TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF ILLUSTRATIONS	xii
NOMENCLATURE AND ABBREVIATIONS	xvii
	Avn
CHAPTER 1 INTRODUCTION	
	1
1.1 Statement and Significance of the Problem1.2 Literature Reviews	1
	2
1.2.1 Designs of Mobility April	2 2
1.2.2 Designs of Mobility Analyzers	12
1.2.3 Development of Electrical Mobility Analysis Based Instruments 1.3 Aims of the Study	20
1.4 Benefits of the Study	29
1.5 Scope of the Study	29
1.6 Thesis Outlines	29
The Media Guttines	30
CHAPTER 2 THEORY	
2.1 Aerosol Properties	31
2.2 Particle Motion in Gases	31
2.1.1 Gas Viscosity	33
2.1.2 Reynolds Number and the Annular Flow Velocity Profile	33
2.2.3 Molecular and Particle Velocity	34
2.2.4 Mean Free Path and Knudsen Number	34
2.2.5 Particle Reynolds Number	35
2.2.6 Setting Velocity and Mechanical Mobility	36
2.2.7 Stokes Number and Inertial Impaction	36
2.2.8 Electrical Mobility	37
2.2.9 Brownian Motion and Thermal Diffusion	38
2.2.10 Particle Losses	38
2.3 Particle Charging Mechanisms	39
2.3.1 Unipolar Diffusion Charging	40
2.3.2 Unipolar Field Charging	41
2.4 Flow Field Modeling	42 43
2.5 Electric Field Modeling	
~	44
CHAPTER 3 COMPONENT DESCRIPTION AND MODELING	45
3.1 Size Selective Inlet	45
3.2 Particle Charger	47
3.3 Mobility Classifier	59

3.4 Electrometer	71
3.5 Data Acquisition and Processing System	74
3.6 Summary	77
•	11
CHAPTER 4 EXPERIMENTAL METHODOLOGY	78
4.1 Experimental Apparatus	78
4.1.1 Flow System	78
4.1.2 Particulate-Free Air Filter	78
4.1.3 Particle Generator	78
4.1.4 Adjustable DC High Voltage Power Supply	82
4.1.5 Electrometer	82
4.1.6 Scanning Electron Microscope	85
4.2 Experimental Procedures	85
4.2.1 Charger Evaluation	
4.2.2 Classifier Evaluation	85
4.2.3 SEM Analysis	87
4.2.4 Electrometer Experiments	87
200 Experiments	90
CHAPTER 5 RESULTS AND DISCUSSION	92
5.1 Performance of the Size Selective Inlet	92
5.2 Performance of the Unipolar Corona Charger	92
5.2.1 Simulation and Modelling Results	
5.2.2 Experimental Results	93
5.3 Performance of the Classifier	103
5.3.1 Simulation and Modelling Results	104
5.3.2 Experimental Results	107
5.4 Performance of the Electrometer	120
5.5 Preliminary Test Runs	130
5.6 Summary	135
3.0 Summary	135
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS	
FOR FUTURE WORKS	100
6.1 Conclusions	138
6.1.1 Performance of Each Component	138
6.1.2 Overall Performance of the Great control of t	138
6.1.2 Overall Performance of the Spectrometer 6.2 Recommendations for Future Works	139
0.2 Recommendations for ruture works	141
REFRERNCES OV Chiang Mail Unive	143
APPENDIX O O O O O O O O O O O O O O O O O O O	
APPENDIX A: Technical Drawing for an Electrical Mobility Spectrometer	157
APPENDIX B: Schematic Diagram of the Computer Interface and Electrometer	
Circuits	187
APPENDIX C: Operation Manual	190
APPENDIX D: List of Publications	202

CURRICULUM VITAE

252

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	0016101	Page
3.1	Electrometer ring width and positions along the size classification column	60
5.1	Predicted particle size range at each electrometer ring (1.0 l/min aerosol flow, 5.0 l/min sheath air flow, 1.0 kV inner electrode voltage, and 342 mbar	
	operating pressure	125
5.2	Predicted particle size range at each electrometer ring (1.0 l/min aerosol flow, 10.0 l/min sheath air flow, 0.8 kV inner electrode voltage, and 526 mbar	
	operating pressure	126
5.3	Predicted particle size range at each electrometer ring (1.0 l/min aerosol flow, 10.0 l/min sheath air flow, 1.0 kV inner electrode voltage, and 526 mbar	
	operating pressure	127
6.1	Comparison of the operating specifications between the EMS and commercial	
	instruments	140
C.1	Maintenance Schedule	197
C.2	Specifications of the EMS	201

