CHAPTER 1

INTRODUCTION

Let R be a commutative ring with identity and V a unitary left R-module. A mapping $f:V\to V$ satisfying

- (I) f(rv) = rf(v) for all $r \in R$, $v \in V$, and
- (II) $f(v_1 + v_2) = f(v_1) + f(v_2)$ for all $v_1, v_2 \in V$

is called an R-endomorphism of V, and the set of all R-endomorphisms is denoted by $\operatorname{End}_R(V)$. The set $\operatorname{End}_R(V)$ with the binary operations of function addition and function composite is a ring.

A mapping $f: V \to V$ is called a homogeneous function of V if it satisfies (I). The set of all homogeneous functions on V is denoted by $M_R(V)$. This set with the operations of function addition and function composite is a near-ring. That is it satisfies all the ring axioms, except the left distributive law.

Always, we have $\operatorname{End}_R(V) \subseteq \operatorname{M}_R(V)$.

In 2000, C. J. Maxson and J. H. Meyer [4] called a collection $\Im = \{W_{\alpha} | \alpha \in \mathcal{A}\}$ of proper submodules of V to force linearity on V if whenever $f \in M_R(V)$ and f is linear on each $W_{\alpha} \in \Im$, then $f \in \operatorname{End}_R(V)$ and call the minimum number of proper submodules need to force linearity, the forcing linearity number for V, denote by fln(V). They found that if V is a vector space over a field F then the following statements hold.

- i) If $dim_F(V) = 1$, then fln(V) = 0.
- ii) If $dim_F(V) = 2$, then $fln(V) = \infty$.
- iii) If F is infinite and $dim_F(V) > 1$, then $fln(V) = \infty$.
- iv) If F is finite with |F| = q and $dim_F(V) > 2$, then fln(V) = q + 2.

Later in 2000, C. J. Maxson and J. H. Meyer [4] found that if R is a local ring, not an integral domain and $V = \mathbb{R}^m$, $m \geq 2$, then fln(V) = q + 2 where $q = |\mathbb{R}/\mathbb{M}|$, M is a maximal ideal of R.

The purpose of this thesis is to determine the forcing linearity numbers of free modules over a local ring and determine the forcing linearity numbers for $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$ where $\mathbb{Z}_{p^k}^{(\mathbb{N})}$ is a free modules over \mathbb{Z}_{p^k} .

The thesis comprises of four chapters. Chapter I is for the introduction. In Chapter II, we list some well-known results, definitions and notations that will be used throughout this thesis. Chapter III, we determined the forcing linearity numbers of free modules over a local ring, forcing linearity numbers of $\mathbb{Z}_{p^k}^{(\mathbb{N})}$ where p is prime over \mathbb{Z}_{p^k} and as example we determined the forcing linearity numbers of $\mathbb{Z}_2^{(\mathbb{N})}$ over \mathbb{Z}_2 . Chapter IV is used for the conclusion.

