CHAPTER 3

MAIN RESULTS

Forcing linearity number for $R^{(\mathbb{N})}$ 3.1

In this section we want to find the forcing linearity numbers for a free module, $V = R^{(N)}$, over a local ring R. By a local ring we mean a commutative Noetherian ring with identity $1_R \neq 0$, not an integral domain such that R has a unique maximal ideal M consisting of all the nonunits of R.

Definition 3.1.1. For each $i \in \mathbb{N}$ we define

$$e_i = (u_i)_{i \in A} \text{ where } u_j \begin{cases} 1 & \text{if } j = i, \\ 0 & \text{if } j \neq i. \end{cases}$$

Thus by Definition 3.1.1. we get $e_1 = (1, 0, 0, 0, ...)$ and $e_2 = (0, 1, 0, 0, ...)$.

Lemma 3.1.2. If $f \in M_R(R^{(\mathbb{N})})$ the set of all homogeneous functions on $R^{(\mathbb{N})}$ and $f(\sum_{i=1}^m r_i e_i) = \sum_{i=1}^m f(r_i e_i)$ for all $r_i \in R$ and $m \in \mathbb{N}$, then $f \in End_R(R^{(\mathbb{N})})$. **Proof.** Suppose that $f \in M_R(R^{(\mathbb{N})})$ and $f(\sum_{i=1}^m r_i e_i) = \sum_{i=1}^m f(r_i e_i)$ for all $r_i \in R$ and $m \in \mathbb{N}$.

Let $b = (b_i)_{i \in \mathbb{N}}$ and $c = (c_i)_{i \in \mathbb{N}}$ be arbitrary in $R^{(\mathbb{N})}$.

Then there exists $n \in \mathbb{N}$ such that $b = \sum_{i=1}^{n} b_i e_i$ and $c = \sum_{i=1}^{n} c_i e_i$. Thus

Thus

$$f(b+c) = f(\sum_{i=1}^{n} (b_i + c_i)e_i)$$

= $\sum_{i=1}^{n} f((b_i + c_i)e_i)$.

But $f \in M_R(R^{(\mathbb{N})})$, then

$$f((b_i + c_i)e_i) = (b_i + c_i)f(e_i)$$

$$= b_i f(e_i) + c_i f(e_i)$$

$$= f(b_i e_i) + f(c_i e_i)$$
 for all $i = 1, 2, 3, \dots, n$.

Hence

$$f(b+c) = \sum_{i=1}^{n} f((b_i + c_i)e_i)$$

$$= \sum_{i=1}^{n} (f(b_i e_i) + f(c_i e_i))$$

$$= \sum_{i=1}^{n} f(b_i e_i) + \sum_{i=1}^{n} f(c_i e_i)$$

$$= f(\sum_{i=1}^{n} b_i e_i) + f(\sum_{i=1}^{n} c_i e_i)$$

$$= f(b) + f(c).$$

Thus $f \in End_R(R^{(\mathbb{N})})$.

Proposition 3.1.3. Let R be a local ring and M a unique maximal ideal of R with $Ann_R(M) = \{0\}$ and let $V = R^{(\mathbb{N})}$, then $fln(V) \leq 1$.

Proof. Let $W := \langle Me_1 \cup Me_2 \cup ... \rangle$ and $f \in M_R(V)$ such that f is linear on W. Let $f(e_i) = (\alpha_{i1}, \alpha_{i2}, ...)$.

Let $(r_1, r_2, ...) = r_1 e_1 + r_2 e_2 + \cdots + r_m e_m$ in V, and $f((r_1, r_2, ...)) = (s_1, s_2, ...)$.

Then for all $a \in M$, we have

$$f(a(r_1, r_2, \dots)) = af((r_1, r_2, \dots)) = a(s_1, s_2, \dots)$$

$$= as_1 e_1 + as_2 e_2 + \dots + as_k e_k \text{ for some } k \in \mathbb{N}$$

$$= (as_1, as_2, \dots).$$

Since $a(r_1, r_2, \dots) = ar_1e_1 + ar_2e_2 + \dots + ar_me_m \in W$, we have

$$f(a(r_1, r_2, \dots)) = ar_1 f(e_1) + ar_2 f(e_2) + \dots + ar_m f(e_m)$$

= $ar_1(\alpha_{11}, \alpha_{12}, \dots) + ar_2(\alpha_{21}, \alpha_{22}, \dots) + \dots + ar_m(\alpha_{m1}, \alpha_{m2}, \dots).$

Thus we get

$$(as_1, as_2, \dots) = ar_1(\alpha_{11}, \alpha_{12}, \dots) + ar_2(\alpha_{21}, \alpha_{22}, \dots) + \dots + ar_m(\alpha_{m1}, \alpha_{m2}, \dots)$$
$$= (ar_1\alpha_{11}, ar_1\alpha_{12}, \dots) + (ar_2\alpha_{21}, ar_2\alpha_{22}, \dots) + \dots + (ar_m\alpha_{m1}, ar_m\alpha_{m2}, \dots).$$

So $as_j = ar_1\alpha_{1j} + ar_2\alpha_{2j} + \cdots + ar_m\alpha_{mj}$,

and hence

$$as_j - (ar_1\alpha_{1j} + ar_2\alpha_{2j} + \dots + ar_m\alpha_{mj}) = 0,$$

then

$$(s_j - (r_1\alpha_{1j} + r_2\alpha_{2j} + \dots + r_m\alpha_{mj}))a = 0.$$

This means that $s_j - (r_1\alpha_{1j} + r_2\alpha_{2j} + \cdots + r_m\alpha_{mj}) = 0$ since $Ann_R(M) = \{0\}$.

Thus
$$s_j = r_1 \alpha_{1j} + r_2 \alpha_{2j} + r_3 \alpha_{3j} + \dots + r_m \alpha_{mj}$$
, $j = 1, 2, \dots, k$.

Then

$$f(\sum_{i=1}^{m} r_{i}e_{i}) = f(r_{1}, r_{2}, \dots)$$

$$= (r_{1}\alpha_{11} + r_{2}\alpha_{21} + \dots + r_{m}\alpha_{m1})e_{1} + (r_{1}\alpha_{12} + r_{2}\alpha_{22} + \dots + r_{m}\alpha_{m2})e_{2} + \dots + (r_{1}\alpha_{1k} + r_{2}\alpha_{2k} + \dots + r_{m}\alpha_{mk})e_{k}$$

$$= r_{1}(\alpha_{11}, \alpha_{12}, \dots) + r_{2}(\alpha_{21}, \alpha_{22}, \dots) + \dots + r_{m}(\alpha_{m1}, \alpha_{m2}, \dots)$$

$$= r_{1}f(e_{1}) + r_{2}f(e_{2}) + \dots + r_{m}f(e_{m}) = f(r_{1}e_{1}) + f(r_{2}e_{2}) + \dots + f(r_{m}e_{m})$$

$$= \sum_{i=1}^{m} f(r_{i}e_{i}).$$

By Lemma 3.1.2. we get $f \in End_R(V)$.

Therefore we have $fln(V) \leq 1$.

Proposition 3.1.4. Let R be a local ring and M a unique maximal ideal of R with $Ann_R(M) \neq 0$. If $V = R^{(\mathbb{N})}$, then $fln(V) \neq 0$.

Proof. Let $0 \neq a_o \in Ann_R(M)$ and $v = r_1e_1 + r_2e_2 + \cdots + r_me_m \in V$.

Define a function $f : V \rightarrow V$ by

$$f(v) = \begin{cases} r_1 a_o e_1 & \text{if } r_2 \in M, \\ 0 & \text{if } r_2 \in R \backslash M. \end{cases}$$

It is easy to see that f is well-defined.

Next, we show that $f \in M_R(V)$.

Let $s \in R$.

If
$$r_2 \in R \setminus M$$
, then $f(v) = f(r_1e_1 + r_2e_2 + \dots + r_me_m) = 0$.

So if $s \in R \setminus M$, then $sr_2 \in R \setminus M$, $f(sv) = f(s(r_1e_1 + r_2e_2 + \cdots + r_me_m)) = f(sr_1e_1 + sr_2e_2 + \cdots + sr_me_m) = 0$. But if $s \in M$, then $sr_2 \in M$ since M is an ideal of R. Thus $f(sv) = f(sr_1e_1 + sr_2e_2 + \cdots + sr_me_m) = sr_1a_oe_1 = 0$ since $sr_1 \in M$.

If $r_2 \in M$, then $f(v) = f(r_1e_1 + r_2e_2 + \dots + r_me_m) = r_1a_oe_1$ and that $sf(v) = sf(r_1e_1 + r_2e_2 + \dots + r_me_m) = s(r_1a_oe_1) = sr_1a_oe_1$.

Since $sr_2 \in M$, we get

$$f(sv) = f(s(r_1e_1 + r_2e_2 + \dots + r_me_m)) = f(sr_1e_1 + sr_2e_2 + \dots + sr_me_m) = sr_1a_oe_1.$$

Hence $f \in M_R(V)$.

Next, we show that f is not linear on V.

Let $v_1 = e_1, v_2 = e_2 \in V$, then $f(v_1 + v_2) = f(e_1 + e_2) = 0$ since $1 \in R \setminus M$.

Since $v_1 = e_1 = 1e_1 + 0e_2 + \cdots + 0e_m$ and $v_2 = e_2 = 0e_1 + 1e_2 + \cdots + 0e_m$, then $f(v_1) = (1)a_0e_1$ since $0 \in M$ and $f(v_2) = 0$ since $1 \in R \setminus M$.

Thus $f(v_1 + v_2) = 0 \neq a_o e_1 = a_o e_1 + 0 = f(v_1) + f(v_2)$.

Hence f is not linear on V.

Thus $f \notin End_R(V)$ and that $fln(V) \neq 0$.

Lemma 3.1.5. Let R be a finite local ring and $V = R^{(\mathbb{N})}$. If $T \subseteq V$, then $A = \{Rw \mid w \in T\}$ has a maximal element.

Proof. Let |R| = q and suppose that $A = \{Rw \mid w \in T\}$ where $T \subseteq V$ does not have a maximal element.

We note that for each $w \in T$, $|Rw| \le q$.

Let $Rw_1 \in \mathcal{A}$, then there exists $Rw_2 \in \mathcal{A}$ such that

$$Rw_1 \subsetneq Rw_2$$
.

Since $Rw_2 \in \mathcal{A}$, then there exists $Rw_3 \in \mathcal{A}$ such that

$$Rw_1 \subsetneq Rw_2 \subsetneq Rw_3$$
.

By continuing in this way, we obtain an ascending chain of submodules of V

$$Rw_1 \subsetneq Rw_2 \subsetneq Rw_3 \subsetneq \cdots \subsetneq Rw_q \subsetneq Rw_{q+1} \cdots$$

Since $w_1 \in Rw_1$, then we get $|Rw_1| \ge 1$.

Thus $|Rw_{q+1}| > q$, it is a contradiction and the prove is complete.

Proposition 3.1.6. If R is a finite local ring, M a unique maximal ideal of R with $Ann(M) \neq 0$ and $\Im = \{S_1, S_2, \dots, S_t\}$ is a collection of proper submodules of $V = R^{(\mathbb{N})}$ which forces linearity, then $\bigcup_{i=1}^{t} S_i = V$.

Proof. We suppose that $\bigcup_{i=1}^t S_i \subsetneq V$ and show that \Im does not force linearity on V.

We note that R is finite, then the set $\{Rw \mid w \notin \bigcup_{i=1}^t S_i\}$ has a maximal element by Lemma 3.1.5, say Rw_o . Also $Rw_o \subseteq V$ since V is not cyclic.

Now let $0 \neq a \in Ann(M)$ and define $f : V \rightarrow V$ by

$$f(x) = \begin{cases} rae_1 & \text{if } x = rw_o \in Rw_o, \\ 0 & \text{otherwise.} \end{cases}$$

We show that f is well-defined.

Suppose that $s_1 w_o = s_2 w_o$.

Then $(s_1 - s_2)w_o = 0$, so $(s_1 - s_2) \in M$, because if $(s_1 - s_2) \notin M$, then $(s_1 - s_2)$ is a unit, so there exist $(s_1 - s_2)^{-1}$ such that $(s_1 - s_2)(s_1 - s_2)^{-1} = 1$.

Thus $w_o = 1w_o = (s_1 - s_2)^{-1}(s_1 - s_2)w_o = (s_1 - s_2)^{-1}0 = 0$, a contradiction. Hence $(s_1 - s_2)ae_1 = ((s_1 - s_2)a)e_1 = 0e_1 = 0$, i.e., $s_1ae_1 = s_2ae_1$, thus f is well-defined. well-defined.

Next, we show that $f \in M_R(V)$.

Let $v \in V, r \in R$. We consider in two cases:

Case 1: $v \in Rw_0$.

Then $v = sw_0$ for some $s \in R$, so $rv = rsw_0$, $f(rv) = rsae_1 = rf(v)$.

Case 2: $v \notin Rw_0$. We consider in two subcases.

- (1) If $rv \notin Rw_o$, then rf(v) = 0 = f(rv).
- (2) If $rv \in Rw_0$, then $rv = sw_o \in Rw_o$ for some $s \in R$. We consider as follow. If $s \in M$ and $f(rv) = sae_1 = 0 = r(0) = rf(v)$. The case $s \notin M$ can not occur since $w_0 = s^{-1}sw_0 = s^{-1}rv \in Rv$ which implies $Rw_0 \subseteq Rv$.

If $v \in \bigcup_{i=1}^t S_i$, then $w_0 \in Rv \subseteq S_i$ for some i which is a contradiction.

If $v \notin \bigcup_{i=1}^t S_i$, then $v \in Rv = Rw_0$ since Rw_0 is maximal which contradicts to our assumption.

Thus we have $f \in M_R(V)$.

Now, we show that f is linear on each S_i for all i = 1, 2, ..., t.

Let $v \in \bigcup_{i=1}^t S_i$.

If $v \notin Rw_o$, then f(v) = 0.

If $v \in Rw_o$, say $v = sw_o$, then $s \in M$, for if $s \in R \setminus M$, hence s is a unit, thus there exists s^{-1} , then $w_o = 1w_o = s^{-1}sw_o = s^{-1}v \in \bigcup_{i=1}^t S_i$, a contradiction. Thus $f(v) = sae_1 = 0$.

Consequently, $f(\bigcup_{i=1}^t S_i) = 0$, then f(x+y) = 0 = 0 + 0 = f(x) + f(y) for all $x, y \in S_i, \forall i = 1, 2, ..., t$ and hence f is linear on each $S_i \in \mathfrak{F}$.

Finally let $\hat{w} \in (V \setminus Rw_o)$.

and

Then $\hat{w} + w_o \notin Rw_o$, so $f(\hat{w} + w_o) = 0 \neq ae_1 = f(w_o) = f(\hat{w}) + f(w_o)$.

Therefore \Im does not force linearity on V.

Lemma 3.1.7. Let R be a local ring with unique maximal ideal M. Then V/MV is a vector space over the field R/M under addition and scalar multiplication defined by

$$(v_1 + MV) + (v_2 + MV) = (v_1 + v_2) + MV.$$

$$(r + M)(v + MV) = rv + MV.$$

Proof. Since R is a commutative ring with identity and M is a maximal ideal of R, R/M is a field.