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figu	res	Page
1.1	Schematic diagram of the diffusion charger developed by Liu et al.	4
1.2	Schematic diagram of the diffusion charger developed by Liu and Pui	4
1.3	Schematic diagram of the square-wave charger developed by Buscher et al.	5
1.4	Schematic diagram of the wire-cylinder corona charger developed by Unger et	
	al.	6
1.5	Schematic diagram of the unipolar corona-wire diffusion charger developed by	\
	Biskos et al.	7
1.6	Schematic diagram of the sonic jet ion generator developed by Whitby	8
1.7	Schematic diagram of the corona jet charger developed by Medved et al.	9
1.8	Schematic diagram of the twin corona module charger developed by Marquard	\\
	et al.	9
1.9	Schematic diagram of the unipolar corona ionizer developed by Hernandez-	
	Sierra et al.	9
1.10	Experimental setup of the measurement of charging efficiency	10
1.11	Total ion number concentrations at the charger outlet	10
1.12	Charging efficiency of the corona-needle charger as a function of particle size	
	for positive particles	11
1.13	Charging efficiency of the corona-needle charger as a function of particle size	
	for negative particles	11
1.14	The mobility analyzer developed by Knutson and Whitby	13
1.15	Comparison of the transfer function for the DMA predicted by Knutson and	
	Whitby with their measurement using monodisperse polystyrene latex aerosol	13
1.16	Schematic diagram of the analyzer developed by Lehtimaki	14
1.17	The University of Vienna DMA	15
1,18	Schematic diagram of the LPDMA developed by Seto et al.	17
1.19	Experimental system for calibration of LPDMA	17
1.20	Schematic diagram of the Nano-DMA developed by Chen et al.	18
1.21	Schematic of an adjustable-column length DMA (ACLDMA)	18
1.22	Particle size distribution measured with the ACLDMA when $L = 18$ and 300	
	mm	19
1.23	Schematic diagram of the Scanning Mobility Particle Sizer	21
1.24	Schematic diagram of the Condensation Particle Counter	21
1.25	Schematic diagram of the Electrical Aerosol Analyzer	23
1.26	Schematic diagram of the Electrical Aerosol Spectrometer of Tartu University	23
1.27	Schematic diagram of the Electrical Low Pressure Impactor	24
1.28	Schematic diagram of the Engine Exhaust Particle Sizer	25
1.29	Schematic diagram of the Bipolar Charge Aerosol Classifier	26
1.30	Schematic diagram of the Fast Aerosol Spectrometer	27
1.31	Schematic diagram of the electrometer circuit of the FAS	27
1.32	Schematic diagram of the Differential Mobility Spectrometer	28
1.33	Schematic diagram of the electrometer circuit of the DMS	29
2.1	Atmospheric aerosol size distributions	32
	·	

3.1	Schematic diagram of the size selective inlet	46
3.2	A picture of the inertial impactor	46
3.3	Schematic diagram of the corona-needle charger	48
3.4	A picture of the corona-needle charger	48
3.5	Schematic diagram of the corona-wire charger	49
3.6	A picture of the corona-wire charger	49
3.7	Computational domains of the corona-needle and wire chargers	57
3.8	Computational mesh distributions for the corona-needle and wire chargers	58
3.9	Schematic diagram of the mobility classifier	59
3.10	A picture of the mobility classifier column	60
3.11	Schematic diagram of non-diffusing particle trajectory in the mobility	
	classifier	61
3.12	Non-diffusing particle trajectory model	64
3.13	Schematic diagram of diffusing particle trajectory in the mobility classifier	66
3.14	Principle of the mobility and size classification in the classifier	67
3.15	Computational domain for flow field calculation	70
3.16	Computational domain for electric field calculation	70
3.17	Mesh distribution for flow field calculation	71
3.18	Mesh distribution for electric field calculation	71
3.19	Schematic diagram of the electrometer circuit design	72
3.20	A picture of the electrometer circuit	72
3.21	Two-port model of the electrometer circuit	73
3.22	Block diagram of the data acquisition and processing system	74
3.23	The EMS data acquisition and processing software	74
3.24	Principle of the current measuring technique	76
4.1	A picture of the Dwyer gas mass flow controller	79
4.2	A picture of the rotary vane vacuum pump	79
4.3	A picture of the high efficiency particulate-free air (HEPA) filter	80
4.4	Schematic layout of the combustion aerosol generator (CAG)	80
4.5	A picture of the combustion aerosol generator (CAG)	81
4.6	Scanning electron micrograph of the ultrafine carbonaceous particles from the	
4 77	CAG	81
4.7	A picture of a Leybold Didactic model 521721	82
4.8	A picture of the high voltage cable	83
4.9	A picture of the Keithley 6517A electrometer	83
4.10	A picture of the Keithley 6522 low current scanner card	84
4.11	A picture of the low-noise coaxial connection cable	84
4.12	A picture of the Keithley model 237-ALG-2	85
4.13	A picture of the JEOL JSM-6335F	86
4.14	Schematic layout of the experimental setup for the evaluation of the charger	86
4.15	Schematic layout of the experimental setup of the evaluation of the	rsii
	classification column and the overall performance of the EMS	88
4.16	A picture of the experimental setup of the characterization of the classification	
	column and the overall performance of the EMS	89
4.17	Schematic of the SEM sampler constructed	90
4.18	Schematic diagram of the experimental setup of the electrometer circuit	
	calibration	91
5.1	Variation of impactor collection efficiency with particle diameter at different	
	operating aerosol flow rate	93
5.2	Predicted current-voltage characteristic of the positive and negative ions in the	
	·	

