CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some definitions and theorems those will be used in our thesis.

2.1 Local rings and Noetherian rings

A ring R is a local ring in case it has a unique maximal ideal.

Proposition 2.1.1. For a ring R the following statements are equivalent:

- (a) R is a local ring;
- (b) If M is a maximal left ideal of R, then $M = \{x \in R | x \text{ is not invertible } \}$.

Proof. See [1] page 170.

A set \Im of ideals of R satisfies the ascending chain condition in case for every chain

$$L_1 \subseteq L_2 \subseteq \dots L_n \subseteq \dots$$

in \Im , there is an n with $L_{n+i} = L_n$ for all $i = 1, 2, 3, \ldots$

A ring R is Noetherian in case the lattice $\Im(R)$ of all ideals of R satisfies the ascending chain condition.

Proposition 2.1.2. For a ring R the following statements are equivalent:

- (a) R is Noetherian;
- (b) every non-empty set of ideals in R has a maximal element;
- (c) every ideal in R is finitely generated.

Proof. See [2] page 74-75.

Theorem 2.1.3. Let M be an ideal in a ring R with identity $1_R \neq 0$.

- (i) If M is maximal and R is commutative, then the quotient ring R/M is a field.
- (ii) If the quotient ring R/M is a division ring, then M is maximal.Proof. See [3] page 129.

2.2 Forcing linearity numbers

Definition 2.2.1. A near-ring is a nonempty set R together with two binary operations (usually denote as addition (+) and multiplication) such that:

- (i) (R, +) is a group.
- (ii) (ab)c = a(bc) for all $a, b, c \in R$.
- (iii) (b+c)a = ba + ca for all $a, b, c \in R$.

Let V be a left R-module.

The set $M_R(V) = \{f : V \to V \mid f(rv) = rf(v), r \in R, v \in V\}$ is the collection of homogeneous functions determined by the R-module V. Under the operations addition and composition of functions, $M_R(V)$ is a near-ring.

Note that $M_R(V)$ contains $End_R(V)$, the ring of R-endomorphisms of V.

If $M_R(V) = End_R(V)$, that is, if every R-homogeneous function from V to V is an endomorphism, then V is said to be endomorphal.

Let $\Im = \{W_{\alpha} \mid \alpha \in \mathcal{A}\}$ be a collection of proper submodules of V. We say that \Im forces linearity on V if whenever $f \in M_R(V)$ and f is linear on each $W_{\alpha} \in \Im$, then $f \in End_R(V)$. Now we give the definition of forcing linearity number of V.

Definition 2.2.2. To each non-zero R-module V we assign a number

 $fln(V) \in \mathbb{N} \cup \{0\} \cup \{\infty\}$, call the forcing linearity number of V, as follows:

- (i) If $M_R(V) = End_R(V)$, then fln(V) = 0.
- (ii) If $M_R(V) \neq End_R(V)$ and there is some finite collection \Im of proper submodules of V which forces linearity with (say) $|\Im| = s$, but no collection \Im' of proper submodules of V with $|\Im'| < s$ that forces linearity, then we say fln(V) = s.
 - (iii) If neither of the above conditions holds, we say $fln(V) = \infty$.

It is easy to see that if V is a cyclic R-module, then $M_R(V) = End_R(V)$, so fln(V) = 0 for any cyclic R-module.

2.3 Modules

Definition 2.3.1. Let V be a left R-module and N be a submodule of V. N is said to be a maximal submodule in case $N \neq V$ and if M is a submodule of V such that $N \subseteq M \subseteq V$, then N = M or N = V.

Lemma 2.3.2. Let V be a left R-module and M be a maximal submodule of V. Then M + Rm = V where $m \in V \setminus M$.

Proof. Since M is maximal and $m \in 0 + 1m \in M + Rm$, $M \subsetneq M + Rm$ and thus M + Rm = V.