We will show that addition and scalar multiplication are well-defined.

Let $x_1 + MV = y_1 + MV$ and $x_2 + MV = y_2 + MV$ where $x_1, x_2, y_1, y_2 \in V$.

Then $x_1 - y_1 \in MV$ and $x_2 - y_2 \in MV$, so $(x_1 - y_1) + (x_2 - y_2) \in MV$.

Thus $(x_1 + x_2) - (y_1 + y_2) \in MV$.

This means that $(x_1 + x_2) + MV = (y_1 + y_2) + MV$.

Next, let $r_1 + M = r_2 + M$ and $v_1 + MV = v_2 + MV$ where $r_1, r_2 \in R$ and $v_1, v_2 \in V$.

Then $r_1 - r_2 \in M$ and $v_1 - v_2 \in MV$.

Since MV is an R-module, then $(r_1 - r_2)v_1 \in MV$ and $r_2(v_1 - v_2) \in MV$,

then $r_1v_1 - r_2v_1 \in MV$ and $r_2v_1 - r_2v_2 \in MV$.

Thus $(r_1v_1 - r_2v_1) + (r_2v_1 - r_2v_2) \in MV$, so $(r_1v_1 - r_2v_2) \in MV$.

 $(r_1 + M)((v_1 + MV) + (v_2 + MV)) = (r_1 + M)((v_1 + v_2) + MV)$

Hence $r_1v_1 + MV = r_2v_2 + MV$.

Therefore $(r_1 + M)(v_1 + MV) = (r_2 + M)(v_2 + MV)$.

Next, we show that V/MV is a vector space over the field R/M under addition and scalar multiplication defined above.

Let $v_1 + MV$, $v_2 + MV \in V/MV$ and $r_1 + M$, $r_2 + M \in R/M$ where $v_1, v_2 \in V$ and $r_1, r_2 \in R$.

Then

$$= r_1(v_1 + v_2) + MV$$

$$= (r_1v_1 + r_1v_2) + MV$$

$$= (r_1v_1 + MV) + (r_1v_2 + MV)$$

$$= (r_1 + M)(v_1 + MV) + (r_1 + M)(v_2 + MV)$$

and

$$((r_1 + M) + (r_2 + M))(v_1 + MV) = ((r_1 + r_2) + M)(v_1 + MV)$$

$$= (r_1 + r_2)v_1 + MV$$

$$= (r_1v_1 + r_2v_1) + MV$$

$$= (r_1v_1 + MV) + (r_2v_1 + MV)$$

$$= (r_1 + M)(v_1 + MV) + (r_2 + M)(v_1 + MV)$$

and

$$(r_1 + M)((r_2 + M)(v_1 + MV)) = (r_1 + M)(r_2v_1 + MV)$$

$$= r_1(r_2v_1) + MV$$

$$= (r_1r_2)v_1 + MV$$

$$= (r_1r_2)(v_1 + MV)$$

$$= ((r_1r_2) + M)(v_1 + MV)$$

$$= ((r_1 + M)(r_2 + M))(v_1 + MV)$$

and

$$(1+M)(v_1 + MV) = 1v_1 + MV = v_1 + MV$$

Thus we get V/MV is a vector space over the field R/M.

Lemma 3.1.8. Let V be a vector space over the field F and S_1, S_2, \ldots, S_k be finitely many subspaces of V with k < |F|+1. Then $S_1 \cup S_2 \cup \cdots \cup S_k$ is a subspace if and only if some S_i contains the others.

Proof. See [7] page 128.

Theorem 3.1.9. Let R be a local ring with unique maximal ideal M and $V = R^{(\mathbb{N})}$ and $Ann_R(M) \neq 0$. If every proper submodule of V contains MV and R/M is infinite, then $fln(V) = \infty$.

Proof. Suppose that there exists a finite set $\Im = \{S_1, S_2, \dots, S_t\}$ of proper submodules of V which forces linearity, then by Proposition 3.1.6. we get $V = \bigcup_{i=1}^t S_i$.

By Lemma 3.1.7, we get V/MV is a vector space over R/M and for each $1 \le i \le t$ we get S_i/MV is a proper subspace of V/MV since $MV \le S_i$.

Since $\bigcup_{i=1}^t (S_i/MV) = (\bigcup_{i=1}^t S_i)/MV = V/MV$, $\bigcup_{i=1}^t (S_i/MV)$ is a vector space on R/M.

Because |R/M| is infinite, we get t < |R/M| + 1.

Thus by Lemma 3.1.8. there exists $1 \leq j \leq t$ such that $S_i/MV \subseteq S_j/MV$ for all $i \neq j$, so $S_j/MV = \bigcup_{i=1}^t (S_i/MV) = V/MV$, which contradicts to S_j/MV is a proper subspace of V/MV. Hence $fln(V) = \infty$.

Theorem 3.1.10. Let R be local ring with maximal ideal M such that R/M is a field of cardinality q. Suppose that $V = R^{(\mathbb{N})}$, then $fln(V) \leq q + 2$.

Proof. Since R is a commutative Noetherian ring, M is finitely generated.

Let $M = \langle m_1, m_2, ..., m_k \rangle$ and let $(R/M)^* = \{u_1 + M, u_2 + M, ..., u_{q-1} + M\}$; i.e., $u_1, u_2, ..., u_{q-1}$ is a system of representatives for $(R/M)^*$.

Define $S' = \langle m_1 e_1, \dots, m_k e_1, e_2, e_3, \dots \rangle$, $S'' = \langle e_1, m_1 e_2, \dots, m_k e_2, e_3, \dots \rangle$ and $S_i = \langle e_1 + u_i e_2, m_1 e_2, \dots, m_k e_2, e_3, \dots \rangle$ for $i = 1, 2, \dots, q - 1$.

Thus $V = S' \cup S'' \cup (\bigcup_{i=1}^{q-1} S_i)$.

Let $S = \langle e_1, e_2 \rangle$ and consider $\Im = \{S', S'', S_1, \dots, S_{q-1}, S\}$. Then all elements in \Im are distinct, so $|\Im| = q + 2$.

Suppose that $f \in M_R(V)$ is linear on each submodule in \Im and let $v = a_1e_1 + a_2e_2 + \cdots + a_me_m$ be arbitrary in V.

If a_1 or $a_2 \in M$, then $v \in S'$ or S'' and $f(a_1e_1 + a_2e_2 + \cdots + a_me_m) = f(a_1e_1) + f(a_2e_2) + \cdots + f(a_me_m)$.

If both $a_1, a_2 \in R \setminus M$, then $v = a_1(e_1 + a_1^{-1}a_2e_2) + a_3e_3 + \cdots + a_me_m$.

Since $a_1, a_2 \notin M$, then $a_1^{-1}a_2 \notin M$, so there exist u_l with $1 \leq l \leq q-1$ such that $a_1^{-1}a_2 + M = u_l + M$, this means that $(a_1^{-1}a_2 - u_l) \in M$, then $a_1^{-1}a_2 - u_l = \hat{m}$ where $\hat{m} \in M$, i.e., $a_1^{-1}a_2 = u_l + \hat{m}$, $\hat{m} \in M$. From $\hat{m} = r_1m_1 + r_2m_2 + \cdots + r_km_k$ where $r_i \in R$, we get $a_1\hat{m}e_2 = a_1r_1m_1e_2 + a_1r_2m_2e_2 + \cdots + a_1r_km_ke_2$.

Thus $v = a_1(e_1 + u_l e_2) + a_1 \hat{m} e_2 + a_3 e_3 + \dots + a_m e_m \in S_l$. Since f is linear on S_l , $f(a_1 e_1 + a_2 e_2 + \dots + a_m e_m) = f(a_1(e_1 + u_l e_2) + a_1 \hat{m} e_2 + a_3 e_3 + \dots + a_m e_m)$ $= f(a_1 e_1 + a_1 u_l e_2) + f(a_1 \hat{m} e_2) + f(a_3 e_3) + \dots + f(a_m e_m).$

Since f is linear on S, then $f(a_1e_1 + a_1u_le_2) = f(a_1e_1) + f(a_1u_le_2)$.

Hence

$$f(v) = f(a_1e_1) + f(a_1u_le_2) + f(a_1\hat{m}e_2) + f(a_3e_3) + \dots + f(a_me_m)$$

$$= f(a_1e_1) + f([a_1u_l + a_1\hat{m}]e_2) + f(a_3e_3) + \dots + f(a_me_m) \quad \text{since } f \text{ is linear on } S'$$

$$= f(a_1e_1) + f(a_2e_2) + \dots + f(a_me_m).$$

Thus from Lemma 3.1.2., we get f is linear on V and \Im forces linearity on V. \square

3.2 General properties of $\mathbb{Z}_{p^k}^{(\mathbb{N})}$

In this section we want to find the forcing linearity numbers of a free module $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$, over a local ring \mathbb{Z}_{p^k} . It is easy to see that \mathbb{Z}_{p^k} is a commutative local ring with identity, not an integral domain such that $\langle \bar{p} \rangle$ is a unique maximal ideal of \mathbb{Z}_{p^k} . Moreover $\langle \bar{p} \rangle$ consisting of all nonunits of \mathbb{Z}_{p^k} .

Let $\mathbf{V} = \mathbb{Z}_{p^k}^{(\mathbb{N})}$ and \mathbf{u} , \mathbf{v} be fixed positive integers with u < v.

We let
$$M_i = \langle e_1, e_2, \dots, e_{i-1}, pe_i, e_{i+1}, \dots \rangle$$
 and

$$K_{uv}(t) = \langle e_1, e_2, ..., e_{u-1}, e_u + te_v, e_{u+1}, ..., e_{v-1}, pe_v, e_{v+1}, ... \rangle \text{ where } 1 \le t \le p-1$$
$$= \{ (\bar{x_1}, \bar{x_2}, \bar{x_3}, ...) \in V | (\bar{x_u}, \bar{x_v}) \in \langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle, 1 \le t \le p-1 \}.$$

Lemma 3.2.1.
$$Ann(\langle \bar{p} \rangle) = \{ \bar{0}, \overline{p^{k-1}}, 2\overline{p^{k-1}}, ..., (p-1)\overline{p^{k-1}} \}.$$

Proof. Let $\bar{a} \in Ann(\langle \bar{p} \rangle)$. Then $ax \equiv 0 \pmod{p^k}$ for all $\bar{x} \in \langle \bar{p} \rangle$.

By taking x = p, we get $p^k|ap$ which implies $p^{k-1}|a$.

Thus $a = mp^{k-1}$ for some $m \in \mathbb{Z}$.

Since $0 \le a < p^k$, then $0 \le mp^{k-1} < p^k$, so $0 \le m < p$.

Therefore $a \in {\overline{0}, \overline{p^{k-1}}, 2\overline{p^{k-1}}, \dots, (p-1)\overline{p^{k-1}}}.$

Clearly $\{\overline{0}, \overline{p^{k-1}}, 2\overline{p^{k-1}}, \dots, (p-1)\overline{p^{k-1}}\} \subseteq Ann(\langle \overline{p} \rangle).$

Hence $Ann(\langle \bar{p} \rangle) = \{\bar{0}, \overline{p^{k-1}}, 2\overline{p^{k-1}}, \dots, (p-1)\overline{p^{k-1}}\}.$

Lemma 3.2.2. If $\Im = \{S_1, S_2, ..., S_t\}$ is a collection of proper submodules of $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$ which forces linearity, then $\bigcup_{i=1}^t S_i = V$.

Proof. Let $\Im = \{S_1, S_2, ..., S_t\}$ be a collection of proper submodules of $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$ which forces linearity.

Since \mathbb{Z}_{p^k} is a finite local ring which has $\langle \bar{p} \rangle$ as a unique maximal ideal of \mathbb{Z}_{p^k} with $Ann(\langle \bar{p} \rangle) \neq \bar{0}$, then by Proposition 3.1.6. we get $\cup_{i=1}^t S_i = V$.

Theorem 3.2.3.(First Sylow Theorem) Let G be a group of order $p^n m$, with $n \ge 1$, p prime, and gcd(p,m) = 1. Then G contains a subgroup of order p^i for each $1 \le i \le n$ and every subgroup of G of order $p^i(i < n)$ is normal in some subgroup

of order p^{i+1} .

Proof. See [3] page 94.

Lemma 3.2.4. If $V = \mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$ and M is a maximal submodule of V, then $|M| = p^{2k-1}$.

Proof. Let M be a maximal submodule of V. Then M is a subgroup of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$. Suppose $|M| < p^{2k-1}$. By First Sylow Theorem, M is contained in some subgroup K of order p^{2k-1} . We prove that K is a submodule of V.

Let $\bar{s} \in \mathbb{Z}_{p^k}$ and $x \in K$.

If
$$\bar{s} = \bar{0}$$
, $\bar{s}x = \bar{0}x = 0 \in K$.

If
$$\bar{1} \leq \bar{s} < \overline{p^k}$$
, then $\bar{s}x = (\underline{\bar{1} + \bar{1} + \dots + \bar{1}})x = \underbrace{x + x + \dots + x}_{s \ times}$.
Because $x \in K$ and K is a group, $\underbrace{x + x + \dots + x}_{s \ times} \in K$. Thus $\bar{s}x \in K$ and get K

is a submodule of V.

Thus $M \subsetneq K \subsetneq V$, which contradicts to the maximality of V.

Proposition 3.2.5. (i) If $\bar{x} \in \mathbb{Z}_{p^k}$ and $s \in \mathbb{Z}$, then $s\bar{x} = \overline{sx}$.

(ii)
$$\mathbb{Z}_{p^k}(\bar{x}, \bar{y}) = \mathbb{Z}(\bar{x}, \bar{y}) \text{ for all } \bar{x}, \bar{y} \in \mathbb{Z}_{p^k}.$$

Proof. (i) Let $\bar{x} \in \mathbb{Z}_{p^k}$ and $s \in \mathbb{Z}$, we consider in three cases:

Case s = 0: We get $0\bar{x} = \bar{0} = 0\bar{x} = \overline{0x}$.

Case s > 0: Then $s\bar{x} = \underline{\bar{x} + \bar{x} \cdots + \bar{x}} = \underline{\bar{x} + x + \cdots + x} = \overline{sx}$. Case s < 0: Then -s > 0 and $s\bar{x} = -(-s)\bar{x} = -(-s\bar{x}) = -(-s\bar{x})$ is an inverse of $\overline{-sx}$.

Thus by three cases we get $s\bar{x} = \overline{sx}$ for $\bar{x} \in \mathbb{Z}_{p^k}, s \in \mathbb{Z}$.

(ii) (\Rightarrow) Let $a \in \mathbb{Z}_{p^k}(\bar{x}, \bar{y})$. Then $a = \bar{s}(\bar{x}, \bar{y})$ for some $0 \le s < p^k$.

Since $a = \bar{s}(\bar{x}, \bar{y}) = (\bar{s}\bar{x}, \bar{s}\bar{y}) = (\bar{s}\bar{x}, \bar{s}\bar{y}) = (s\bar{x}, s\bar{y}) = s(\bar{x}, \bar{y})$ where $s \in \mathbb{Z}$ by (i), we get $a \in \mathbb{Z}(\bar{x}, \bar{y})$.