5.3	charging region with operating pressure Radial variation of the electric field strength and ion concentration in the	95
	charging region	95
5.4	Radial variation of the electric field strength in the charging region at different operating pressure	96
5.5	Radial variation of the ion concentration in the charging region at different operating pressure	96
5.6	Voltage variation of the ion concentration in the charging region at different operating pressure	97
5.7	Radial variation of the N_{it} product in the charging region at different operating	
5.8	Voltage variation of the <i>N_it</i> product in the charging region at different	97
5.9	operating aerosol flow rate and pressure	98
	Variation of number of charge with particle diameter	98
5.10	Variation of electrical mobility with particle diameter	99
5.11	Variation of number of charge with particle diameter at different operating	00
c 10	applied corona voltage, aerosol flow rate and pressure	99
5.12	Variation of particle penetration with particle diameter at different operating	
	applied corona voltage, aerosol flow rate and pressure	100
5.13	Particle trajectories inside the needle and wire chargers	101
5.14	Distributions of electric field strength inside the needle and wire chargers	102
5.15	Radial variation of the electric field inside both chargers as determined by	
	CFD calculation	103
5.16	Current-voltage characteristics in the charging zones of the needle and wire	
	chargers	105
5.17	Variation in ion number concentration with applied voltage inside chargers	105
5.18	Variation of ion current and concentration with applied voltage at the charger outlet	106
5.19	Evolution of charging current for each charger with operating time	106
5.20	Particle deposition inside the charging regions for both chargers	107
5.21	Variation of particle trajectories along the classifier column with particle sizes (1.0 kV inner electrode voltage, 1.0 l/min aerosol flow, 10.0 l/min sheath air	,
	flow, and 1000 mbar operating pressure)	109
5.22	Variation of particle trajectories along the classifier column with applied	
	voltage (50 nm particle diameter, 1.0 l/min aerosol flow, 10.0 l/min sheath air	
	flow, and 1000 mbar operating pressure)	110
5.23	Variation of particle trajectories along the classifier column with total flow rate	
	(1.0 kV inner electrode voltage, 50 nm particle diameter, and 1000 mbar	
	operating pressure)	110
5.24	Variation of particle trajectories along the classifier column with operating	
	pressure (1.0 kV inner electrode voltage, 50 nm particle diameter 1.0 l/min	
	aerosol flow, and 10.0 l/min sheath air flow)	111
5.25	Variation of particle trajectories along the classifier column with inlet radial	31
	distance (1.0 kV inner electrode voltage, 50 nm particle diameter, 1.0 l/min	
	aerosol flow, 10.0 l/min sheath air flow, and 1000 mbar operating pressure)	111
5.26	The effect of Brownian diffusion on the central particle trajectory in a size	**
	classifier with plug flow for the 1 nm particles.	112
5.27	The effect of Brownian diffusion on the central particle trajectory in a size	112
	classifier with plug flow for the 10 nm particles.	112
5.28	The effect of Brownian diffusion on the central particle trajectory in a size	112
	classifier with plug flow for the 100 nm particles.	112
5.29	The effect of Brownian diffusion on the central particle trajectory in a size	113
الد سنده د	The offer of Diowhian affusion of the central particle trajectory in a size	

