TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT(ENGLISH)	v
ABSTRACT(THAI)	viii
TABLE OF CONTENTS	xi
LIST OF TABLES	xvii
LIST OF ILLUSTRATIONS	xix
ABBREVIATIONS AND SYMBOLS	xxii
CHAPTER 1: INTRODUCTION	
1.1 General introduction	1
1.2 Methomyl, Carbofuran, Carboxin	4
1.3 Mehomyl in the Environment	4
1.3.1 Toxicological effects	5
1.3.1.1 Acute toxicity	5
1.3.1.2 Chronic toxicity	6
1.3.2 Fate in humans and animals	6
1.3.3 Environmental Fate	7
1.3.3.1 Break down in soil and water	7 0
1.3.3.2 Breakdown in vegetation	7
1.4 Carbofuran in the Environment	8

1.4.1 Toxicological effects	9
1.4.1.1 Acute toxicity	9
1.4.1.2 Chronic toxicity	9
1.4.2 Fate in humans and animals	9
1.4.3 Environmental Fate	10
1.4.3.1 Break down in soil and water	10
1.4.3.2 Breakdown in vegetation	10
1.5 Carboxin in the Environment	11
1.5.1 Toxicological effects	12
1.5.1.1 Acute toxicity	12
1.5.1.2 Chronic toxicity	12
1.5.2 Fate in humans and animals	12
1.5.3 Environmental Fate	13
1.5.3.1 Break down in soil and water	13
1.5.3.2 Breakdown in vegetation	13
1.6 High Performance Liquid Chromatography (HPLC)	13
1.6.1 Theoretical principle of HPLC	14
1.6.2 UV detector	18
1.6.3 Qualitative and quantitative analysis by chromatography	19
1.6.3.1 Qualitative analysis	19
1.6.3.2 Quantitative analysis	19
1.7 Relevant Application Methods for Methomyl, Carbofuran and Carboxin	20

	Page
1.8 Solid Phase Extraction	23
1.8.1 Type of solid phase extraction	26
1.8.2 Solvent properties in SPE	27
1.9 Aims of Research	28
CHAPTER 2: EXPERIMENTAL	
2.1 Apparatus and Chemicals	29
2.1.1 Apparatus	29
2.1.2 Chemicals	30
2.2 Preparation of Solutions	31
2.2.1 Working standard solutions	31
2.2.2 Mix standard solutions	31
2.2.3 Mobile phase solutions	32
2.3 Detection wavelength	33
2.4 Optimization of HPLC system	33
2.4.1 Choice of column	33
2.4.2 Optimization of mobile phase composition	34
2.4.3 Optimization of flow rate	34
2.5 Validation of the Method	35
2.5.1 Precision ts reserve	35
2.5.1.2 Repeatability test of HPLC system	35
2.5.1.2 Reproducibility test of HPLC system	35

2.5.2 Determination of detector linearity	36
2.5.3 Determination of limit of detection and limit of quantification	36
2.6 Optimization of Solid Phase Extraction	37
2.6.1 The composition of elution solvent	37
2.6.2 Study the volume of the elution solvent	37
2.6.3 Sorbent selection	38
2.7 Sampling Method	38
2.8 Sample Extraction	40
2.9 Accuracy	43
2.9.1 Further optimization of detection wavelength	43
2.9.2 Further optimization of mobile phase composition	44
2.9.3 Further optimization of flow rate	44
2.10 Confirmation Method	44

CHAPTER 3: RESULTS AND DISCUSSION

3.1 Investigation of Optimum Detection Wavelength for M	Aethomyl, 46
Carbofuran and Carboxin	
3.2 Optimization of HPLC Conditions	48
3.2.1 Optimization of mobile phase composition	i Universi ₄₈
3.2.2 Optimization of flow rate of mobile phase con	nposition 51
3.2.3 HPLC optimized conditions	53
3.3 Validation of the Method	54

3.3.1 Reproducibility test of HPLC system for precision	54
3.3.2 Repeatability test of HPLC system for precision	54
3.3.3 Linearity range	55
3.3.4 Limit of detection and limit of quantification	58
3.4 Optimization of Solid Phase Extraction	58
3.4.1 The composition of the elution solvent	58
3.4.2 Optimization to minimize volume of eluent (70% ACN/H ₂ O)	60
3.4.3 Sorbent selection	62
3.4.4 Summary of the optimum condition of the SPE procedures	64
3.5 Accuracy	65
3.5.1 Further optimization of detection wavelength	65
3.5.2 Further optimization of mobile phase composition	66
3.5.3 Further optimization of flow rate of mobile phase composition	67
3.5.4 Development of HPLC conditions	71
3.6 Amount of Carbofuran and Carboxin found in Cabbage Samples	72
3.7 Confirmation for the Analyte	74
3.8 Risk Assessment to Consumers	77
CHAPTER 4 : CONCLUSION	81
REFERENCES Shts reserve	85
APPENDICES	90
Appendix A EPA pesticide toxicity classification	91

Appendix B Limit of detection and limit of quantification	92
Appendix C Confirmation method by GC-MS	95
Appendix D Calculation for the concentration of the analyte (carboxin)	98
VITA	99