Thus $\mathbb{Z}_{p^k}(\bar{x}, \bar{y}) \subseteq \mathbb{Z}(\bar{x}, \bar{y}).$

 (\Leftarrow) Let $b \in \mathbb{Z}(\bar{x}, \bar{y})$. Then $b = r(\bar{x}, \bar{y})$ for some $r \in \mathbb{Z}$.

Since $b = r(\bar{x}, \bar{y}) = (r\bar{x}, r\bar{y}) = (\bar{r}\bar{x}, \bar{r}\bar{y}) = (\bar{r}\bar{x}, \bar{r}\bar{y}) = \bar{r}(\bar{x}, \bar{y})$ where $\bar{r} \in \mathbb{Z}_{p^k}$ by (i), we get $a \in \mathbb{Z}_{p^k}(\bar{x}, \bar{y})$.

Thus $\mathbb{Z}(\bar{x}, \bar{y}) \subseteq \mathbb{Z}_{p^k}(\bar{x}, \bar{y})$.

Hence
$$\mathbb{Z}_{p^k}(\bar{x}, \bar{y}) = \mathbb{Z}(\bar{x}, \bar{y})$$
 for all $\bar{x}, \bar{y} \in \mathbb{Z}_{p^k}$.

Lemma 3.2.6. If V is a finitely generated abelian group generated by n elements, then every subgroup M of V can be generated by m elements with $m \le n$.

Proof. See [3] page 74. \Box

Proposition 3.2.7. Let $V = \mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$ and M a maximal submodule of V over \mathbb{Z}_{p^k} . Then there exist $(\bar{1}, \bar{g})$ or $(\overline{g'}, \bar{1}) \in M$ for some $g, g' \in \mathbb{Z}_{p^k}$.

Proof. Suppose $(\bar{1}, \bar{g})$ and $(\bar{g'}, \bar{1}) \notin M$ for all g and $g' \in \mathbb{Z}_{p^k}$.

If there is an element $(\bar{x}, \bar{y}) \in M$ such that $|(\bar{x}, \bar{y})| = p^k$. Then gcd(x, p) = 1 or gcd(y, p) = 1

If gcd(x,p) = 1, then there is $\bar{z} \in \mathbb{Z}_{p^k}$ such that $\bar{z}(\bar{x},\bar{y}) = (\bar{z}\bar{x},\bar{z}\bar{y}) = (\bar{1},\bar{z}\bar{y}) \in M$, which is a contradiction.

If gcd(y,p) = 1, then there is $\bar{s} \in \mathbb{Z}_{p^k}$ such that $\bar{s}(\bar{x},\bar{y}) = (\bar{s}\bar{x},\bar{s}\bar{y}) = (\bar{s}\bar{x},\bar{1}) \in M$, which is a contradiction.

Thus every element $(\bar{x}, \bar{y}) \in M$, $|(\bar{x}, \bar{y})| < p^k$.

Since V is generated by two elements, M can be generated by at most two elements by Lemma 3.2.6, that is $M = \mathbb{Z}(\bar{x}, \bar{y}) + \mathbb{Z}(\bar{u}, \bar{v})$ for some $(\bar{x}, \bar{y}), (\bar{u}, \bar{v}) \in M$. Thus $|M| < p^{2k-1}$.

By Proposition 3.2.5, we have $\mathbb{Z}(\bar{x}, \bar{y}) + \mathbb{Z}(\bar{u}, \bar{v}) = \mathbb{Z}_{p^k}(\bar{x}, \bar{y}) + \mathbb{Z}_{p^k}(\bar{u}, \bar{v})$.

Thus we get $M = \mathbb{Z}_{p^k}(\bar{x}, \bar{y}) + \mathbb{Z}_{p^k}(\bar{u}, \bar{v})$. And that $|M| < p^{2k-1}$.

But M is a maximal submodule of V, so $|M| = p^{2k-1}$, which is a contradiction. Therefore, there exists $(\bar{1}, \bar{g})$ or $(\bar{g'}, \bar{1}) \in M$. **Lemma 3.2.8.** Let $(\bar{0}, \bar{p}), (\bar{p}, \bar{0}) \in \mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$, then

(1)
$$\mathbb{Z}_{p^k}(\bar{0}, \bar{p}) = \{(\bar{0}, \bar{x}) \mid x = up ; \text{ where } 0 \le u \le p^{k-1} - 1\}$$

and

(2)
$$\mathbb{Z}_{p^k}(\bar{p}, \bar{0}) = \{(\bar{y}, \bar{0}) \mid y = vp ; where \ 0 \le v \le p^{k-1} - 1\}.$$

Moreover $|\mathbb{Z}_{p^k}(\bar{0},\bar{p})| = p^{k-1} = |\mathbb{Z}_{p^k}(\bar{p},\bar{0})|.$

Proof. (1) (\subseteq) Let $a \in \mathbb{Z}_{p^k}(\bar{0}, \bar{p})$, then $a = \bar{t}(\bar{0}, \bar{p}) = (\bar{0}, \bar{tp})$ where $0 \le t < p^k$.

If
$$0 \le t \le p^{k-1} - 1$$
, we get $a \in \{(\bar{0}, \bar{x}) \mid x = up ; \text{ where } 0 \le u \le p^{k-1} - 1\}.$

If $t > p^{k-1} - 1$, then by division algorithm there exists $q, s \in \mathbb{Z}$ such that $t = p^{k-1}q + s$ where $0 \le s < p^{k-1}$.

Then
$$\bar{t}\bar{p} = \bar{p}\bar{t} = \bar{p}(\overline{p^{k-1}}\bar{q} + \bar{s}) = \overline{p^kq} + \overline{ps} = \bar{0} + \overline{ps} = \overline{ps} = \overline{sp}$$
.

Since $0 \le s < p^{k-1}$, this means that $0 \le s \le p^{k-1} - 1$.

Then
$$a = (\bar{0}, \bar{tp}) \in \{(\bar{0}, \bar{x}) \mid x = up ; \text{ where } 0 \le u \le p^{k-1} - 1\}.$$

Thus $\mathbb{Z}_{p^k}(\bar{0}, \bar{p}) \subseteq \{(\bar{0}, \bar{x}) \mid x = up ; \text{ where } 0 \le u \le p^{k-1} - 1\}.$

(
$$\supseteq$$
) Let $a \in \{(\bar{0}, \bar{x}) \mid x = up ; \text{ where } 0 \le u \le p^{k-1} - 1\}.$

Then there exists $0 \le b \le p^{k-1} - 1$ such that $a = (\bar{0}, \overline{bp}) = \bar{b}(\bar{0}, \bar{p})$.

Since $0 \le b \le p^{k-1} - 1$, then $\bar{b} \in \mathbb{Z}_{p^k}$.

Thus $a \in \mathbb{Z}_{p^k}(\bar{0}, \bar{p})$ and $\{(\bar{0}, \bar{x}) \mid x = up ; \text{ where } 0 \le u \le p^{k-1} - 1\} \subseteq \mathbb{Z}_{p^k}(\bar{0}, \bar{p}).$

Thus we get $\mathbb{Z}_{p^k}(\bar{0}, \bar{p}) = \{(\bar{0}, \bar{x}) \mid x = up ; \text{ where } 0 \le u \le p^{k-1} - 1\}.$

Next, we show that $|\mathbb{Z}_{p^k}(\bar{0},\bar{p})| = p^{k-1}$.

Let $(\bar{0}, \bar{x_1}) = (\bar{0}, \bar{x_2})$, then there is $0 \le y_1, y_2 \le p^{k-1} - 1$ such that $x_1 = y_1 p$ and $x_2 = y_2 p$.

Suppose that $y_1 \ge y_2$. Then $0 \le y_1 - y_2 \le p^{k-1} - 1$.

Thus
$$(\bar{0}, \overline{y_1p}) = (\bar{0}, \overline{y_2p})$$
, so $\overline{y_1p} = \overline{y_2p}$ and $\bar{0} = \overline{y_1p} - \overline{y_2p} = (\bar{y_1} - \bar{y_2})p$.

Hence $\bar{y}_1 - \bar{y}_2 = \bar{0}$ since $0 \le y_1 - y_2 \le p^{k-1} - 1$. **Solution Solution Solution**

Thus $y_1 = y_2$.

Hence $\{(\bar{0}, \bar{x}) \mid x = up ; \text{ where } 0 \le u \le p^{k-1} - 1\}$ has order p^{k-1} .

This means that $|\mathbb{Z}_{p^k}(\bar{0},\bar{p})| = p^{k-1}$.

(2) By using the same proof as given in (1), we get

$$\mathbb{Z}_{p^k}(\bar{p},\bar{0}) = \{(\bar{y},\bar{0}) \mid y = vp \text{ ; where } 0 \leq v \leq p^{k-1} - 1\} \text{ and } |\mathbb{Z}_{p^k}(\bar{p},\bar{0})| = p^{k-1}. \ \Box$$

Lemma 3.2.9. Let $V = \mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$ and M a maximal submodule of V. Then M contains elements x, y such that $|x| = p^k$, $|y| = p^{k-1}$ and $M = \langle x \rangle \oplus \langle y \rangle$.

Proof. Let M be a maximal submodule of V.

By Proposition 3.2.7. we get $(\bar{1}, \bar{g})$ or $(\bar{g'}, \bar{1}) \in M$ where $0 \leq g, g' < p^k$.

We consider in two cases.

Case i: $(\bar{1}, \bar{g}) \in M$ where $0 \le g < p^k$.

We defined $f: M \to M$ by

$$f((\bar{x}, \bar{y})) = (\bar{x}, \overline{xg})$$

Let $(\bar{x_1}, \bar{y_1}), (\bar{x_2}, \bar{y_2}) \in M$ and $(\bar{x_1}, \bar{y_1}) = (\bar{x_2}, \bar{y_2}).$

So $\bar{x_1} = \bar{x_2}, \bar{y_1} = \bar{y_2}$ and $\overline{x_1g} = \overline{x_2g}$.

We get, $f((\bar{x_1}, \bar{y_1})) = (\bar{x_1}, \overline{x_1g}) = (\bar{x_2}, \overline{x_2g}) = f((\bar{x_2}, \bar{y_2})).$

Thus f is well-defined.

Let $K = \{\bar{y} \mid (\bar{0}, \bar{y}) \in Kerf \ and \ 0 \le y < p^k\} \ and \ K' = \{y \mid \bar{y} \in K\}.$

Thus $K' \subseteq \mathbb{N} \cup \{0\}$.

Let d be the smallest positive element in K'.

We claim that $Kerf = \{(\bar{0}, \bar{y}) | \bar{y} \in \mathbb{Z}_{p^k}\} \cap M = \mathbb{Z}_{p^k}(\bar{0}, \bar{d}).$

Since $f((\bar{0}, \bar{y})) = (\bar{0}, \bar{0}\bar{g}) = (\bar{0}, \bar{0})$, it follows that $\{(\bar{0}, \bar{y}) | \bar{y} \in \mathbb{Z}_{p^k}\} \cap M \subseteq Kerf$.

Let $(\bar{a}, \bar{b}) \in Kerf$.

Thus $(\bar{a}, \overline{ag}) = f((\bar{a}, \bar{b})) = (\bar{0}, \bar{0})$, so $\bar{a} = \bar{0}$ and

 $(\bar{a}, \bar{b}) = (\bar{0}, \bar{b}) \in \{(\bar{0}, \bar{y}) | \bar{y} \in \mathbb{Z}_{p^k}\} \cap M.$

Thus $Kerf = \{(\bar{0}, \bar{y}) | \bar{y} \in \mathbb{Z}_{p^k}\} \cap M$.

Let $a \in \mathbb{Z}_{p^k}(\bar{0}, \bar{d})$.

Then $a = e(\overline{0}, \overline{d}) = (\overline{0}, \overline{ed})$ where $e \in \mathbb{Z}_{p^k}$, so $f(a) = f(\overline{0}, \overline{ed}) = (\overline{0}, \overline{0g}) = (\overline{0}, \overline{0})$.

Thus $a \in Kerf$ and $\mathbb{Z}_{p^k}(\bar{0}, \bar{d}) \subseteq Kerf$.

Let $(\bar{0}, \bar{m}) \in Kerf$.

Consider m and d, by division algorithm we get m = xd + r for some $x \in \mathbb{Z}$, $0 \le r < d$.

Since $(\bar{0}, \overline{xd})$ and $(\bar{0}, \bar{m}) \in Kerf$, then $(\bar{0}, \bar{r}) \in Kerf$.

If $r \neq 0$, then $r \in K'$ and r < d which is a contradiction.

This implies that $\bar{m} = \overline{xd} \in \mathbb{Z}_{p^k}$ and so $(\bar{0}, \bar{m}) = x(\bar{0}, \bar{d}) \in \mathbb{Z}(\bar{0}, \bar{d})$.

But by Proposition 3.2.5. $\mathbb{Z}(\bar{0}, \bar{d}) = \mathbb{Z}_{p^k}(\bar{0}, \bar{d})$, so $(\bar{0}, \bar{m}) \in \mathbb{Z}_{p^k}(\bar{0}, \bar{d})$.

Thus $Kerf \subseteq \mathbb{Z}_{p^k}(\bar{0}, \bar{d})$.

Therefor $Kerf = \{(\bar{0}, \bar{y}) | \bar{y} \in \mathbb{Z}_{p^k}\} \cap M = \mathbb{Z}_{p^k}(\bar{0}, \bar{d})$ where d is the smallest positive element in K'.

Next, we show that f is an idempotent endomorphism of M.

Let $(\bar{x}, \bar{y}) \in M$. We get

$$ff((\bar{x}, \bar{y})) = f((\bar{x}, \overline{xg})) = (\bar{x}, \overline{xg}) = f((\bar{x}, \bar{y})).$$

Thus f is an idempotent.

Let $\bar{n} \in \mathbb{Z}_{p^k}$, $(\bar{x}, \bar{y}) \in M$. We have,

$$\bar{n}f((\bar{x},\bar{y})) = \bar{n}(\bar{x},\overline{xg}) = (\overline{nx},\overline{nxg})$$
 and

$$f(\overline{n}(\overline{x},\overline{y})) = f((\overline{nx},\overline{ny})) = (\overline{nx},\overline{nxg}).$$

Thus $f \in M_{\mathbb{Z}_{n^k}}(M)$.

Next, we show that $f \in End_{\mathbb{Z}_{n^k}}(M)$.

Let $(\bar{x_1}, \bar{y_1}), (\bar{x_2}, \bar{y_2}) \in M$. We get,

$$f((\bar{x_1}, \bar{y_1}) + (\bar{x_2}, \bar{y_2})) = f((\bar{x_1} + \bar{x_2}, \bar{y_1} + \bar{y_2})) = (\overline{x_1 + x_2}, \overline{(x_1 + x_2)g})$$
 and

$$f((\bar{x_1}, \bar{y_1})) + f((\bar{x_2}, \bar{y_2})) = (\bar{x_1} + \overline{x_1g}) + (\bar{x_2} + \overline{x_2g})) = (\overline{x_1 + x_2}, \overline{(x_1 + x_2)g}).$$

Thus
$$f((\bar{x_1}, \bar{y_1}) + (\bar{x_2}, \bar{y_2})) = f((\bar{x_1}, \bar{y_1})) + f((\bar{x_2}, \bar{y_2}))$$
 and so $f \in End_{\mathbb{Z}_{n^k}}(M)$.