	classifier with plug flow for the 1000 nm particles.	113
5.30	Predicted electrical mobility range at each electrometer ring $(Q_s/Q_a \text{ ratio} = 1)$	114
5.31	Predicted electrical mobility range at each electrometer ring $(Q_s/Q_a \text{ ratio} = 10)$	114
5.32	Predicted electrical mobility range at each electrometer ring $(Q_s/Q_a \text{ ratio} =$	
	100)	115
5.33	Predicted particle size range at each electrometer ring (1.0 l/min aerosol flow,	11.
5.55	10.0 l/min sheath air flow, 1.0 kV inner electrode voltage and 1000 mbar	
		116
E 24	operating pressure)	115
5.34	Predicted particle size range at each electrometer ring (1.0 l/min aerosol flow,	
	10.0 l/min sheath air flow, 2.5 kV inner electrode voltage and 1000 mbar	
5.05	operating pressure)	116
5.35	Predicted particle size range at each electrometer ring (2.0 l/min aerosol flow,	
	10.0 l/min sheath air flow, 2.5 kV inner electrode voltage and 1000 mbar	
	operating pressure)	116
5.36	Predicted particle size range at each electrometer ring (1.0 l/min aerosol flow,	
	10.0 l/min sheath air flow, 1.0 kV inner electrode voltage and 250 mbar	
	operating pressure)	117
5.37	Velocity and particle trajectory plots in the classifier at varying Q_s/Q_a ratio	118
5.38	Velocity and particle trajectory plots in the classifier at varying Re, $Q_s/Q_a =$	
	10:1	119
5.39	Developing flow velocity profile along the classification column as determined	· 117
3.57	by the CFD calculations.	119
5.40	Electric potential and field plots in the classifier at varying electrometer ring	119
5.40		
	width (6, 12, 24 mm), operation at 10.0 kV applied voltage, ring separation = 1	
c 41	mm	121
5.41	Electric potential and field plots in the classifier at varying electrometer ring	
	separation (1, 2, 3, 4, 5 mm), operation at 10.0 kV applied voltage, ring width	
	= 6 mm	121
5.42	Electric potential and field plots in the classifier with flow guide as insulator,	
	operation at 10.0 kV applied voltage	122
5.43	Radial variation of the electric field inside the size classifier column	122
5.44	Electric potential and field plots in the classifier when no ground connection,	
	operation at 10.0 kV applied voltage	122
5.45	Typical collected particles on each electrometer ring	123
5.46	Typical SEM image of the combustion particles before classification	123
5.47	Typical particle morphologies of agglomerates collected (1.0 l/min aerosol	
	flow, 5.0 l/min sheath air flow, 1.0 kV inner electrode voltage, and 342 mbar	
	operating pressure)	124
5.48	Typical particle morphologies of agglomerates collected (1.0 l/min aerosol	
	flow, 10.0 l/min sheath air flow, 0.8 kV inner electrode voltage, and 526 mbar	
	operating pressure)	125
5.49	Typical particle morphologies of agglomerates collected (1.0 l/min aerosol	123
3.49		
	flow, 10.0 l/min sheath air flow, 1.0 kV inner electrode voltage, and 526 mbar	100
e co	operating pressure)	126
5.50	Comparison of resultant mean particle diameters between the EMS and SEM	Œ.
	observations	128
5.51	Measured electrical signals from the EMS (1.0 l/min aerosol flow, 10.0 l/min	
	sheath air flow, 1.0 kV inner electrode voltage, and 526 mbar operating	
	pressure)	130
5.52	Measured electrical signals from the EMS (1.0 l/min aerosol flow, 10.0 l/min	
	sheath air flow, 2.0 kV inner electrode voltage, and 526 mbar operating	
	pressure)	131

