

REFERENCES

Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., and Hackett, G., 1987, DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeological settings: U.S. Environmental Protection Agency, EPA-600/2-87-035, 455 p.

Armando, J., Carbonel, 1993, Techniques for assessing groundwater vulnerability: Washington, D.C., National Academy Press.

Arthur, J. D., and Pollock, W. H., 1998, Use of ArcView ® GIS for geologic surface modeling --- preliminary results from sub-surface mapping in southwest Florida, in Soller, D., ed., Methods for Geologic Map Data Capture, Management, and Publication: Annual Workshop on Digital Mapping Techniques, 2nd, Proceedings, U.S. Geological Survey Open File Report 98-487, p.73-78.

Chophaka, N., 1998, Established soil series in north and central highlands of Thailand, reclassified according to soil taxonomy: Soil Survey Division, Land Development Department.

Chuamthaisong, C., and Intrasutra, T., (1992) Role of groundwater resources for rural development, Proceedings of the National Conferences on Geologic Resources of Thailand: Potential for Future Development, Department of Mineral Resources, Bangkok, Thailand.

Climatology Division, Meteorological Department, 2004, Climatological data of Chiang Mai and Lumphun (1998), Bangkok.

Department of Groundwater Resources, 2002, Manual of groundwater availability maps of northern Thailand: Ministry of Natural Resources and Environment, Bangkok.

Dorn, M., and Tantiwanit, W., 2002, New methods for the delineation of geological barrier rocks for waste disposal sites in northern Thailand: Technical Report, Department of Mineral Resources, Bangkok.

Groundwater Division, Department of Mineral Resources, 1996, Groundwater map manual, Chiang Mai Province (A user manual of groundwater map of Chiang Mai Province on 1:100,000 scale), Bangkok.

Groundwater Division, Department of Mineral Resources, 1996, Groundwater map manual, Lumphun Province (A user manual of groundwater map of Lumphun Province on 1:100,000 scale), Bangkok.

Harman, J., Mclelan, J. E., Rudolph, D. L., Heagle, D. J., Piller, C., and Denhoed, S. E., (2000), A Proposed Framework for Managing the Impact of Agriculture on Groundwater: Harden Environment Services Ltd.,

Jaroslav, V., and Alexander, Z., 1994, Guidebook on mapping groundwater vulnerability: International Association of Hydrogeologists, Hanover, Heise.

Kumar, C. S., Navular, and Engle, B. A., (2003), Predicting spatial distributions of vulnerability of Indian State aquifer systems to nitrate leaching using GIS: http://www.ncgia.uscb.edu/conf/SANTA_FE_CD_ROW/sf_papers/navular_ruma/m_y_paper.html

Kwansirikul, K., Singhrajwarapan, F.S., Kita, I., and Takashima, I., (2005), Hydrochemical and isotopic characteristics of groundwater in Lampang basin, Northern Thailand, ScienceAsia, v. 31.

Land Development Department, 1996, Soil database and application program [online]. Available: http://www.ldd.go.th/menu_download/download-1.htm [2004, December 15].

Osborn, N. I., Eckenstein, E., and Koon, K. Q., (1998) Vulnerability Assessment of Twelve Major Aquifers in Oklahoma: Oklahoma Water Resources Board Technical Report 98-5.

Royal Thai Survey Department, 1989, Topographic Map Scale 1:50,000 of Chiang Mai basin, Bangkok.

Walton, W.C., 1970, Groundwater resource evaluation, McGraw Hill, New York.

Waterloo Hydrogeologic Inc., 1999, Aquifer test Version 2.5 Software.