Now, we show that $Im f = \mathbb{Z}_{p^k}(\bar{1}, \bar{g}).$

By the definition of f we see that Imf is a submodule of $\mathbb{Z}_{p^k}(\bar{1},\bar{g})$.

Let $(\bar{a}, \bar{b}) \in \mathbb{Z}_{p^k}(\bar{1}, \bar{g})$, so $(\bar{a}, \bar{b}) = \bar{m}(\bar{1}, \bar{g})$ for some $\bar{m} \in \mathbb{Z}_{p^k}$.

And $f((\bar{m}, \overline{mg})) = (\bar{m}, \overline{mg}) = (\bar{a}, \bar{b})$, then $(\bar{a}, \bar{b}) \in Imf$.

Thus $Im f = \mathbb{Z}_{p^k}(\bar{1}, \bar{g}).$

By Lemma 2.3.3, $M = \mathbb{Z}_{p^k}(\bar{1}, \bar{g}) \oplus \mathbb{Z}_{p^k}(\bar{0}, \bar{d}) = \langle (\bar{1}, \bar{g}) \rangle \oplus \langle (\bar{0}, \bar{d}) \rangle$ where $0 \leq g < p^k$.

Since $|M| = p^{2k-1}$ and gcd(1, p) = 1, then $|(\bar{1}, \bar{g})| = p^k$ and $|(\bar{0}, \bar{d})| = p^{k-1}$.

Case ii: $(\bar{g'}, \bar{1}) \in M$ where $0 \leq g' < p^k$.

We defined $f: M \to M$ by

$$f((\bar{x}, \bar{y})) = (\overline{yg'}, \bar{y})$$

Let $L = \{\bar{x} \mid (\bar{x}, \bar{0}) \in Kerf \ and \ 0 \le x < p^k\} \ and \ L' = \{x \mid \bar{x} \in K\}.$

Let c be the smallest positive element in L'.

Then f is an idempotent endomorphism with

 $Kerf = \{(\bar{x}, \bar{0}) | \bar{x} \in \mathbb{Z}_{p^k}\} \cap M = \mathbb{Z}_{p^k}(\bar{c}, \bar{0})$ where c is the smallest positive element in L'.

By the same prove as we give in case i, we get

 $M = \mathbb{Z}_{p^k}(\bar{g'}, \bar{1}) \oplus \mathbb{Z}_{p^k}(\bar{c}, \bar{0}) = \langle (\bar{g'}, \bar{1}) \rangle \oplus \langle (\bar{c}, \bar{0}) \rangle \text{ where } 0 \leq g' < p^k.$

Since $|M| = p^{2k-1}$ and gcd(1, p) = 1, then $|(\bar{g'}, \bar{1})| = p^k$ and $|(\bar{c}, \bar{0})| = p^{k-1}$.

By Lemma 3.2.8. and in case i of Lemma 3.2.9, we get $\mathbb{Z}_{p^k}(\bar{0}, \bar{p}) \subseteq Kerf = \mathbb{Z}_{p^k}(\bar{0}, \bar{d})$, so $\mathbb{Z}_{p^k}(\bar{0}, \bar{p}) = \mathbb{Z}_{p^k}(\bar{0}, \bar{d})$ since they have the same order p^{k-1} . Similarly, we get $\mathbb{Z}_{p^k}(\bar{p}, \bar{0}) = \mathbb{Z}_{p^k}(\bar{c}, \bar{0})$.

Lemma 3.2.10. If $V = \mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$ is a module over the ring \mathbb{Z}_{p^k} , then all distinct maximal submodules of V are of the forms $\langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ where $0 \leq t \leq p-1$ and $\langle (\bar{0}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$.

Proof. Let M be a maximal submodule of V. Thus $|M| = p^{2k-1}$.

Then $M = \langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ or $\langle (\bar{t'}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$ where $\bar{t}, \bar{t'} \in \mathbb{Z}_{p^k}$.

We claim that $\langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle = \langle (\bar{1}, \bar{s}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ where $0 \leq s \leq p-1$.

Consider $\langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$, we have

t = ap + s for some $a \in \mathbb{Z}, 0 \le s \le p - 1$ by division algorithm.

 $(\bar{1},\bar{t}) = (\bar{1},\overline{ap+s}) = (\bar{1},\bar{s}) + \bar{a}(\bar{0},\bar{p}) \in \langle (\bar{1},\bar{s})\rangle \oplus \langle (\bar{0},\bar{p})\rangle.$ So $\langle (\bar{1},\bar{t})\rangle \oplus \langle (\bar{0},\bar{p})\rangle \subseteq \langle (\bar{1},\bar{s})\rangle \oplus \langle (\bar{0},\bar{p})\rangle.$

Since $\langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ and $\langle (\bar{1}, \bar{s}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ have order p^{2k-1} ,

thus $\langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle = \langle (\bar{1}, \bar{s}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ where $0 \le s \le p-1$.

For the case $M = \langle (\overline{t'}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle$,

we claim that $\langle (\overline{t'}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle = \langle (\overline{r}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle$ where $0 \leq r \leq p-1$.

Consider $\langle (\overline{t'}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle$, we have

t' = bp + r for some $b \in \mathbb{Z}, 0 \le r \le p - 1$ by division algorithm.

 $(\overline{t'}, \overline{1}) = (\overline{bp+r}, \overline{1}) = (\overline{r}, \overline{1}) + \overline{b}(\overline{p}, \overline{0}) \in \langle (\overline{r}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle. \text{ Hence } \langle (\overline{t'}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle \subseteq \langle (\overline{r}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle.$

Since $\langle (\bar{t'}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$ and $\langle (\bar{r}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$ have order p^{2k-1} ,

thus $\langle (\overline{t'}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle = \langle (\overline{r}, \overline{1}) \rangle \oplus \langle (\overline{p}, \overline{0}) \rangle$ where $0 \le r \le p-1$.

Consider $\langle (\bar{r}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$ where $0 \leq r \leq p-1$.

If r = 0, then $\langle (\bar{r}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle = \langle (\bar{0}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$.

If $r \neq 0$, then $\gcd(r,p) = 1$, there exists $\bar{c} \in \mathbb{Z}_{p^k}$ such that $\bar{c}\bar{r} = \bar{1} \in \mathbb{Z}_{p^k}$ and $(\bar{r}, \bar{1}) = \bar{r}(\bar{1}, \bar{c}) \in \langle (\bar{1}, \bar{c}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$.

Since $\langle (\bar{r}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$ and $\langle (\bar{1}, \bar{c}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$ have order p^{2k-1} ,

thus $\langle (\bar{r}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle = \langle (\bar{1}, \bar{c}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$.

Next, consider $\langle (\bar{1}, \bar{c}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$, we get

c = dp + g for some $d \in \mathbb{Z}, 0 \le g \le p - 1$.

Then $(\bar{1}, \bar{c}) = (\bar{1}, \overline{dp+g}) = (\bar{1}, \bar{g}) + \bar{d}(\bar{0}, \bar{p})$ and we have $(\bar{p}, \bar{0}) = \bar{p}(\bar{1}, \bar{g}) + (-\bar{g})(\bar{0}, \bar{p})$.

Since $\langle (\bar{1}, \bar{c}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$ and $\langle (\bar{1}, \bar{g}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ have order p^{2k-1} .

we have $\langle (\bar{1}, \bar{c}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle = \langle (\bar{1}, \bar{g}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ where $0 \leq g \leq p-1$.

Hence maximal submodules of V are of the form

$$\langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$$
 where $0 \le t \le p-1$

and $\langle (\bar{0}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$.

Note that if $V = \mathbb{Z}_p \oplus \mathbb{Z}_p$, then M are of the forms $\langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{0}) \rangle$ where $0 \le t \le p-1$ or $\langle (\bar{0}, \bar{1}) \rangle \oplus \langle (\bar{0}, \bar{0}) \rangle$.

Lemma 3.2.11. For each $i, u, v \in \mathbb{N}$, M_i and $K_{uv}(t)$ where $1 \leq t \leq p-1$ are maximal submodules of $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$.

Proof. Let $\pi_j: \mathbb{Z}_{p^k}^{(\mathbb{N})} \to \mathbb{Z}_{p^k}$ be the projection map.

Let
$$M_i \subseteq G \subseteq V$$
 with $G \neq M_i$.

We show that G = V.

Since $\pi_j(M_i) = \mathbb{Z}_{p^k}$ for all $j \neq i$, then $\pi_j(G) = \mathbb{Z}_{p^k}$ for all $j \neq i$ since $M_i \subseteq G$.

At the component i we get $\pi_j(M_i) = \langle \bar{p} \rangle$. But $\langle \bar{p} \rangle = \pi_j(M_i) \subsetneq \pi_j(G)$, then $\pi_j(G) = \mathbb{Z}_{p^k}$ since $\langle \bar{p} \rangle$ is maximal ideal of \mathbb{Z}_{p^k} .

Thus we get $\pi_j(G) = \mathbb{Z}_{p^k}$ for all $j \in \mathbb{N}$, then G = V.

Therefore M_i is a maximal submodule of V.

Let
$$K_{uv}(t) \subseteq S \subseteq V$$
 with $S \neq V, 1 \leq t \leq p-1$.

Next, we show that $S = K_{uv}(t)$

Since $K_{uv}(t) = \{(\bar{x_1}, \bar{x_2}, \bar{x_3}, \dots) | (\bar{x_u}, \bar{x_v}) \in \langle (\bar{1}, \bar{t}) \oplus (\bar{0}, \bar{p}) \rangle \}.$

Then $\pi_j(\mathbf{K}_{uv}(t)) = \mathbb{Z}_{p^k}$ for all $j \neq u, v$.

Thus we get $\pi_j(S) = \mathbb{Z}_{p^k}$ for all $j \neq u, v$ since $K_{uv}(t) \subseteq S$.

For each $(\bar{s_k}) \in S$.

Consider at components u, v of $(\bar{s_k}) \in S$.

If $(\bar{s_u}, \bar{s_v}) \notin \langle (\bar{1}, \bar{t}) \oplus (\bar{0}, \bar{p}) \rangle$, then we get $\langle (\bar{1}, \bar{t}) \oplus (\bar{0}, \bar{p}) \rangle + \langle (\bar{s_u}, \bar{s_v}) \rangle \subseteq \pi_u(S) \oplus \pi_v(S)$ since $K_{uv}(t) \subseteq S$.

By the maximality of $\langle (\bar{1}, \bar{t}) \oplus (\bar{0}, \bar{p}) \rangle$, we get $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k} = \langle (\bar{1}, \bar{t}) \oplus (\bar{0}, \bar{p}) \rangle + \langle (\bar{s_u}, \bar{s_v}) \rangle \subseteq \pi_u(S) \oplus \pi_v(S)$, then $\pi_u(S) \oplus \pi_v(S) = \mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$, so S = V, a contradiction.

Then $(\bar{s_u}, \bar{s_v}) \in \langle (\bar{1}, \bar{t}) \oplus (0, p) \rangle, S \subseteq K_{uv}(t).$

Thus $K_{uv}(t)$ where $1 \le t \le p-1$ are maximal submodules of V. \square

Proposition 3.2.12. Let $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$. Then maximal submodules of V are of the form M_i or $K_{uv}(t)$ where $1 \leq t \leq p-1$.

Proof. Let W be a maximal submodule of V.

For each $u, v \in \mathbb{N}$, let

 $W_{uv} = \{(\bar{x_u}, \bar{x_v}) \in \mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k} | \text{ there is } (\bar{a_i}) \in W \text{ such that } \bar{x_u} = \bar{a_u} \text{ and } \bar{x_v} = \bar{a_v} \}.$

We prove that W_{uv} is a submodule of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$.

Let $(\bar{b_u}, \bar{b_v}), (\bar{c_u}, \bar{c_v}) \in W_{uv}$, then there exists $(-\bar{c_u}, -\bar{c_v}) \in W_{uv}$ such that $\bar{c_u} + (-\bar{c_u}) = \bar{0}$ and $\bar{c_v} + (-\bar{c_v}) = \bar{0}$ since W is subgroup of V.

Then $(\bar{b_u}, \bar{b_v}) + (-\bar{c_u}, -\bar{c_v}) = (\bar{b_u} - \bar{c_u}, \bar{b_v} - \bar{c_v}) \in W_{uv}$ because W is subgroup of V.

Hence W_{uv} is a subgroup of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$.

Let $\bar{s} \in \mathbb{Z}_{p^k}$ and $(\bar{x_u}, \bar{x_v}) \in W_{uv}$.

If
$$\bar{s} = \bar{0}$$
, $\bar{s}(\bar{x_u}, \bar{x_v}) = \bar{0}(\bar{x_u}, \bar{x_v}) = (\bar{0}, \bar{0}) \in W_{uv}$.

If
$$\bar{1} \leq \bar{s} < \overline{p^k}$$
, then $\bar{s}(\bar{x_u}, \bar{x_v}) = s(\bar{x_u}, \bar{x_v}) = \underbrace{(\bar{x_u}, \bar{x_v}) + (\bar{x_u}, \bar{x_v}) + \cdots + (\bar{x_u}, \bar{x_v})}_{s \text{ times}}$.

Since $(\bar{x_u}, \bar{x_v}) \in W_{uv}$ and W_{uv} is a group, $(\bar{x_u}, \bar{x_v}) + (\bar{x_u}, \bar{x_v}) + \cdots + (\bar{x_u}, \bar{x_v}) \in W_{uv}$.

Thus $\bar{s}(\bar{x_u}, \bar{x_v}) \in W_{uv}$ for all $\bar{s} \in \mathbb{Z}_{p^k}$ and $(\bar{x_u}, \bar{x_v}) \in W_{uv}$.

Therefore W_{uv} is a submodule of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$.

Since $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$ is finitely generated, every submodule of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$ is contained in a maximal submodule. Thus $W_{uv} \subseteq \langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ where $1 \leq t \leq p-1$

or $W_{uv} \subseteq \langle (\bar{0}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$, by Lemma 3.2.10. Therefore $W \subseteq K_{uv}(t)$ where $1 \le t \le p-1$ or $W \subseteq M_u$. Because W is maximal, so $W = K_{uv}(t)$ or $W = M_u$ where $1 \le t \le p-1$.

Proposition 3.2.13. If $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$, then $fln(V) \neq 0$.

Proof. Since \mathbb{Z}_{p^k} is a local ring having $\langle \bar{p} \rangle$ as a unique maximal ideal with $Ann(\langle \bar{p} \rangle) \neq 0$, then $fln(V) \neq 0$ by Proposition 3.1.4.

Lemma 3.2.14. Let $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$. Then

(i)
$$V = M_i \cup M_j \cup (\bigcup_{t=1}^{p-1} K_{ij}(t)).$$

(ii)
$$M_i \cap M_j \cap (\bigcap_{t=1}^{p-1} K_{ij}(t)) = \langle e_1, e_2, ..., e_{i-1}, pe_i, e_{i+1}, ..., e_{j-1}, pe_j, e_{j+1}, ... \rangle$$

Proof. (i) Let $v \in V$.