5.53	Measured electrical signals from the EMS (1.0 l/min aerosol flow, 10.0 l/min sheath air flow, 3.0 kV inner electrode voltage, and 526 mbar operating	
	pressure)	131
5.54	Measured electrical signals from the EMS (2.0 l/min aerosol flow, 10.0 l/min sheath air flow, 3.0 kV inner electrode voltage, and 553 mbar operating pressure)	132
5.55	Measured electrical signals from the EMS (3.0 l/min aerosol flow, 10.0 l/min sheath air flow, 3.0 kV inner electrode voltage, and 580 mbar operating	132
	pressure)	132
5.56	EMS time response to aerosol step up change (measure starting) at	
	electrometer ring 10 (1.0 l/min aerosol flow, 10.0 l/min sheath air flow, 1.0 kV	
	inner electrode voltage, and 526 mbar operating pressure)	133
5.57	EMS time response to aerosol step down change (measure stopping) at	
	electrometer ring 10 (1.0 l/min aerosol flow, 10.0 l/min sheath air flow, 1.0 kV	
	inner electrode voltage, and 526 mbar operating pressure)	133
5.58	Measure repeatability of the EMS (1.0 l/min aerosol flow, 10.0 l/min sheath air	
	flow, 116.6 Reynolds number, 2.0 kV inner electrode voltage, and 526 mbar	
	operating conditions)	134
5.59	Transient calculation of the EMS electrometer circuit as determined by PSIM	134
5.60	Calibration of the electrometer circuit	135
5.61	Typical measured electrical signals from each electrometer ring at a given	
5.60	operation condition, registered by the EMS data processing system	136
5.62	Typical log normal size distribution of combustion aerosols measured by the	
	EMS	136
B.1	I ² C computer interface circuit schematic	100
B.2	DC power supply circuit schematic	188 188
B.3	Electrometer circuit schematic	189
B.4	Relay switching circuit schematic	189
_,		107
C.1	Electrical Mobility Spectrometer	192
C.2	EMS desktop	194
C.3	EMS setup dialog	194
C.4	Electrometer zeroing dialog	195
C.5	Sample data	196
C.6	Sample export file	196
C.7	Raw electrometer noisy channel	199
C.8	Raw electrometer data after cleaning	199

NOMENCLATURE AND ABBREVIATIONS

Latin Symbols

Letter	Description	Unit
A	Surface area	m ²
\boldsymbol{B}	Particle mechanical mobility	m³/N.s
C_c	Cunningham slip correction factor	6
D	Particle diffusion coefficient	m ² /s
D	Nozzle diameter	m
D_h	Hydraulic diameter for the annular flow area	-
E E	Impactor collection efficiency	%
E_0	Electric field strength Corona discharge onset field	V/m V/m
E_s	Breakdown field	V/m
E_r	Radial components of the electric field	V/m
E_z	Axial components of the electric field	V/m
F_{D}	Aerodynamic drag force	N
F_{E}	Electrostatic force	N
F_G	Gravitational force	N
F_T	Thermal force	N
$G_{_{\mathbf{l}}}$	Gain of the first amplifier	//-
G_{2}	Gain of the second amplifier	/// -
I	Current	Α
I_e	Electrometer current	Α
I_{in}	Input current	Α
$I_{ m ion}$	Ion current	Α
J	Net flux of particles	7
K_{E}	Translational kinetic energy	$N.m^2/C^2$
Kn	Knudsen number	0.0011
	Length of the tube	m
N_i	Ion concentration	ions/m³
N_p	Particle number concentration	particles/m ³
N_s	Ion concentration above the surface	ions/m³
P	Particle penetration	%
P	Operating pressure	bar
P_r	Reference pressure	bar V
$egin{array}{c} Q \ Q_a \end{array}$	Volumetric flow rate of gas Aerosol flow rate	l/min l/min
\mathcal{Q}_{sh}	Sheath air flow rate	
\mathcal{L}_{sh}	SHEATH AIL HOW TAKE	l/min

xviii

	Letter	Description	Unit
	Q_{ι}	Total flow arte	l/min
	R	Resistor	Ω
	Re	Reynolds number	-
	R_f	Feedback resistor	Ω
	R_{i}	Input resistor	Ω
	S	Sutherland constant	-
	Stk	Stokes number	
	T	Absolute temperature	K
	$\frac{T_r}{U}$	Reference temperature Mean flow velocity	K m/s
	Ŭ	Free stream gas velocity	m/s
	U_0	Sample velocity in the probe	m/s
	$ar{ar{U}}$	Mean axial flow velocity	m/s
	V	Potential	V
	$V_{\rm o}$	Corona discharge onset voltage	V
	$V_{ m diff}$	Deposition velocity of particle diffusion	m/s
	V_f	Fluid velocity	m/s
	V_i	Input voltage	V
	Vo	Output voltage	V
	V_p	Particle velocity	m/s
	V_s	Voltage source	V
	V_{TE}	Terminal electrostatic velocity of a charged particle	m/s
	Z_{i}	Ion electrical mobility	$m^2/V.s$
	$Z_{i,\rho}$	Ion electrical mobility at operating pressure	m ² /V.s
	Z_p	Particle electrical mobility	m²/V.s
	Z_p^{max}	Maximum electrical mobility of particle	m²/V.s
	Z_p^{\min}	Minimum electrical mobility of particle	m ² /V.s
	а	Particle radius	m
	c	Integration constant	?
	\overline{c}_i	Mean thermal speed of ions	m/s
	d_e	Equivalent diameter	m
Cor	d_g	Number-weighted geometric mean diameter	m
	d_m	Collision diameter of the particle	m
	d_p	Particle diameter	m
	d_p^{\max}	Particle diameter with maximum mobility	m
	d_p^{mid}	Midpoint particle diameter	m
	d_p^{\min}	Particle diameter with minimum mobility	m
	$d_{\scriptscriptstyle PA}$	Equivalent projected surface area diameter	m
	\overline{d}	Count median diameter	m
	е	Value of elementary charge on an electron	С