Lemma 2.3.3. Let e be an idempotent in $End_R(M)$. Then 1 - e is an idempotent in $End_R(M)$ such that

$$Kere = \{x \in M \mid x = x(1 - e)\} = Im(1 - e),$$
 $Ime = \{x \in M \mid x = x - e\} = Ker(1 - e),$
 $M = Me \oplus M(1 - e).$

Proof. See [1] page 70.

2.4 Direct products and direct sums

Definition 2.4.1. Let $\{M_{\alpha} \mid \alpha \in \mathcal{A}\}$ be an indexed set of left R-modules. The cartesian product $\times_{\mathcal{A}} M_{\alpha}$ is a R-module with addition and scalar multiplication defined by

$$(x_{\alpha}) + (y_{\alpha}) = (x_{\alpha} + y_{\alpha})$$
 and $r(x_{\alpha}) = (rx_{\alpha})$.

The resulting module is called the $direct(or\ cartesian)product\ of\ \{M_{\alpha}\mid \alpha\in\mathcal{A}\}$ and will be denoted by

$$\prod_{A} M_{\alpha}$$
.

In case $\mathcal{A} = \{1, 2, ..., n\}$ we write $\prod_{i=1}^n M_i$ or $M_1 \times M_2 \times \cdots \times M_n$ for $\prod_{\mathcal{A}} M_{\alpha}$. If $M_{\alpha} = M$ for all $\alpha \in \mathcal{A}$, we write $M^{\mathcal{A}} = \prod_{\mathcal{A}} M_{\alpha}$. If $A = \phi$, then $\prod_{\mathcal{A}} M_{\alpha} = 0$.

Let π_{α} be the projection map and $\{M_{\alpha} \mid \alpha \in \mathcal{A}\}$ be an Definition 2.4.2. indexed set of left R-modules. An element $x \in \prod_{\mathcal{A}} M_{\alpha}$ is almost always zero in case its support

$$S(x) = \{ \alpha \in \mathcal{A} \mid x(\alpha) = \pi_{\alpha}(x) \neq 0 \}$$

is finite. Since $S(0) = \phi$ and both $S(x+y) \subseteq S(x) \cup S(y)$ and $S(rx) \subseteq S(x)$, it follows that

$$\bigoplus_{A} M_{\alpha} = \{x \in \prod_{A} M_{\alpha} \mid S(x) \text{ is finite } \}$$

is a submodule of $\prod_{\mathcal{A}} M_{\alpha}$. This submodule is the (external) direct sum of $\{M_{\alpha} \mid \alpha \in \mathcal{A}\}$.

If \mathcal{A} is finite, then $\bigoplus_{\mathcal{A}} M_{\alpha} = \prod_{\mathcal{A}} M_{\alpha}$. If $M_{\alpha} = M$ for all $\alpha \in \mathcal{A}$, then we write $M^{(\mathcal{A})} = \bigoplus_{\mathcal{A}} M_{\alpha}$.

Free modules 2.5

Let $\{x_{\alpha} \mid \alpha \in \mathcal{A}\}$ be an indexed set of elements of a left Definition 2.5.1. R-module M. The set $\{x_{\alpha} \mid \alpha \in A\}$ is linearly independent in case for every finite sequence $\alpha_1, \alpha_2, \dots, \alpha_n$ of distinct elements of \mathcal{A} and every $r_1, r_2, \dots, r_n \in \mathbb{R}$ $r_1 x_{\alpha_1} + r_2 x_{\alpha_2} + \dots + r_n x_{\alpha_n} = 0$ implies $r_1 = r_2 = \dots = r_n = 0$.

An R-module M with linearly independent spanning set $\{x_{\alpha} \mid \alpha \in \mathcal{A}\}$ is called a $free\ R-module$ with basis $\{x_{\alpha} \mid \alpha \in \mathcal{A}\}$.

Let R be a commutative local ring with identity and $V = R^{(\mathbb{N})}$. Then V is a free module with basis $\{e_i \mid i \in \mathbb{N}\}$ where $\pi_j(e_i) = 1$ if j = i and $\pi_j(e_i) = 0$ if $j \neq i$.