Thus $v = v_1e_1 + v_2e_2 + ... + v_me_m$, we consider in two cases :

Case i: $\bar{v}_i \in \langle \bar{p} \rangle$ or $\bar{v}_j \in \langle \bar{p} \rangle$. Then we get $v \in M_i \cup M_j$.

Case ii: $\bar{v}_i \notin \langle \bar{p} \rangle$ and $\bar{v}_j \notin \langle \bar{p} \rangle$.

Then $gcd(p, v_i) = 1$. This means that $\langle \bar{v}_i \rangle = \mathbb{Z}_{p^k}$.

Then there exists $\bar{n} \in \mathbb{Z}_{p^k}$ such that $\bar{v}_i \bar{n} = \bar{v}_j$.

Thus

$$v = v_1 e_1 + v_2 e_2 + \dots + v_{i-1} e_{i-1} + v_i e_i + v_{i+1} e_{i+1} + \dots + v_{j-1} e_{j-1}$$

$$+ (v_i n) e_j + v_{j+1} e_{j+1} + \dots + v_m e_m \quad (\text{ since } \bar{v_j} = \bar{v_i} \bar{n})$$

$$= v_1 e_1 + v_2 e_2 + \dots + v_{i-1} e_{i-1} + v_i (e_i + n e_j) + v_{i+1} e_{i+1} + \dots + v_{j-1} e_{j-1} + v_{j+1} e_{j+1} + \dots + v_m e_m.$$

By division algorithm, there exist, $s, l \in \mathbb{Z}$ such that $1 \le s \le p-1$ and n = lp + s since $p \nmid v_j$.

Thus we have

$$v = v_1 e_1 + v_2 e_2 + \dots + v_{i-1} e_{i-1} + v_i (e_i + (s+lp)e_j) + v_{i+1} e_{i+1} + \dots$$

$$+ v_{j-1} e_{j-1} + v_{j+1} e_{j+1} + \dots + v_m e_m$$

$$= v_1 e_1 + v_2 e_2 + \dots + v_{i-1} e_{i-1} + v_i (e_i + se_j) + v_{i+1} e_{i+1} + \dots + v_{j-1} e_{j-1}$$

$$+ v_i (lpe_j) + v_{j+1} e_{j+1} + \dots + v_m e_m,$$

so that $v \in K_{ij}(s)$ where $1 \le s \le p-1$.

Thus from both cases we get $V \subseteq M_i \cup M_j \cup (\bigcup_{t=1}^{p-1} K_{ij}(t))$.

Therefore $V = M_i \cup M_j \cup (\bigcup_{t=1}^{p-1} K_{ij}(t)).$

(ii) Let
$$a \in \langle e_1, e_2, \dots, e_{i-1}, pe_i, e_{i+1}, \dots, e_{j-1}, pe_j, e_{j+1}, \dots \rangle$$
 and $1 \le t \le p-1$.

Then

$$a = a_1 e_1 + a_2 e_2 + \dots + a_{i-1} e_{i-1} + a_i (pe_i) + a_{i+1} e_{i+1} + \dots + a_{j-1} e_{j-1}$$

$$+ a_j (pe_j) + a_{j+1} e_{j+1} + \dots + a_m e_m$$

$$= (\bar{a}_1, \bar{a}_2, \dots, \bar{a}_{i-1}, \bar{a}_i \bar{p}, \bar{a}_{i+1}, \dots, \bar{a}_{j-1}, \bar{a}_j \bar{p}, \bar{a}_{j+1}, \dots).$$

Thus $a \in M_i \cap M_j$.

We have $p|(a_jp - a_ipt)$ for all $1 \le t \le p-1$ since $p|a_ipt$ and $p|a_jp$.

Then there exists $a'_i \in \mathbb{Z}$ for all $1 \le t \le p-1$ such that $a'_i p = a_j p - a_i p t$.

Hence $a_j p = (a_i t + a'_i) p$.

Thus

$$a = (\bar{a}_{1}, \bar{a}_{2}, \dots, \bar{a}_{i-1}, \bar{a}_{i}\bar{p}, \bar{a}_{i+1}, \dots, \bar{a}_{j-1}, \overline{(a_{i}t + a'_{i})p}, \overline{a_{j+1}}, \dots)$$

$$= a_{1}e_{1} + a_{2}e_{2} + \dots + a_{i-1}e_{i-1} + a_{i}pe_{i} + a_{i+1}e_{i+1} + \dots + a_{j-1}e_{j-1}$$

$$+ ((a_{i}t + a'_{i})p)e_{j} + a_{j+1}e_{j+1} + \dots + a_{m}e_{m}$$

$$= a_{1}e_{1} + a_{2}e_{2} + \dots + a_{i-1}e_{i-1} + a_{i}p(e_{i} + te_{j}) + a_{i+1}e_{i+1} + \dots + a_{j-1}e_{j-1}$$

$$+ a'_{i}(pe_{j}) + a_{j+1}e_{j+1} + \dots + a_{m}e_{m}.$$

Then
$$a \in K_{ij}(t)$$
 for all $1 \le t \le p-1$. So $\langle e_1, e_2, \dots, e_{i-1}, pe_i, e_{i+1}, \dots, e_{j-1}, pe_j, e_{j+1}, \dots \rangle \subseteq M_i \cap M_j \cap (\bigcap_{t=1}^{p-1} K_{ij}(t))$.

It is clear that $M_i \cap M_j \subseteq \langle e_1, e_2, \dots, e_{i-1}, pe_i, e_{i+1}, \dots, e_{j-1}, pe_j, e_{j+1}, \dots \rangle$.

Next, we show that $\bigcap_{t=1}^{p-1} K_{ij}(t) \subseteq \langle e_1, e_2, \dots, e_{i-1}, pe_i, e_{i+1}, \dots, e_{j-1}, pe_j, e_{j+1}, \dots \rangle$.

Let $x = (\bar{x}_i) \in \bigcap_{t=1}^{p-1} K_{ij}(t)$.

Then $x \in K_{ij}(t)$ for all $1 \le t \le p-1$.

Then $x \in \mathbf{K}_{ij}(t)$ for all $1 \leq t \leq p-1$. Consider at components i, j. Let $\bar{x}_i = \bar{a}$, then $\bar{x}_j = \overline{at} + \overline{bp}$ where \bar{a} and $\bar{b} \in \mathbb{Z}_{p^k}$. Thus $\bar{x}_j = \bar{a} + \overline{b_1p} = \overline{2a} + \overline{b_2p} = \overline{3a} + \overline{b_3p} = \cdots = \overline{(p-1)a} + \overline{b_{p-1}p}$ where $\bar{b_1}, \bar{b_2}, \bar{b_3}, \dots, \overline{b_{p-1}} \in \mathbb{Z}_{p^k} \text{ since } 1 \leq t \leq p-1.$

This means that $\bar{a} + \overline{b_1 p} = \overline{2a} + \overline{b_2 p}$, so $\overline{b_1 p} - \overline{b_2 p} = \bar{a}$.

Since $\overline{b_1p} - \overline{b_2p} \in \mathbb{Z}_{p^k}p = \langle \bar{p} \rangle$, then $\bar{a} \in \langle \bar{p} \rangle$ and that $\overline{at} \in \langle \bar{p} \rangle$ where $1 \leq t \leq p-1$ since $\langle \bar{p} \rangle$ is an ideal of \mathbb{Z}_{p^k} .

Thus $\bar{x_i} = \overline{at} + \overline{bp} \in \langle \bar{p} \rangle$.

Hence $\bar{x_i}, \bar{x_j} \in \langle \bar{p} \rangle$.

Consequently $x \in \langle e_1, e_2, \dots, e_{i-1}, pe_i, e_{i+1}, \dots, e_{j-1}, pe_j, e_{j+1}, \dots \rangle$

Thus $\bigcap_{t=1}^{p-1} K_{ij}(t) \subseteq \langle e_1, e_2, \dots, e_{i-1}, pe_i, e_{i+1}, \dots, e_{i-1}, pe_i, e_{i+1}, \dots \rangle$

Therefore $M_i \cap M_j \cap (\bigcap_{t=1}^{p-1} K_{ij}(t)) = \langle e_1, e_2, ..., e_{i-1}, pe_i, e_{i+1}, ..., e_{j-1}, pe_j, e_{j+1}, ... \rangle. \square$

Let $M_i \cap M_j \cap (\bigcap_{t=1}^{p-1} K_{ij}(t)) = \langle e_1, e_2, ..., e_{i-1}, pe_i, e_{i+1}, ..., e_{j-1}, pe_j, e_{j+1}, ... \rangle :=$ $B \text{ and } g_t = e_i + te_j \text{ where } 1 \le t \le p-1. \text{ Then } \mathcal{M}_i = \langle B, e_j \rangle \,, \ \ e_j \notin \mathcal{M}_j \cup (\cup_{t=1}^{p-1} \mathcal{K}_{ij}(t))$ and $M_i = \langle B, e_i \rangle$, $e_i \notin M_i \cup (\bigcup_{t=1}^{p-1} K_{ij}(t))$.

Lemma 3.2.15. (i)
$$K_{ij}(t) = \langle B, g_t \rangle$$
 for all $1 \le t \le p-1$.

(ii) $q_t \notin M_i \cup M_i \cup (\bigcup_{s \neq t} K_{ii}(s))$ where $1 \leq s \neq t \leq p-1$.

Proof. (i) Let $1 \le t \le p-1$ and $a \in K_{ij}(t)$.

Then $a = (\overline{a_1}, \overline{a_2}, \dots, \overline{a_{i-1}}, \overline{a_i}, \overline{a_{i+1}}, \dots, \overline{a_{j-1}}, \overline{a_i t} + \overline{a_j p}, \overline{a_{j+1}}, \dots)$

Then $a = (a_1, a_2, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_{j-1}, a_i t + \overline{a_j p}, \overline{a_{j+1}}, \dots)$ = $(\bar{0}, \bar{0}, \dots, \bar{0}, \bar{a_i}, \bar{0}, \dots, \bar{0}, \overline{a_i t}, \bar{0}, \dots) + (\bar{a_1}, \bar{a_2}, \dots, \overline{a_{i-1}}, \bar{0}, \overline{a_{i+1}}, \dots, \overline{a_{j-1}}, \overline{a_j p}, \overline{a_{j+1}}, \dots)$

 $= a_i g_t + (\overline{a_1}, \overline{a_2}, \dots, \overline{a_{i-1}}, \overline{0}, \overline{a_{i+1}}, \dots, \overline{a_{i-1}}, \overline{a_i p}, \overline{a_{i+1}}, \dots).$

Then $a \in \langle B, g_t \rangle$ since $(\bar{a_1}, \bar{a_2}, \dots, \bar{a_{i-1}}, \bar{0}, \bar{a_{i+1}}, \dots, \bar{a_{i-1}}, \bar{a_ip}, \bar{a_{i+1}}, \dots) \in B$.

Conversely, by above lemma we have $B \subseteq K_{ij}(t)$ and $g_t \in K_{ij}(t)$, so $\langle B, g_t \rangle \subseteq$ $K_{ij}(t)$.

Thus $K_{ij}(t) = \langle B, g_t \rangle$ for all $1 \le t \le p-1$.

(ii) Obviously, $g_t \notin M_i \cup M_j$ since $g_t = e_i + te_j$ and $1 \le t \le p - 1$.

Suppose that there exists s such that $1 \le s \ne t \le p-1$ and $g_t \in K_{ij}(s)$.

Then there exists $a \in K_{ij}(s)$ such that

$$g_t = a = (\overline{a_1}, \overline{a_2}, ..., \overline{a_{i-1}}, \overline{a_i}, \overline{a_{i+1}}, ..., \overline{a_{j-1}}, \overline{a_i}s + \overline{a_j}p, \overline{a_{j+1}}, ...).$$

Consider components i and j of g_t , we get $\bar{a}_i = \bar{1}$ and $\bar{t} = \bar{a}_i \bar{s} + \bar{a}_j \bar{p} = \bar{s} + \bar{a}_j \bar{p}$ where $\bar{a}_j \in \mathbb{Z}_{p^k}$.

If $\bar{a}_j = \bar{0}$, then $\bar{t} = \bar{s}$ which implies s = t, a contradiction.

If $\bar{a}_j \neq \bar{0}$, then $\bar{t} = \bar{s} + \overline{a_j p} \notin \{\bar{1}, \bar{2}, \dots, \overline{p-1}\}$, a contradiction.

Thus we must have $g_t \notin K_{ij}(s)$ for all s distinct from t.

Hence $g_t \notin M_i \cup M_j \cup (\cup_{s \neq t} K_{ij}(s))$ where $1 \leq s \neq t \leq p-1$.

Proposition 3.2.16. Let $\Im = \{M_i, M_j, K_{ij}(1), K_{ij}(2), ..., K_{ij}(p-2), K_{ij}(p-1)\}.$ Then \Im does not force linearity on $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$.

Proof. Let $S_1 = K_{ij}(1)$, $S_2 = K_{ij}(2)$, ..., $S_{p-1} = K_{ij}(p-1)$, $S_p = M_i$, $S_{p+1} = M_j$ and $\bar{0} \neq a \in Ann(\langle \bar{p} \rangle)$, then $ag_1 \neq 0$ where $g_1 = e_i + e_j$. We have by Lemma 3.2.15. that $K_{ij}(1) = \langle B, g_1 \rangle$, so for convenience let $B = \langle b_1, b_2, b_3, \ldots \rangle$.

We choose $\overline{p^{k-1}} \in Ann(\langle \bar{p} \rangle)$ and define $f: V \to V$ by

$$f(v) = \begin{cases} \beta p^{k-1} g_1 & , v \in S_1 = K_{ij}(1) \text{ and } v = \sum_{y=1}^{n} \beta_y b_y + \beta g_1, \\ 0 & , v \in S_x, x \neq 1. \end{cases}$$

We first show that f is well-defined.

If $v \in S_1$ is also represented as $v = \sum_{y=1} \gamma_y b_y + \gamma g_1$, then we have $(\beta - \gamma)g_1 \in B$. This means that $\overline{\beta - \gamma} \in \langle \overline{p} \rangle$, since if $\overline{\beta - \gamma} \notin \langle \overline{p} \rangle$, then $\gcd(\beta - \gamma, p) = 1$, we must have $\langle \overline{\beta - \gamma} \rangle = \mathbb{Z}_{p^k}$, so there exists $m \in \mathbb{Z}_{p^k}$ such that $m(\beta - \gamma) = \overline{1}$, then $g_1 = 1g_1 = m(\beta - \gamma)g_1 \in B$, a contradiction.

Since $p^{k-1} \in Ann(\langle \bar{p} \rangle)$, then $(\beta - \gamma)p^{k-1}g_1 = 0$, i.e., $\beta p^{k-1}g_1 = \gamma p^{k-1}g_1$.

Suppose that $v \in S_1 \cap S_x$, $x \neq 1$.

Thus v also has representation, $v = \sum_{y=1} \delta_y b_y + \delta g_1$ since $v \in S_1$, then $v - \sum_{y=1} \delta_y b_y = \delta g_1$.

