D— 2.31
o (2.31)

where dnfdx is the particle concentration gradient. The diffusion coefficient, D, given by the
Stokes-Einstein equation (Hinds 1999)

D=k =TC (2.32)

3rnd,

The diffusion coefficient has unit of m*/s. Given the diffusivity of a particle, the root mean
square net displacement due to the particle Brownian motion is given by

dx,. =~2Ddt (2.33)

where df is the traveling time,

Some effects occur when a temperature gradient is established for the surrounding
gas molecules. The force experienced by an aerosol molecule is proportional to this
temperature gradient and in the direction of decreasing temperature. This is the case of hot
aerosol gas the blows over a hot surface. Particle are transported and deposited on the cold
surface. The thermal force, F,, on a particle with diameter, d,, is given by

Ad2VT

AC —i'%- for d,< 1 (2.34)
2
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F. =
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for dp> A {2.35)

where p is the gas pressure, V7 is the temperature gradient, P, is the gas density and H is

a function of the thermal conductivities of gas and particle, the particle size and the gas mean
free path. The negative sign indicates that the force is always directed in the opposite
direction of the gradient (i.e. from hot to cold)

2.2.10 Particle Losses
(a) Sampling Losses

An isokinetic sampling system is generally desirable to obtain a sample of
particles from a flowing gas stream. In an isokinetic sampling system, the sampling probe is
isoaxial with the flow (i.e. it is aligned in parallel with the gas streamlines) and the sample
velocity entering the probe is identical to the free stream gas velocity, the isokinetic condition
for a properly aligned probe is

U=U, (2.36)

where U is the free stream gas velocity and U, is the sample velocity in the probe. Any

deviation from isokinetic conditions may result in under-sampling or over-sampling of
particle in certain size ranges due to inertial effects. In addition, further losses may occur due



40

to inertial impaction of particle at the sample tube inlet. Fortunately, under normal conditions,
sampling losses due to inertial impaction and anisokinetic sampling generally become
significant only for particle larger than 1 pm. Consequently, for particle smaller than 1 pm,
sampling losses are not a significant issue (Graskow 2001).

(b) Tramsport Losses

Particle should be transported from the sample tube inlet to analyzer without
bias. However, particles of different sizes penetrate sampling tubes with different efficiencies.
Two of the most common mechanisms for particle losses during aerosol transport are due to
diffusion and thermophoresis, as described above. Diffusion loss results in the selective loss
of smaller particles as they diffuse to and are deposited on fubing walls. In the tube flow, the
transport efficiency with diffusive particle loss, 7, , can be expressed as (Willeke and Baron

1993)

7l o Vd“*) 2.37)

s = €XP (‘ 0

where d is the inside diameter of tube, L is the length of the tube, V. is the deposition
velocity for particle diffusion loss to the wall, and Q is the volumetric flow rate of gas

through the tube. The most effective method for reducing diffusion losses is simply to
minimize the physical length of the transport tubing. Thermophoretic deposition is only a
cause for concern for aerosols that are hot (as is often the case with combustion aerosols).
Thermophoresis can be reduced by heating and insulation of sample lines as well as by
reduction of aerosol temperature through dilution.

Precipitation of small particles by electrostatic effects due to image force and
space charge effects can occur in the sampling lines during transport. Because it is not always
possible to know the distribution of charge on acrosol particles or the electric field in a
sampling line that is subject to static charge, electrostatic deposition of particles in sampling
lines is most difficult to characterize (Willeke and Baron 1993). This problem is largely
avoided through the exclusive use of metal or electrically conductive lines. Having no
electrically isolated section will obviate the problem of electrostatic deposition. If metal lines
cannot be used, Tygon™ is an acceptable substitution. Materials to be avoided for acrosol
transport are Teflone™ and Polyflo™ (Willeke and Baron 1993). Losses of large particles can
occur due to sedimentation, gravitational settling, and inertial impaction. Generally speaking,
such losses only become significant for particles larger than 1 pum, and consequently are
usually negligible.

2.3 Particle Charging Mechanisms

Particle charging is the first basic step in the aerosol measurement based on electrical
mobility technique. The aim of the charging mechanism for a mobility analyzer is to impose a
known charge distribution on the aerosol particles. Because particle size djstribution is
commonty determined through the electrical mobility classification, prediction of particle size
requires the knowledge of the charge distribution for every particle size. There are many
mechanisms by which aerosol particles acquire net charge distributions. These are flame
charging, static electrification, diffusion charging and field charging. The most commonly
used method for charging particles in electrical measurement instruments is diffusion
charging. Generally speaking, particles are allowed to collide with ions and the charge carried
by these ions is transferred to the particles. This method is so called due to the mechanism
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ions travel in the gas and collide with the particles. Diffusion charging of particies can be that
unipolar or bipolar depending on the polarity of the ions colliding to the particles. Bipolar

Brownian motion of ions in Space. The amount of ion deposition on the particle surface
depends on resident time, particle radius and shape, electric field, etc, The technique has been
applied successfully and several designs of wire-cylinder corona charger are empioyed and
described in the published literature, both wire-cylinder corona (Hewitt 1957; Liu er al. 1967;
Liu and Pui 1974; Buscher et al. 1994; Unger er al, 2004; Biskos et al. 2005) and needle
chargers (Whitby 1961; Medved er al. 2000; Marquard ef al. 2003 Hemandez-Sierra ef al.
2003). A number of particle sizing instruments employ unipoiar corona chargers (Liu and Pui

time of the particles to the ions, t. For this reason, a well-designed corona charger should
provide a stable Nit product that can be accurately determined for any given operating
conditions.