âdânŚurnônenáelőedru Copyright [©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
1.1 Import quantities of pesticides in Thailand (1981- 2004)	3
1.2 Properties of methomyl	5
1.3 Properties of carbofuran	8
1.4 Properties of carboxin	11
1.5 Relevant applications methods for methomyl, carbofuran and carboxin	21
1.6 Characteristics of solvents commonly used in SPE	28
2.1 Chemicals	30
2.2 Physical properties of solvents used in this research works	33
2.3 Criteria of sample collected from different markets	40
3.1 Effect of retention time and peak area observed by different	49
ratio of mobile phase composition	
3.2 Effect of flow rate of mobile phase composition related to	51
retention time and peak area	
3.3 Optimum conditions for HPLC	53
3.4 % RSD of retention time and peak area for reproducibility test (n=10)	54
3.5 % RSD of retention time and peak area for repeatability test (n=10)	55
3.6 Linearity of anlytes at low and high concentrations	57
3.7 Limit of detection and limit of quantification	58
3.8 Separation profiles of analytes by different concentrations of acetonitrile	59

xvii

Table	Page
3.9 Peak area of analytes found in different fractions of eluent. (n=3)	61
3.10 Percent recoveries of analytes using different SPE sorbents	62
3.11 Optimum conditions for SPE clean up procedure	64
3.12 Effect of retention time and peak area of standard and spiked	66
sample at 0.5 ppm fortification level by varying different	
composition of mobile phase	
3.13 Effect of retention time, peak area and % recovery of 0.5 ppm	67
Level of spiked sample by varying different composition of	
flow rate of mobile phase	
3.14 Percent Recoveries of carbofuran and carboxin at 0.5 pp fortification	70
level under further optimum condition, $n = 3$	
3.15 HPLC operating conditions	71
3.16 Amount of carbofuran and carboxin detected in cabbage samples, $n = 3$	72
3.17 Frequency of carboxin residues detected in cabbage samples	73
3.18 Comparison of chromatograms of analyte carboxin with and without	74
spiking standard	
3.19 Retention time and corrected area of standard carboxin and analyte in	75
the sample obtained from GC-MS	
3.20 Confirmation for the sample MM2 (Minimart without safety label) by	76
different methods	

xviii

LIST OF ILLUSTRATIONS

Figure

1.1 Block diagram showing the components of an isocratic HPLC	15
instrument Chromatographic Processes	
1.2 Liquid chromatographic processes of segmentation at	16
the surface	
1.3 Liquid chromatographic processes of migration through	17
the column	
1.4 Typical SPE tube and disk	25
1.5 SPE steps in sample clean up	26
2.1 HPLC (HP 1100) system used in this research works	31
2.2 Type of sample cabbage	39
2.3 Sample cabbages from the super market	39
2.4 Schematic diagram of sample extraction and clean up procedures	42
3.1 Spectra of 1 ppm methomyl, 5 ppm carbofuran and carboxin	46
in methanol detected by UV- VIS spectrometer	
3.2 Chromatogram of 1 μ g/ml mixed pesticide std detected at 205 nm	47
3.3 Chromatogram of 1 μ g/ml mixed pesticide std detected at 233 nm	e ₄₇

Figure

3.4 HPLC chromatograms of mixed standards showing the effect	50
of mobile phase composition at the flow rate of 1.0 ml/min	
3.5 Effect of flow rate on retention time	52
3.6 Effect of flow rate on peak area	52
3.7 HPLC chromatograms of 2 μ g/ml mixed standards under the optimized	53
condition.	
3.8 Linearity of analytes at low concentration (0.1-0.8 μ g/ml) under the	56
optimized condition	
3.9 Linearity of analytes at high concentration (1-8 ug/ml) under the	57
optimized condition	
3.10 Separation profiles of analytes at different concentrations of	59
acetonitrile in water	
3.11 Elution profile of methomyl, carbofuran, carboxin eluted with	61
ACN/H ₂ O 2 µg/ml fortification level	
3.12 Percent recoveries of methomyl, carbofuran and carboxin using	63
different sorbents at different concentrations levels	
3.13 Chromatograms of spike analytes obtained from sample at 0.5 ppm	69
fortification level before and after further optimization	
3.14 HPLC chromatograms of 8 μ g/ml mixed standards obtained under the	71
optimized condition	

Figure	Page
3.15 Chromatogram of analyte carboxin found in sample SM2	74
(Supermarket without safety level)	
3.16 Spike analyte carboxin found in sample SM2 (Supermarket without	75
safety level) for confirmation	
3.17 Calibration curve of carboxin by plotting the response of GC-MS in	76
terms of corrected area against the concentration of standard injected	
C.1 MS chromatogram of the 1µg/ml of standard carboxin	96
C.2 GC-MS chromatogram of the analyte carboxin found in the cabbage	97
sample	

ລິບສິກລິ້ມກາວົກຍາລັຍເຮີຍວໃກມ່ Copyright © by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

A	absorbance
ACN	acetonitrile
ADI	acceptable daily intake
AR	analytical reagent
C 18	ocetadecyl
corr. area	corrected area
EPA	Environmental Protection Agency
EtAC	Ethyl acetate
GC-MS	Gas chromatography-Mass spectrometry
HPLC	High Performance Liquid Chromatography
LD 50	Median lethal dose
MRL	maximum residue limit
ND	not detected
nm	nanometer
PA	peak area
\mathbf{R}^2	correlation coefficient
RfD ght C by	Reference dose
RP- HPLC	reversed phase high performance liquid
	chromatography
RSD	relative standard deviation

xxii

âðân≲ົນກາວົກອາລັອເຮືອວໃหມ່ Copyright © by Chiang Mai University All rights reserved

xxiii