Since $\sum_{y=1} \delta_y b_y \in S_x$ by Lemma 3.2.14, then $\delta g_1 \in S_x$, which implies $\bar{\delta} \in \langle \bar{p} \rangle$, since if $\bar{\delta} \notin \langle \bar{p} \rangle$, then $\gcd(\delta, p) = 1$, we must have $\langle \bar{\delta} \rangle = \mathbb{Z}_{p^k}$, so there exists $\bar{n} \in \mathbb{Z}_{p^k}$ such that $\bar{n}(\bar{\delta}) = \bar{1}$, then $g_1 = 1g_1 = n(\delta)g_1 \in S_x$, a contradiction by Lemma 3.2.15.

Consequently $f(v) = \delta p^{k-1} e_j = 0$.

Thus f is well-defined on V.

We note that f is not the zero function since $f(g_1) = p^{k-1}g_1 \neq 0$.

Next, we show that $f \in \mathcal{M}_{\mathbb{Z}_{p^k}}(\mathbb{Z}_{p^k}^{(\mathbb{N})})$.

For $v \in S_1$, say $v = \sum_{y=1} \beta_y b_y + \beta g_1$ and for any $\bar{r} \in \mathbb{Z}_{p^k}$, we have $rv \in S_1$, so $rf(v) = r\beta p^{k-1}g_1 = f(rv)$.

Now suppose $v \in S_x, x \neq 1$.

Then f(v) = 0 and for any $\bar{r} \in \mathbb{Z}_{p^k}$, rf(v) = 0.

Moreover, $rv \in S_x$, which implies f(rv) = 0.

Thus rf(v) = f(rv) for all $\bar{r} \in \mathbb{Z}_{p^k}$ and $v \in V$.

Hence $f \in \mathrm{M}_{\mathbb{Z}_{p^k}}(\mathbb{Z}_{p^k}^{(\mathbb{N})})$.

Next, we show that f is linear on each S_x in \Im .

For each $v_1 = \sum_{y=1} \beta_y b_y + \beta g_1$, $v_2 = \sum_{y=1} \delta_y b_y + \delta g_1 \in S_1$, we have $f(v_1) = \beta p^{k-1} g_1$ and $f(v_2) = \delta p^{k-1} g_1$. Since S_1 is a module, $v_1 + v_2 \in S_1$, so $f(v_1 + v_2) = f(\sum_{y=1} (\delta_y + \beta_y) b_y + (\delta + \beta) g_1) = (\delta + \beta) p^{k-1} g_1 = \delta p^{k-1} g_1 + \beta p^{k-1} g_1 = f(v_1) + f(v_2)$. Then f is linear on S_1 .

Since $f(S_x) = 0$ for all $x \neq 1$, then f is linear on S_x , $x \neq 1$.

Hence f is linear on each S_x in \Im .

Because $g_1 + g_2 \notin S_1$ since if $g_1 + g_2 \in S_1$, we get $g_2 = (g_1 + g_2) - g_1 \in S_1$, a contradiction by Lemma 3.2.15.

However, $f(g_1) + f(g_2) = p^{k-1}g_1 + 0 \neq 0 = f(g_1 + g_2)$.

This shows that $f \notin End_{\mathbb{Z}_{p^k}}(V)$.

Thus \$\forces does not force linearity on V.

Next, we show that $fln(V) \leq p + 2$ where $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$.

Proposition 3.2.17. Let $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$, then $fln(V) \leq p + 2$.

Proof. Since $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$ where \mathbb{Z}_{p^k} is a local ring and has $\langle \bar{p} \rangle$ as a unique maximal ideal of \mathbb{Z}_{p^k} . Moreover $\mathbb{Z}_{p^k}/\langle p \rangle$ is a field of cardinality p. Then by Theorem 3.1.10. we get $fln(V) \le p + 2$.

Lemma 3.2.18. Let $\bigcup_{i=1}^{\ell} S_i = V$ where S_i is a maximal submodule of V and $\ell \leq p$, then

- (i) $\langle \bar{p} \rangle V$ is a submodule of S_i .
- (ii) $S_i/\langle \bar{p}\rangle V$ is a proper subspace of $V/\langle \bar{p}\rangle V$ over the field $\mathbb{Z}_{p^k}/\langle \bar{p}\rangle$.
- (iii) $\cup_{i=1}^{\ell} [S_i/\langle \bar{p} \rangle V]$ is a subspace of $V/\langle \bar{p} \rangle V$ over the field $\mathbb{Z}_{p^k}/\langle \bar{p} \rangle$.

Proof. (i) Clearly $\langle \bar{p} \rangle V$ is a submodule of V.

Next, we will show that $\langle \bar{p} \rangle V \subseteq S_i$ where S_i is maximal submodule of V.

Let S_i be a maximal submodule of V and $(\bar{a_k}) \in \langle \bar{p} \rangle V$, then we consider in two case:

Case i: $S_i = M_i$.

Let
$$(\bar{a_k}) \in \langle \bar{p} \rangle V = \langle pe_1, pe_2, pe_3, \dots \rangle$$
.

Then

$$(\bar{a}_k) = a_1 p e_1 + a_2 p e_2 + \dots + a_{j-1} p e_{j-1} + a_j p e_j + a_{j+1} p e_{j+1} + \dots + a_m p e_m$$

= $(a_1 p) e_1 + (a_2 p) e_2 + \dots + (a_{j-1} p) e_{j-1} + a_j (p e_j) + (a_{j+1} p) e_{j+1} + \dots + (a_m p) e_m$

Thus
$$(\bar{a_k}) \in \langle e_1, e_2, \dots, e_{j-1}, pe_j, e_{j+1}, \dots \rangle = M_j$$
.

Hence $\langle \bar{p} \rangle V \subseteq M_j$.

Case ii: $S_i = K_{uv}(t)$ where $1 \le t \le p-1$. Let $(\bar{a_k}) \in \langle \bar{p} \rangle V = \langle pe_1, pe_2, pe_3, \dots \rangle$.

Let
$$(\bar{a_k}) \in \langle \bar{p} \rangle V = \langle pe_1, pe_2, pe_3, \dots \rangle$$

$$(\bar{a_k}) = a_1 p e_1 + a_2 p e_2 + \dots + a_{u-1} p e_{u-1} + a_u p e_u + a_{u+1} p e_{u+1} + \dots$$

$$+ a_{v-1} p e_{v-1} + a_v p e_v + a_{v+1} p e_{v+1} + \dots + a_m p e_m$$

$$= a_1 p e_1 + a_2 p e_2 + \dots + a_{u-1} p e_{u-1} + a_u p (e_u + t e_v) + a_{u+1} p e_{u+1} + \dots$$

$$+ a_{v-1} p e_{v-1} + (a_v - a_u t) p e_v + a_{v+1} p e_{v+1} + \dots + a_m p e_m.$$

Thus
$$(\bar{a_k}) \in \langle e_1, e_2, \dots, e_{u-1}, (e_u + te_v), e_{u+1}, \dots, e_{v-1}, pe_v, e_{v+1}, \dots \rangle$$
.

Hence $(\bar{a_k}) \in K_{uv}(t)$ where $1 \le t \le p-1$.

Thus from both cases we get $\langle \bar{p} \rangle V \subseteq S_i$.

Therefore $\langle \bar{p} \rangle V$ is submodule of S_i .

(ii) By (i) we have $\langle \bar{p} \rangle V$ is a submodule of S_i , then $S_i/\langle \bar{p} \rangle V$ is defined, so we get $S_i/\langle \bar{p} \rangle V$ is a subspace of $V/\langle \bar{p} \rangle V$ over the field $\mathbb{Z}_{p^k}/\langle \bar{p} \rangle$ see Theorem 3.1.7. and proper since S_i is maximal submodule of V.

(iii) Since
$$\bigcup_{i=1}^{\ell} [S_i/\langle \bar{p} \rangle V] = (\bigcup_{i=1}^{\ell} S_i)/\langle \bar{p} \rangle V = V/\langle \bar{p} \rangle V.$$

Proposition 3.2.19. If $\Im = \{S_1, S_2, \dots, S_\ell\}$, $\ell \leq p$ is a collection of maximal submodules of $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$, then \Im does not force linearity on V.

Proof. Suppose that \Im forces linearity on V, then by Lemma 3.2.2. we get $\bigcup_{i=1}^{\ell} S_i = V$.

We have $V/\langle \bar{p}\rangle V$ is a vector space over the field $\mathbb{Z}_{p^k}/\langle \bar{p}\rangle$ under addition and scalar multiplication defined by

$$(v_1 + \langle \bar{p} \rangle V) + (v_2 + \langle \bar{p} \rangle V) = (v_1 + v_2) + \langle \bar{p} \rangle V.$$

$$(r + \langle \bar{p} \rangle)(v + \langle \bar{p} \rangle V) = rv + \langle \bar{p} \rangle V.$$

Since $\Im = \{S_1, S_2, \dots, S_\ell\}$ is a collection of maximal submodules of V, we must have $V/\langle \bar{p}\rangle V = \bigcup_{i=1}^\ell S_i/\langle \bar{p}\rangle V = \bigcup_{i=1}^\ell (S_i/\langle \bar{p}\rangle V)$.

We have $S_1/\langle \bar{p}\rangle V$, $S_2/\langle \bar{p}\rangle V$, ..., $S_\ell/\langle \bar{p}\rangle V$ are finitely many subspaces of $V/\langle \bar{p}\rangle V$ over $\mathbb{Z}_{p^k}/\langle \bar{p}\rangle$ with $\ell \leq p = |\mathbb{Z}_{p^k}/\langle \bar{p}\rangle|$ and $\bigcup_{i=1}^{\ell} (S_i/\langle \bar{p}\rangle V)$ is a subspace of $V/\langle \bar{p}\rangle V$.

By Lemma 3.1.8. we get there exists j such that $1 \le j \le \ell$ and $S_j/\langle \bar{p} \rangle V \supseteq S_i/\langle \bar{p} \rangle V$ for all $i \ne j$.

We prove that $S_i \subseteq S_j$ for all $i \neq j$.

Suppose not, then there exists $i \neq j$ and $S_i \nsubseteq S_j$. So there exists $x \in S_i$ and $x \notin S_j$.

 $x \notin S_j$. This means that $x + \langle \bar{p} \rangle V \in S_i / \langle \bar{p} \rangle V$ and $x + \langle \bar{p} \rangle V \notin S_j / \langle \bar{p} \rangle V$.

Hence $S_i/\langle \bar{p}\rangle V \nsubseteq S_j/\langle \bar{p}\rangle V$, a contradiction.

Thus $S_i \subseteq S_j$ for all $i \neq j$.

Therefore $V = \bigcup_{i=1}^{\ell} S_i \subseteq S_j$, so $V = S_j$ which contradicts to the maximality of S_j . Hence $\Im = \{S_1, S_2, \dots, S_{\ell}\}$ does not force linearity on V. **Lemma 3.2.20.** Every proper submodule of $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$ is contained in a maximal submodule.

Proof. Let W be a proper submodule of V.

For each $u, v \in \mathbb{N}$, let

 $W_{uv} = \{(\bar{x_u}, \bar{x_v}) \in \mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k} | \text{ there is } (\bar{a_i}) \in W \text{ such that } x_u = a_u \text{ and } x_v = a_v \}.$

We prove that W_{uv} is a submodule of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$.

Let $(\bar{b_u}, \bar{b_v}), (\bar{c_u}, \bar{c_v}) \in W_{uv}$, then there exists $(-\bar{c_u}, -\bar{c_v}) \in W_{uv}$ such that $\bar{c_u} + (-\bar{c_u}) = \bar{0}$ and $\bar{c_v} + (-\bar{c_v}) = \bar{0}$ since W is subgroup of V.

Then $(\bar{b_u}, \bar{b_v}) + (-\bar{c_u}, -\bar{c_v}) = (\bar{b_u} - \bar{c_u}, \bar{b_v} - \bar{c_v}) \in W_{uv}$ because W is subgroup of V.

Hence W_{uv} is a subgroup of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$.

Let $\bar{s} \in \mathbb{Z}_{p^k}$ and $(\bar{x_u}, \bar{x_v}) \in W_{uv}$.

If
$$\bar{s} = \bar{0}$$
, $\bar{s}(\bar{x_u}, \bar{x_v}) = \bar{0}(\bar{x_u}, \bar{x_v}) = (\bar{0}, \bar{0}) \in W_{uv}$.

If
$$\bar{1} \leq \bar{s} < \overline{p^k}$$
, then $\bar{s}(\bar{x_u}, \bar{x_v}) = s(\bar{x_u}, \bar{x_v}) = \underbrace{(\bar{x_u}, \bar{x_v}) + (\bar{x_u}, \bar{x_v}) + \cdots + (\bar{x_u}, \bar{x_v})}_{}$.

Since $(\bar{x_u}, \bar{x_v}) \in W_{uv}$ and W_{uv} is a group, $(\bar{x_u}, \bar{x_v}) + (\bar{x_u}, \bar{x_v}) + \cdots + (\bar{x_u}, \bar{x_v}) \in W_{uv}$.

Thus $\bar{s}(\bar{x_u}, \bar{x_v}) \in W_{uv}$ for all $\bar{s} \in \mathbb{Z}_{p^k}$ and $(\bar{x_u}, \bar{x_v}) \in W_{uv}$.

Therefore W_{uv} is a submodule of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$.

Since $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$ is finitely generated, every submodule of $\mathbb{Z}_{p^k} \oplus \mathbb{Z}_{p^k}$ is contained in a maximal submodule. Thus $W_{uv} \subseteq \langle (\bar{1}, \bar{t}) \rangle \oplus \langle (\bar{0}, \bar{p}) \rangle$ where $1 \leq t \leq p-1$ or $W_{uv} \subseteq \langle (\bar{0}, \bar{1}) \rangle \oplus \langle (\bar{p}, \bar{0}) \rangle$, by Lemma 3.2.10. Therefore $W \subseteq K_{uv}(t)$ where $1 \leq t \leq p-1$ or $W \subseteq M_u$.

By Proposition 3.2.12, maximal submodules of V are of the form M_i or $K_{uv}(t)$ where $1 \le t \le p-1, i, u, v \in \mathbb{N}$.

Thus the prove is complete.

Corollary 3.2.21. If $\Im = \{S_1, S_2, \dots, S_\ell\}$, $\ell \leq p$ is a collection of proper submodule of $V = \mathbb{Z}_{p^k}^{(\mathbb{N})}$, then \Im does not force linearity on V.

Proof. Let $\Im = \{S_1, S_2, \dots, S_\ell\}$, $\ell \leq p$ be a collection of proper submodules of V, then by Lemma 3.2.20. we get $\Im' = \{S'_1, S'_2, \dots, S'_t\}$, $1 \leq t \leq l$ the collection of maximal submodules of V such that for each $1 \leq i \leq t$ there exists $1 \leq j \leq t$ with

$$S_i \subseteq S'_i$$
.

Thus by Proposition 3.2.19, we get \Im' does not force linearity on V, this means that there exists a homogeneous function f such that $f_{|_{\Im'_j}}$ are linear but f is not linear on V where $1 \leq j \leq t$.

Thus f is linear on each S_i in \Im but not linear on V.