Letter	Description	Unit
f	Friction factor	, -
g j	Gravitational acceleration	-
	Current density	A/m ²
\dot{J}_{ion}	Ion current density	A/m ²
k	Boltzmann's constant	J/K
m	Mass	amu
m_i	Ion mass	amu
m_p	Particle mass	amu
n	Number of elementary charges on the particle	31-11
$n_{ m diff}$	Average charge of diffusion charging	7 - \\
n _{field}	Average charge of field charging	505
n_p	Particle charge	-
n_{s}	Saturation charge	-
r	Radial coordinate	m
ri	Inner radius of the annulus	m
r_2	Outer radius of the annulus	m
s	Steepness of the collection efficiency curve	308
t	Mean residence time	S
u	Flow velocity	m/s
u_i	Ion velocity	m/s
u_r	Radial components of the flow velocity	m/s
$u_{\mathbf{z}}$	Axial components of the flow velocity	m/s
u_{θ}	Circumferential components of the flow velocity	m/s
ν	Velocity	m/s
Z	Axial coordinate	m

Greek Letters

Letter	Description	Unit
x	Dynamic shape factor	ela [kil
δ	Air density	kg/m³
ε	Dielectric constant	F/m
ϵ_0	Electric permittivity of vacuum	F/m
η	Gas viscosity	Pa.s
$\eta_{ ext{diff}}$	Transport efficiency with diffusive particle loss	14 % \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
η_{r}	Reference gas viscosity	Pa s
ĸ	Diameter ratio of the inner over the outer cylinder	<u>.</u>
λ	Mean free path	m
λ_r	Reference mean free path	m
μ	Viscosity	Pa.s
ρ	Density	kg/m ³

Letter	Description	Unit
$ ho_{_{p}}$	Particle density	kg/m³
σ	Standard deviation	-
$\sigma_{_{g}}$	Geometric standard deviation	-

$\sigma_{_{g}}$	Geometric standard deviation -
	Abbreviations
Letter	Description
AC	Alternating Current
ADC	Analog to Digital Converter
ACLDMA	Adjustable Column Length Differential Mobility Analyzer
BCAC	Bipolar Charge Aerosol Classifier
CAG	Combustion Aerosol Generator
CFD	Computational Fluid Dynamic
CPC	Condensation Particle Counter
DC	Direct Current
DOP	Dioctyl Phthalate
DMA	Differential Mobility Analyzer
DMS	Differential Mobility Spectrometer
DVM	Digital Voltmeter
EAA	Electrical Aerosol Analyzer
EAD	Electrical Aerosol Detector
EAS	Electrical Aerosol Spectrometer
EEPS	Engine Exhaust Particle Sizer
ELPI	Electrical Low Pressure Impactor
EMS	Electrical Mobility Spectrometer
FAS	Fast Aerosol Spectrometer
FCE	Faraday Cup Electrometer
GFC	Gas Flow Controller
HEPA	High Efficiency Particulate Air
LPCVD	Low Pressure Chemical Vapor Deposition
LPDMA NIH	Low Pressure Differential Mobility Analyzer
N-S	National Institutes of Heath Navier-Stokes
PDE	
PIO	Partial Differential Equation
PTFE	Port Input/Output Polytetrafluoroethylene
PVD	Physical Vapor Deposition
RH	Relative Humidity
SEM	Scanning Electron Microscope
SMPS	Scanning Mobility Particle Sizer
SUPG	Streamline Upwind/Petrov-Galerkin
TSI	Thermo-Systems Incorporated
UCPC	Ultrafine Condensation Particle Counter
UV	Ultraviolet
WAA	Whitby Aerosol Analyzer