2.3.1 Unipolar Diffusion Charging

When an aerosol particle is exposed to gaseous ions, capture of ions by the particle
oceurs leading to the appearance of an electrical charge on the particle. The magnitude of the
charge depends upon the size of the particle, the unipolar ion density encountered, and the
time that particle spends within this region. In the absence of any appreciable electric field,
this particie wil] be diffusionally charged by the Brownian random motion of the ions with
respect to the particle. This diffusion charging, first characterized by White (1963) and more
recently modified by Pui (1976), can be expressed in a convenient analytic form. For an
initially neutral particle immersed in a unipolar ion cloud, the flux of ions, J, impinging on the
patticle surface area is given by

J=4mza® [Ef %J (2.38)
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where a is the particle radius, N, is the concentration of ions above the surface and €, is the
mean thermal speed of the ions. The spatial distribution of ions is given by the classical
Boltzmann distribution for the equilibrium state. Neglecting the mage force attraction
between the ions and the particle, the Boltzmann distribution at the particle surface is given
by

net
N =N.expl -k _-* 2.39
5 i Xp( E akTJ ( )

where N, is the ion concentration at infinity, n, is the particle charge, ¢ is the elementary

unit of charge, Kz = 1 / 4mey, with the vacuum permittivity, £ is the Boltzmann’s constant
(1.380658 x 10% J/K), and T is the operating temperature of the system. Substituting
Equation 2.39 into Equation 2.38 gives

J = s n,e’
=rxa’¢;N,exp| -K; (2.40)
akT

The above equation was originally derived by White (1963). This is valid for the kinetic
theory (Free molecular regime, Kn >> 1). The charging rate expression can be described by
the system of differential equation as

dn e’
—L=zd’ZN, exp[-—KE i J (2.41)

ar akT

With the initial condition that n,=0 at 1 =0 for the charging of an aerosol (initially neutral),
the average charge of particle can be integrated analytically to give

" dn f
| ~———— <= [ra’E N (2.42)
® exp| -k, i .

akT

Thus, the average charge, Ny » caused by the diffusion charging in a time period, ¢, by a
particle diameter d, . can be found from

(2.43)

M. = £
Y 25T

g€

AT (] / JrKEdpE,.ezNitJ

where d, is the particle diameter.

2.3.2 Unipolar Field Charging

In the case where an electric field exist in the charger, the effect of the finite
electric field used in the charging region can be estimated by the classical field charging
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equation derived by White (1963), the saturation charge, n,, of a particle (diameter, d,and
dielectric constant, £ ) in an electric ficld £ is given by

2
n5=(1+28_1) Ed, (2.44)
e+2 /| 4K e

The charging rate expression, dn, {dt, is given by the following differential equation

452’11F ", :
?:nSKEeZ,.Ni b (245)

nS

If the particle is initially neutral, the average number of charge, ;e » @cquired in an average
electric field £ is given by

" _(]_{_25-] Ed, 7K eZ Nt (2.46)
Sy e+2 )\ 4K e \1+ 7K eZ Ny '

where & is the particle dielectric constant. In the present study, & =3.0 is arbitrarily assumed
for the dielectric constant of the particle.

2.4 Flow Field Modeling

For flow field modeling, flow conditions inside the charger and classifier column of the
EMS are assumed to be steady, incompressible and laminar. Based on the principle of
momentum conservation, the incompressible Navier-Stokes equations (N-S equation) can be
applied in this case. In these axisymmetric geometries, the continuity and N-S equations used
in this model can be written in the 2-D cylindrical coordinates is given as follows:

Continuity equation:

—_ rur) +—éa—(u:) =0 (247)

N-S equation:

For the radial component (in r-direction),

A 2 - 2
U Ou, u, LN __I_8_p+ H -—O—(l—q ru, )]+ 0 Z;’ —,u-izur (2.48)
or "~ & r o or or\r or &z r

For the axial component (in z-direction),

- - - 2
urozz,_*_u- Ou:z_l_a_g_l_# l_@_(rou:J_{_at: (249
ar ° Bz p iz ror\ or Oz

For the circumferential component (in & -direction)
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2

u % 9.”1:;1 10 ou ), 9u liﬂ._ _2u( Ouy (2.50)
or 0z rory or oz r\ or

where u, is the velocity component in the r-direction, , is the velocity component in the z-

direction, u, is the velocity component in the @-direction, p is the pressure and i is the

kinematic viscosity of air.

2.5 Electric Field Modeling

For electrostatic field modeling, the Poisson’s equation for the electric potential can be
used. However, the space-charge effect on the electric field can be neglected ( » = 0) for low
aerosol concentration, typically less than 10" particles/m®, and with low particle charge level
(Chen and Pui 1997; Camata et al. 2001). Thus, the Laplace’s equation is used in the present
formulation:

V¥ =0 - : (2.51)
where ¥ is the applied voltage. To further simplify the equation, axisymmetric assumption is

used due to the charger and classifier configurations. The resulting equation in the 2-D
cylindrical coordinates is given as follows:

2
li(;ﬁi AL (2.52)
ror\. or ) 82°

Once the electric potential is obtained, the electric field strength in the »- and z- directions can
be calculated by the following equations

E=-2" F=-2 (2.53)

In the simplified geometry, the electric field strength are expressed by

"

rin(r/n)’

E(r,2)=0 (2.55)

Erz)=E(r)=——"F— (2.54)