So 3 does not force linearity on V.

By Proposition 3.2.17, we have $fln(V) \leq p+2$ and Proposition 3.2.13 and Corollary 3.2.21 show that $fln(V) \notin \{0,1,2,\ldots,p\}$. Hence fln(V) = p+1 or p+2.

3.3 Forcing linearity number for $\mathbb{Z}_2^{(\mathbb{N})}$

Let $V = \mathbb{Z}_2^{(\mathbb{N})}$ and u, v be fixed positive integers such that u < v.

Then
$$M_i = \langle e_1, e_2, \dots, e_{i-1}, 0, e_{i+1}, \dots \rangle$$
 and

$$K_{uv}(1) = \langle e_1, e_2, ..., e_{u-1}, e_u + e_v, e_{u+1}, ..., e_{v-1}, 0, e_{v+1}, ... \rangle$$

$$= \{ (x_1, x_2, x_3, ...) \in V | (x_u, x_v) \in \langle (1, 1) \rangle \oplus \langle (0, 0) \rangle \}.$$

$$= \{ (x_1, x_2, x_3, ...) \mid (x_u, x_v) \in \langle (1, 1) \rangle \}$$

since p = 2 and k = 1.

Lemma 3.3.1. Let M_i, M_j, M_k where i < j < k be maximal submodules of V, then $M_i \cup M_j \cup M_k \subsetneq V$.

Proof. Let $U = M_i \cup M_j \cup M_k$, then we choose $(a_t) \in V$ be such that

$$a_t = \begin{cases} 1, & t \in \{i, j, k\}, \\ 0, & \text{otherwise.} \end{cases}$$

Thus it is obvious that $(a_t) \notin U$.

We aim to prove that

$$K_{i_1j_1}(1) \cup K_{i_2j_2}(1) \cup K_{i_3j_3}(1) = V$$
 where $i_1 \leq i_2 \leq i_3$ iff $i_1 = i_2$, $j_2 = j_3$ and $j_1 = i_3$.
Let $S = \{i_1, i_2, i_3\}$, $T = \{j_1, j_2, j_3\}$ and $X = S \cup T$.

For each $x, y \in X$ define

$$x \sim y \Leftrightarrow x = y$$

Then \sim is an equivalence relation on X . Let $\{P_1, P_2, P_3, ..., P_n\}$ be the partition of X with respect to \sim . Let $C = \bigcup_{k=1}^{s_1} P_{i_k}$ where $P_{i_k} \cap T = \emptyset$ and $C' = \bigcup_{k=1}^{s_2} P_{j_k}$ where $P_{j_k} \cap S = \emptyset$.

Lemma 3.3.2. (i) $C = S \setminus T$ and $C' = T \setminus S$.

(ii) $i_1 \in C$ and $j_3 \in C'$.

Proof. (i) Let $x \in \mathbb{C}$, then there exist k such that $x \in \mathbb{P}_{i_k}$ where $\mathbb{P}_{i_k} \cap \mathbb{T} = \emptyset$.

Thus $x \in P_{i_k}$ and $x \notin T$. Since $P_{i_k} \subset S$, then $x \in S$ and $x \notin T$, so $x \in S \setminus T$, consequently $C \subseteq S \setminus T$.

Converse, let $x \in S \setminus T$. Then $x \in S$ and $x \notin T$.

Thus there exist k such that $x \in P_{i_k}$ where $P_{i_k} \cap T = \emptyset$.

Hence $x \in \bigcup_{k=1}^{s} P_{i_k} = C$. Then $x \in C$.

Consequently, we get $S \setminus T \subseteq C$.

Thus complete the prove and similarly we can show that $C' = T \setminus S$.

Proposition 3.3.3. Let $K_{i_1j_1}(1), K_{i_2j_2}(1)$ and $K_{i_3j_3}(1)$ be all distinct. Then $K_{i_1j_1}(1) \cup K_{i_2j_2}(1) \cup K_{i_3j_3}(1) = V$ where $i_1 \leq i_2 \leq i_3$ if and only if $i_1 = i_2, j_2 = j_3$

Proof.(\Rightarrow) Let $S = \{i_1, i_2, i_3\}, T = \{j_1, j_2, j_3\}$ and $X = S \cup T$.

Then $i_1 < j_1, i_2 < j_2$ and $i_3 < j_3$.

For each $x, y \in X$ define

and $j_1 = i_3$.

$$x \sim y \iff x = y.$$

Then \sim is an equivalence relation on X. Let $\{P_1, P_2, ..., P_n\}$ be the partition of X with respect to \sim . Let $C = \bigcup_{k=1}^{s_1} P_{i_k}$ where $P_{i_k} \cap T = \emptyset$ and $C' = \bigcup_{k=1}^{s_2} P_{j_k}$ where

$$P_{j_k} \cap S = \emptyset$$
.

For convenience let $U = K_{i_1j_1}(1) \cup K_{i_2j_2}(1) \cup K_{i_3j_3}(1)$.

We first show that $i_1 = i_2$.

Suppose not, so $i_2 \neq i_1$ and $i_3 \neq i_1$. Then we consider in three cases :

Case 1: If $S \cap T = \emptyset$, then we choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & \text{if } k \in \mathbb{C}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

- $(a_k) \notin \mathcal{K}_{i_1 j_1}(1) \text{ since } a_{i_1} = 1, a_{j_1} = 0.$
- $(a_k) \notin K_{i_2j_2}(1)$ since $a_{i_2} = 1, a_{j_2} = 0$.
- $(a_k) \notin K_{i_3j_3}(1)$ since $a_{i_3} = 1, a_{j_3} = 0$.

Then $(a_k) \notin U$, a contradiction.

Case 2: If $|S \cap T| = 1$, then suppose $C_1 = S \cap T$ and consider as follow:

If $j_1 = i_2$, then we choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & \text{if } k \in C_1 \cup \{i_3\}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

- $(a_k) \notin K_{i_1j_1}(1)$ since $a_{i_1} = 0, a_{j_1} = 1$.
- $(a_k) \notin K_{i_2j_2}(1) \text{ since } a_{i_2} = 1, a_{j_2} = 0.$
 - $(a_k) \notin \mathcal{K}_{i_3j_3}(1)$ since $a_{i_3} = 1, a_{j_3} = 0$.

Then $(a_k) \notin U$, a contradiction.

If $j_1 = i_3$, then we choose $(a_k) \in V$ as follow

$$a_k = \begin{cases} 1 & \text{if } k \in C_1 \cup \{i_2\}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

$$(a_k) \notin K_{i_1j_1}(1)$$
 since $a_{i_1} = 0, a_{j_1} = 1$.

$$(a_k) \notin K_{i_2j_2}(1)$$
 since $a_{i_2} = 1, a_{j_2} = 0$.

$$(a_k) \notin K_{i_3j_3}(1)$$
 since $a_{i_3} = 1, a_{j_3} = 0$.

Then $(a_k) \notin U$, a contradiction.

If $j_2 = i_3$, then we choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & \text{if } k \in C_1 \cup \{i_1\}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

$$(a_k) \notin K_{i_1j_1}(1)$$
 since $a_{i_1} = 1, a_{j_1} = 0$.

$$(a_k) \notin K_{i_2j_2}(1)$$
 since $a_{i_2} = 0, a_{j_2} = 1$.

$$(a_k) \notin K_{i_3j_3}(1)$$
 since $a_{i_3} = 1, a_{j_3} = 0$.

Then $(a_k) \notin U$, a contradiction.

Case 3: If $|S \cap T| = 2$, then $j_1 = i_2$ and $j_2 = i_3$. Suppose $C_1 = \{j_1\}$, then we choose $(a_k) \in V$ as follow

$$a_k = \begin{cases} 1 & \text{if } k \in \mathcal{C}_1 \cup \mathcal{C}' \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

$$(a_k) \notin K_{i_1j_1}(1)$$
 since $a_{i_1} = 0, a_{j_1} = 1$.

$$(a_k) \notin K_{i_2j_2}(1)$$
 since $a_{i_2} = 1, a_{j_2} = 0$.

$$(a_k) \notin K_{i_3j_3}(1)$$
 since $a_{i_3} = 0, a_{j_3} = 1$.

Then $(a_k) \notin U$, a contradiction.

Hence by the three cases, we get $i_1 = i_2$.

So
$$j_1 \neq j_2$$
.

Suppose
$$j_1 < j_2$$

Now, we will show that $j_2 = j_3$.

Suppose that $j_2 \neq j_3$, then we have $j_1 \neq j_2$ and $j_2 \neq j_3$.

Case 1: If $S \cap T = \emptyset$, then we choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & \text{if } k \in \mathbb{C}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

$$(a_k) \notin \mathcal{K}_{i_1 j_1}(1)$$
 since $a_{i_1} = 1, a_{j_1} = 0$.

$$(a_k) \notin K_{i_2j_2}(1)$$
 since $a_{i_2} = 1, a_{j_2} = 0$.

$$(a_k) \notin \mathcal{K}_{i_3j_3}(1)$$
 since $a_{i_3} = 1, a_{j_3} = 0$.

Then $(a_k) \notin U$, a contradiction.

Case 2: If $|S \cap T| = 1$, then suppose $C_1 = S \cap T$ and consider as follow:

If $j_1 = i_3$, then we choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & \text{if } k \in C_1 \cup \{j_2\}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

$$(a_k) \notin K_{i_1j_1}(1)$$
 since $a_{i_1} = 0, a_{j_1} = 1$.

$$(a_k) \notin K_{i_2j_2}(1)$$
 since $a_{i_2} = 0, a_{j_2} = 1$.

$$(a_k) \notin K_{i_3j_3}(1)$$
 since $a_{i_3} = 1, a_{j_3} = 0$.

Then $(a_k) \notin U$, a contradiction.

If $j_2 = i_3$, then we choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & \text{if } k \in C_1 \cup \{j_1\}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

$$(a_k) \notin K_{i_1j_1}(1)$$
 since $a_{i_1} = 0, a_{j_1} = 1$.

 $(a_k) \notin K_{i_2j_2}(1)$ since $a_{i_2} = 0, a_{j_2} = 1$.

$$(a_k) \notin K_{i_3j_3}(1)$$
 since $a_{i_3} = 1, a_{j_3} = 0$.

Then $(a_k) \notin U$, a contradiction.

Hence by both cases we must have $j_2 = j_3$.

Finally, we will show that $j_1 = i_3$. Suppose that $j_1 \neq i_3$, then we choose $(a_k) \in V$ as follow

$$a_k = \begin{cases} 1 & \text{if } k \in \{i_1, i_3\}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get,

 $(a_k) \notin K_{i_1j_1}(1)$ since $a_{i_1} = 1, a_{j_1} = 0$.

$$(a_k) \notin K_{i_2j_2}(1)$$
 since $a_{i_2} = 1, a_{j_2} = 0$.

$$(a_k) \notin K_{i_3j_3}(1)$$
 since $a_{i_3} = 1, a_{j_3} = 0$.

Then $(a_k) \notin U$, a contradiction.

Hence $j_1 = i_3$.

(
$$\Leftarrow$$
) Let $i_1=i_2=i$, $j_2=j_3=\ell$ and $j_1=i_3=j$.

We show that $K_{ij}(1) \cup K_{i\ell}(1) \cup K_{j\ell}(1) = V$.

Let $(a_k) \in V$. We consider the components i, j and ℓ of (a_k) .

Since $\mathbb{Z}_2 = \{0,1\}$ there are at least two components from i,j and ℓ which have the same values.

Then $(a_k) \in K_{ij}(1)$ or $K_{i\ell}(1)$ or $K_{j\ell}(1)$.

Thus $V \subseteq K_{ij}(1) \cup K_{i\ell}(1) \cup K_{j\ell}(1)$ and the prove is complete.

Next, we prove that, if M_{ℓ} , $K_{ij}(1)$ and S are maximal submodules of V with $M_{\ell} \cup K_{ij}(1) \cup S = V$, then $S = M_i$ or M_j and $\ell = i$ or j.

Lemma 3.3.4. $K_{i_1j_1}(1) \cup K_{i_2j_2}(1) \subsetneq V$ where $i_1 \leq i_2$.

Proof. We have $i_1 < j_1, i_2 < j_2 \text{ and } i_1 \le i_2$.

If $i_1 = i_2$, then $j_1 \neq j_2$. So choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & , & k \in \{j_1, j_2\} \\ 0 & , & \text{otherwise.} \end{cases}$$

Then $(a_k) \notin K_{i_1j_1}(1) \cup K_{i_2j_2}(1)$.

If $i_1 < i_2$, then we consider in two cases:

 $j_1 = j_2$: Let $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & , & k \in \{i_1, i_2\} \\ 0 & , & \text{otherwise.} \end{cases}$$

Then $(a_k) \notin K_{i_1j_1}(1) \cup K_{i_2j_2}(1)$.

 $j_1 \neq j_2$: Let $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1, & k \in \{i_2, j_1\} \\ 0, & \text{otherwise.} \end{cases}$$

Thus $(a_k) \notin K_{i_1j_1}(1) \cup K_{i_2j_2}(1)$.

Proposition 3.3.5. $M_{\ell} \cup K_{ij}(1) \cup S = V$ where S is a maximal submodule of V if and only if $\ell = i$ and $S = M_j$; or $\ell = j$ and $S = M_i$.

Proof. (\Rightarrow) Let $M_{\ell} \cup K_{ij}(1) \cup S = V$ such that S is a maximal submodule of V. We show that $S = M_t$ or $S = K_{uv}(1)$.

If $S = K_{uv}(1)$, we consider in two cases:

Case 1: If $\ell \in \{i, j, u, v\}$, then $M_{\ell} \cup K_{ij}(1) \cup K_{uv}(1) \subseteq K_{ij}(1) \cup K_{uv}(1) \subsetneq V$.

Case 2: If $\ell \notin \{i, j, u, v\}$, then there is $(a_k) \in V - K_{ij}(1) \cup K_{uv}(1)$. Let $(b_k) \in V$ be such that

$$b_k = \begin{cases} 1 & , & k = \ell \\ a_k & , & k \neq \ell. \end{cases}$$

So $(b_k) \notin M_\ell \cup K_{ij}(1) \cup K_{uv}(1)$ and thus $M_\ell \cup K_{ij}(1) \cup K_{uv}(1) \subsetneq V$.

Thus $S = K_{uv}(1)$ can not be happen and hence $S = M_t$.

Next, we prove that $\{\ell, t\} = \{i, j\}$.

If $\ell \notin \{i, j\}$, then we consider in two cases.

Case 1: If $t \notin \{i, j\}$, then choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & , & k \in \{\ell, t, i\} \\ 0 & , & \text{otherwise.} \end{cases}$$

Then $(a_k) \notin M_{\ell} \cup K_{ij}(1) \cup M_t$.

Case 2: If $t \in \{i, j\}$, in this case we consider in two subcases.

(1) If t = i, then choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1 & , & k \in \{\ell, i\} \\ 0 & , & \text{otherwise.} \end{cases}$$

Then $(a_k) \notin \mathcal{M}_{\ell} \cup \mathcal{K}_{ij}(1) \cup \mathcal{M}_{t}$.

(2) If t = j, then choose $(a_k) \in V$ be such that

$$a_k = \begin{cases} 1, & k \in \{\ell, j\} \\ 0, & \text{otherwise.} \end{cases}$$

Then $(a_k) \notin M_{\ell} \cup K_{ij}(1) \cup M_t$.

Thus, we see that if $\ell \notin \{i, j\}$, then $M_{\ell} \cup K_{ij}(1) \cup M_t \subsetneq V$, which contradics to our assumption.

Similarly, if $t \notin \{i, j\}$, also leads to a contradiction.

Thus $\{\ell, t\} \subseteq \{i, j\}$.

Now, we prove that $\ell \neq t$.

Suppose that $\ell = t$, then $M_{\ell} \cup K_{ij}(1) \cup S = M_{\ell} \cup K_{ij}(1) \cup M_{\ell} = M_{\ell} \cup K_{ij}(1) \subsetneq V$.

Since, if $\ell = i$ we choose $(a_k) \in V$ be such that $a_\ell = 1 = a_i$, $a_j = 0$, then $(a_k) \notin \mathcal{M}_{\ell} \cup \mathcal{K}_{ij}(1)$, which is a contradiction.

If $\ell = j$ we choose $(a_k) \in V$ be such that $a_i = 0$, $a_\ell = 1 = a_j$, then $(a_k) \notin M_{\ell} \cup K_{ij}(1)$, which is a contradiction.

Thus $\ell \neq t$ and $\{\ell, t\} = \{i, j\}$.

Therefore, $\ell = i$ and $S = M_j$; or $\ell = j$ and $S = M_i$.

 (\Leftarrow) If $\ell = i$ and $S = M_j$, then $M_\ell \cup K_{ij}(1) \cup S = M_i \cup K_{ij}(1) \cup M_j = V$ by Lemma 3.2.14.

If
$$\ell=j$$
 and $S=M_i$, then $M_\ell\cup K_{ij}(1)\cup S=M_j\cup K_{ij}(1)\cup M_i=V$ by Lemma 3.2.14.

Lemma 3.3.6.

(i)
$$K_{ij}(1) \cap K_{i\ell}(1) \cap K_{j\ell}(1) = \langle e_1, e_2, ..., e_{i-1}, (e_i + e_j + e_\ell), e_{i+1}, ..., e_{j-1}, 0, e_{i+1}, ..., e_{\ell-1}, 0, e_{\ell+1}, ... \rangle$$
.

(ii)
$$M_i \cap M_j \cap K_{ij}(1) = \langle e_1, e_2, \dots, e_{i-1}, 0, e_{i+1}, \dots, e_{j-1}, 0, e_{j+1}, \dots \rangle$$
.

Proof. (i) Let $(a_k) \in K_{ij}(1) \cap K_{i\ell}(1) \cap K_{j\ell}(1)$, consider as follow. If $a_i = 0$, then $a_j = 0$ and $a_\ell = 0$.

Thus
$$(a_k) = (a_1, a_2, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_{j-1}, 0, a_{j+1}, \dots, a_{\ell-1}, 0, a_{\ell+1}, \dots).$$

$$= a_1 e_1 + a_2 e_2 + \dots + a_{i-1} e_{i-1} + 0(e_i) + a_{i+1} e_{i+1} + \dots + a_{j-1} e_{j-1}$$

$$+ 0(e_j) + a_{j+1} e_{j+1} + \dots + a_{\ell-1} e_{\ell-1} + 0(e_\ell) + a_{\ell+1} e_{\ell+1} + \dots$$

$$= a_1 e_1 + a_2 e_2 + \dots + a_{i-1} e_{i-1} + 0(e_i + e_j + e_\ell) + a_{i+1} e_{i+1} + \dots$$

$$+ a_{j-1} e_{j-1} + 0 + a_{j+1} e_{j+1} + \dots + a_{\ell-1} e_{\ell-1} + 0 + a_{\ell+1} e_{\ell+1} + \dots$$

Then
$$(a_k) \in \langle e_1, e_2, \dots, e_{i-1}, (e_i + e_j + e_\ell), e_{i+1}, \dots, e_{j-1}, 0, e_{j+1}, \dots, e_{\ell-1}, 0, e_{\ell+1}, \dots \rangle$$
.

If $a_i = 1$, then $a_j = 1$ and $a_\ell = 1$.

By the same prove as above then we get

$$(a_k) \in \langle e_1, e_2, ..., e_{i-1}, (e_i + e_j + e_\ell), e_{i+1}, ..., e_{j-1}, 0, e_{j+1}, ..., e_{\ell-1}, 0, e_{\ell+1}, ... \rangle$$

Conversely

let
$$(a_k) \in \langle e_1, e_2, ..., e_{i-1}, (e_i + e_j + e_\ell), e_{i+1}, ..., e_{j-1}, 0, e_{j+1}, ..., e_{\ell-1}, 0, e_{\ell+1}, ... \rangle$$
.

Then
$$(a_k) = a_1 e_1 + a_2 e_2 + \dots + a_{i-1} e_{i-1} + a_i (e_i + e_j + e_\ell) + a_{i+1} e_{i+1} + \dots$$

 $+ a_{j-1} e_{j-1} + 0 + a_{j+1} e_{j+1} + \dots + a_{\ell-1} e_{\ell-1} + 0 + a_{\ell+1} e_{\ell+1} + \dots$
 $= (a_1, a_2, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_{j-1}, a_i, a_{j+1}, \dots, a_{\ell-1}, a_i, a_{\ell+1}, \dots).$

Thus $(a_k) \in K_{ij}(1) \cap K_{i\ell}(1) \cap K_{j\ell}(1)$ since the components i, j, ℓ are the same.

Therefore
$$K_{ij}(1) \cap K_{i\ell}(1) \cap K_{j\ell}(1) = \langle e_1, e_2, ..., e_{i-1}, (e_i + e_j + e_\ell), e_{i+1}, ..., e_{j-1}, 0, e_{j+1}, ... \rangle$$

 $..., e_{\ell-1}, 0, e_{\ell+1}, ... \rangle$

(ii) By Lemma 3.2.14. let p = 2.

Therefore
$$M_i \cap M_j \cap K_{ij}(1) = \langle e_1, e_2, \dots, e_{i-1}, 0, e_{i+1}, \dots, e_{j-1}, 0, e_{j+1}, \dots \rangle$$
.

For convenience, let

$$B = \langle e_1, e_2, \dots, e_{i-1}, 0, e_{i+1}, \dots, e_{j-1}, 0, e_{j+1}, \dots \rangle,$$

$$C = \langle e_1, e_2, \dots, e_{i-1}, (e_i + e_j + e_\ell), e_{i+1}, \dots, e_{j-1}, 0, e_{j+1}, \dots, e_{\ell-1}, 0, e_{\ell+1}, \dots \rangle,$$
and
$$g_1 = e_i + e_j.$$

Lemma 3.3.7. (i)
$$K_{ij}(1) = \langle C, e_{\ell} \rangle$$
 if $i < j < \ell$.
(ii) $K_{ij}(1) = \langle B, g_1 \rangle$.

Proof. (i) It is clear that $e_{\ell} \in K_{ij}(1)$ and $C \subseteq K_{ij}(1)$.

Then $\langle C, e_{\ell} \rangle \subseteq K_{ij}(1)$.

Conversely, let $(a_k) \in K_{ij}(1)$.

Thus
$$(a_k) = a_1e_1 + a_2e_2 + \dots + a_{i-1}e_{i-1} + a_i(e_i + e_j) + a_{i+1}e_{i+1} + \dots + a_{j-1}e_{j-1}$$

 $+ 0e_j + a_{j+1}e_{j+1} + \dots + a_{\ell-1}e_{\ell-1} + a_{\ell}e_{\ell} + a_{\ell+1}e_{\ell+1} + \dots + a_me_m$
 $= (a_1, a_2, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_{j-1}, a_i, a_{j+1}, \dots, a_{\ell-1}, a_\ell, a_{\ell+1}, \dots)$
 $= (a_1, a_2, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_{j-1}, a_i, a_{j+1}, \dots, a_{\ell-1}, a_i - a_i + a_\ell, a_{\ell+1}, \dots)$
 $= (a_1, a_2, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_{j-1}, a_i, a_{j+1}, \dots, a_{\ell-1}, a_i, a_{\ell+1}, \dots) + (a_\ell - a_i)e_\ell$
 $= (a_1e_1 + a_2e_2 + \dots + a_{i-1}e_{i-1} + a_i(e_i + e_j + e_\ell) + a_{i+1}e_{i+1} + \dots + a_me_m) + (a_\ell - a_i)e_\ell$
 $+ 0e_j + a_{j+1}e_{j+1} + \dots + a_{\ell-1}e_{\ell-1} + 0e_\ell + a_{\ell+1}e_{\ell+1} + \dots + a_me_m) + (a_\ell - a_i)e_\ell$

П

Hence $(a_k) \in \langle C, e_\ell \rangle$ and we must have $K_{ij}(1) \subseteq \langle C, e_\ell \rangle$.

Therefore $K_{ij}(1) = \langle C, e_{\ell} \rangle$ where $i < j < \ell$.

(ii) is obvious by Lemma 3.2.15. when
$$t = 1$$
.

Similarly as above lemma we can show that

(i)
$$K_{i\ell}(1) = \langle C, e_j \rangle$$
 if $i < j < \ell$.

(ii)
$$K_{i\ell}(1) = \langle C, e_i \rangle$$
 if $i < j < \ell$.

(iii)
$$M_i = \langle B, e_i \rangle$$
 if $i \neq j$.

(iv)
$$M_j = \langle B, e_i \rangle$$
 if $i \neq j$.

Proposition 3.3.8. Let $\Im = \{K_{ij}(1), K_{i\ell}(1), K_{j\ell}(1)\}$. Then \Im does not force linearity on V.

Proof. Let $S_1 = K_{ij}(1)$, $S_2 = K_{i\ell}(1)$ and $S_3 = K_{j\ell}(1)$.

Then $V = S_1 \cup S_2 \cup S_3$ and $S_1 = K_{ij}(1) = \langle C, e_{\ell} \rangle$ where $i < j < \ell$.

For convenience, we put $C = \langle c_1, c_2, c_3, \dots \rangle$.

Since $e_{\ell} \neq 0$, we define $f : V \rightarrow V$ by

$$f(v) = \begin{cases} \beta e_{\ell} &, v \in S_1 \text{ and } v = \sum_{s=1} \beta_s c_s + \beta e_{\ell}, \\ 0 &, v \in S_2 \cup S_3. \end{cases}$$

We first show that f is well-defined.

If $v \in S_1$ is also represented as $v = \sum_{s=1} \gamma_s c_s + \gamma e_\ell$, then we have $(\beta - \gamma)e_\ell \in C$.

This mean that $(\beta - \gamma) = 0$, since if $(\beta - \gamma) \neq 0$, then $(\beta - \gamma) = 1$, then we get $e_{\ell} = (\beta - \gamma)e_{\ell} \in C$ which is a contradiction.

Consequently $(\beta - \gamma)e_{\ell} = 0e_{\ell} = 0$. Hence $\beta e_{\ell} = \gamma e_{\ell}$.

Suppose that $v \in S_1 \cap S_t$, $t \neq 1$.

Then v also has a representation, $v = \sum_{s=1}^{\infty} \delta_s c_s + \delta e_{\ell}$.

Since $\sum_{s=1} \delta_s c_s \in S_t$, we obtain $\delta e_\ell \in S_t$ which implies $\delta = 0$.

Consequently $f(v) = \delta e_{\ell} = 0 e_{\ell} = 0$.

Thus f is well-defined on V.

We note that f is not the zero function since $f(e_{\ell}) = e_{\ell} \neq 0$.

Next, we show that $f \in M_{\mathbb{Z}_2}(\mathbb{Z}_2^{(\mathbb{N})})$.

For $v \in S_1$, say $v = \sum_{s=1} \beta_s c_s + \beta e_\ell$ and for $r \in \mathbb{Z}_2$, we have $rv \in S_1$, so $rf(v) = r\beta e_\ell = f(rv)$.

Now, suppose $v \in S_t, t \neq 1$.

Then f(v) = 0 and for any $r \in \mathbb{Z}_2$, rf(v) = 0.

Moreover, $rv \in S_t$, which implies f(rv) = 0.

Thus, rf(v) = f(rv) for all $r \in \mathbb{Z}_2$ and $v \in V$.

Hence $f \in M_{\mathbb{Z}_2}(\mathbb{Z}_2^{(\mathbb{N})})$.

It is clear that f is linear on each S_t in \Im .

Since $e_i + e_\ell \notin S_1$, $f(e_i + e_\ell) = 0$

But $f(e_i) + f(e_\ell) = 0 + e_\ell \neq 0$. Then $f \notin \operatorname{End}_{\mathbb{Z}_2}(\mathbb{Z}_2^{(\mathbb{N})})$.

This shows that 3 does not force linearity on V.

Proposition 3.3.9. Let $\Im = \{M_i, M_j, K_{ij}(1)\}$. Then \Im does not force linearity on V.

Since p=2 and k=1, then by Proposition 3.2.16 we get \Im does not Proof. force linearity on $V = \mathbb{Z}_2^{(\mathbb{N})}$.

Next, we show that fln(V) = 4 where $V = \mathbb{Z}_2^{(\mathbb{N})}$.

The forcing linearity number of $V = \mathbb{Z}_2^{(\mathbb{N})}$ is 4. Proposition 3.3.10.

Proof. By Proposition 3.2.13, Proposition 3.2.17. and Corollary 3.2.21, we get $fin(V) \le 4 \text{ and } fln(V) \notin \{0, 1, 2\}.$

Now, we show that $fln(V) \neq 3$.

Let $\Im = \{S_1, S_2, S_3\}$ be a collection of proper submodules of V, then by Lemma 3.2.20. there exists $\Im' = \{S_1', S_2', S_3'\}$ a collection of maximal submodules of V such that $S_i \subseteq S'_i$ for all i = 1, 2, 3.

If $\bigcup_{i=1}^{3} S_i' \subsetneq V$, then \Im' does not force linearity on V by Proposition 3.1.6.

If $\bigcup_{i=1}^{3} S_{i}' = V$, then by Proposition 3.3.3 and Proposition 3.3.5 we get \Im' $\{K_{ij}(1), K_{i\ell}(1), K_{j\ell}(1)\}\ or\ \Im' = \{M_i, M_j, K_{ij}(1)\},\ we\ consider\ in\ two\ cases:$

Case i: If $\mathfrak{F}' = \{K_{ij}(1), K_{i\ell}(1), K_{j\ell}(1)\}$, then by Proposition 3.3.8 we get \mathfrak{F}' does not force linearity on V. This means that there exists a homogeneous function fsuch that f is linear on each $S_i^{'}$ in \Im' but f is not linear on V.

Thus f is linear on each S_i in \Im but not linear on V where $1 \le i \le 3$.

Then we get \Im does not force linearity on V.

Case ii: If $\Im' = \{M_i, M_j, K_{ij}(1)\}$, then by Proposition 3.3.9 we get \Im' does not force linearity on V. By considering as the above case, then we get 3 does not force linearity on V.

Thus from both cases we must have $fln(V) \neq 3$. Therefore fln(V) = 4.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved