CHAPTER 3
MAIN RESULTS

3.1 Forcing linearity number for RN

In this section we want to find the forcing linearity numbers for a free
module, V = RM | over a local ring R. By a local ring we mean a commutative
Noetherian ring with identity 1z # 0, not an integral domain such that R has a

unique maximal ideal M consisting of all the nonunits of R.

Definition 3.1.1. For each i € N we define

1 if =1,

0 if § i

e; = (ui)ica where u;

Thus by Definition 3.1.1. we get e; = (1,0,0,0,...) and e; = (0,1,0,0,...).

Lemma 3.1.2. If f € Mg(R™) the set of all homogencous functions on R™ and
FOO rie)) =3 f(rie;) forall r; € R and m €N, then f € Endr(R™).
Proof. Suppose that f € Mr(R™) and f(37, rie;) = >Soivy f(rie;)  for all
r, € R and m € N.
Let b = (b;)ien and ¢ = (¢;)sen be arbitrary in RM,
Then there exists n € N such that b= """ be; and ¢ = > | ¢;e;.
Thus

fo+e) = fFOo (b + ci)es)

= 2in1 J((bi + ci)er).



But f € Mg(RM™), then

f((bi +ci)ei) = (b + i) f(ei)

=bif(es) +cif(ei)
= f(bie;) + f(ciei) forall i=1,2,3,...,n.
Hence
flb+e) = Zf ((bi + ci)e
= Z f(bier) + f(cier))
= Z f(bie;) + Z feiei)
i=1 i=1
= O _bie) + £ cier)
i=1 =1
= f(b) + f(c).
Thus f € Endr(RM). O

Proposition 3.1.3. Let R be a local ring and M a unique maximal ideal of R
with Anng(M) = {0} and let V.= R™ then fin(V) < 1.

Proof. Let W:= (Me; UMesU...) and f € Mg(V) such that f is linear on W.
Let f(e;) = (au1, g, - - - ).

Let (11,79,...) =11€1 + 1269+ -+ Tmey in V,and f((rq,7r,...)) = (s1,52,...).
Then for all a € M, we have

fla(ry,re,...)) =af((r1,r2,...)) = a(sy, S2,...)
= asie1 + asqey + - - + aspe;,  for some k € N

= (asy,ass,...).
Since a(ry,re,...) = arie; + arqgea + -+ - + arpe, € W, we have

fla(ry,re,...)) = arif(er) +araf(ea) + -+ arp f(em)

= arl(albalg, e ) + GT'Q(Oégl,OéQQ, Ce ) —+ -+ arm(aml,amg, Ce )
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Thus we get

(asy,asy,...) = ari(aqy, 002, ... ) + arg(aar, oo, ... ) + -+ ary (1, ama, - - )
= (ariaq1, ariags, ... ) + (arsaor, arsaig, ... ) + -+ + (ArpmQunt, Q- ).
S0 asj = ariouj + ars0; 4 - - -+ aArpQuy;,
and hence
as; — (aryaqj + argag; + - - + arpam;) =0,
then

<8j > (T’lOélj + To(g; + -+ Tm()émj))a =0.

This means that s; — (riaq; + reagj + - - - + Q) = 0 since Anng(M) = {0}.
Thus s; = rioy; +roqg; + 130 + - -+ Ty, J=1,2,.. k.

Then
f(zrzez) = f(7“1,7’2, . )

= (rian + raao; + - -+ rpaumi)er + (rions + reang + - Tpume)es + -+
(T’lOélk “+ roQigp + -0 - + Tm()émk)ek
=ri(oq1, 002, .. ) +ra(or, g, ... ) + o+ Tp(Qunt, e, -+ )

=rifer) +raf(ea) + -+ +rmflen) = f(rier) + f(raea) + -+ + f(rmem)

= Z f(rie:).
i=1
By Lemma 3.1.2. we get [ € Endg(V).
Therefore we have fIn(V) < 1. O

Proposition 3.1.4. Let R be a local ring and M a unique mazimal ideal of R
with Annp(M) # 0. If V.= RM then fin(V) # 0.

Proof. Let 0 # a, € Anng(M) and v = rie; +reeg + -+« + rpem € V.

Define a function f : V — V by

T100€1 if ro€e M,
flv) =
0 if ry€ R\M
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It is easy to see that f is well-defined.
Next, we show that f € Mg(V).
Let s € R.

If ro € R\M, then f(v) = f(riex + 1262+ -+ + rmey) = 0.
So if s € R\M, then sry € R\M, f(sv) = f(s(rie1 + roea + -+ + rpen)) =
f(srier + sroeg + -+ - + srpen,) = 0. But if s € M, then sry € M since M is an
ideal of R. Thus f(sv) = f(srieq + sraes + « -+ + srpen) = sria,e; = 0 since
sr1 € M.

If ro € M, then f(v) = f(rie1 + raea + <+ + rmem) = ria.e; and that
sf(v) = sf(rieq + roeg + -+ 4+ rpem) = s(riame) = sriaqe;.

Since sry € M, we get
f(sv) = f(s(rie1+roea+- - +rmenm)) = f(srier+ sraeg+ - - -+ Srmen) = sriae;.

Hence f € Mg(V).

Next, we show that f is not linear on V.

Let v1 = e1,v9 = e € V, then f(v; + v2) = f(e1 + e3) = 0 since 1 € R\ M.

Since v; = e; = leg + 0eg + -+ - + 0e,,, and vy = €9 = Oe; + ley + - - - + Oe,,,, then
f(v1) = (1)aye; since 0 € M and f(vy) = 0 since 1 € R\M.

Thus f(v1 + v9) =0 # ase; = ase; + 0= f(v1) + f(v2).

Hence f is not linear on V.

Thus f ¢ Endgr(V) and that fin(V') # 0. O

Lemma 3.1.5. Let R be a finite local ring and V = RN, [f T C V, then
A={Rw | we T} has a mazimal element.

Proof. Let | R | = ¢ and suppose that A = {Rw | w € T} where T C V does
not have a maximal element.

We note that for each w € T, |Rw| < g.

Let Rw; € A, then there exists Rw, € A such that

Rw1 ; RU)Q .

Since Rwy € A, then there exists Rws € A such that



12

R?Ul ; R’LUQ g ng.
By continuing in this way, we obtain an ascending chain of submodules of V
Ruwi G Rwy G Rws G -+ G Rwy G Rwgys .. ..

Since wy € Rwy, then we get |Rwq| > 1.

Thus |Rwg+1] > ¢, it is a contradiction and the prove is complete. O

Proposition 3.1.6. If R is a finite local ring, M a unique maximal ideal of R
with Ann(M) # 0 and S = {S1,Ss, ..., S} is a collection of proper submodules of
V = R™ which forces linearity, then U'_,S; = V.

Proof. 'We suppose that U!_;S; & V and show that ' does not force linearity
on V.

We note that R is finite, then the set {Rw | w ¢ U!_;S;} has a maximal element
by Lemma 3.1.5, say Rw,. Also Rw, & V since V is not cyclic.

Now let 0 # a € Ann(M) and define f : V. — V by

rae; it r=rw, € Rw,,
flz) =

0 otherwise.
We show that f is well-defined.
Suppose that s;w, = saw,.
Then (s; — s2)w, = 0, so (51 — $2) € M, because if (s; — s9) ¢ M, then (s;—s2)
is a unit, so there exist (s; — s3)~! such that (s; — sp)(s; — s9) L = 1.
Thus w, = 1w, = (51 — s9) "' (s1 — s2)w, = (51 — $2) 710 = 0, a contradiction.
Hence (s — s2)ae; = ((s1 — s2)a)e; = 0e; = 0, ie., sjae; = sqaeq, thus f is
well-defined.
Next, we show that f € Mg(V).
Let v € V,r € R. We consider in two cases:
Case 1: v € Ruwy.

Then v = swy for some s € R, so v = rswy, f(rv) = rsae; =rf(v).
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Case 2: v ¢ Rw,. We consider in two subcases.

(1) If rv ¢ Rw,, then rf(v) =0 = f(rv).

(2) If rv € Rwy, then rv = sw, € Rw, for some s € R. We consider as
follow. If s € M and f(rv) = sae; =0 =r(0) = rf(v). The case s ¢ M can not

lswy = s~'rv € Rv which implies Rwy, C Ruv.

occur since wg = S~
If v € U_;S;, then wy € Rv C S; for some i which is a contradiction.
If v ¢ UL_,S;, then v € Rv = Ruwy since Rwy is maximal which contradicts to our
assumption.
Thus we have f € Mg(V).
Now, we show that f is linear on each S; for all i =1,2,...,¢.
Let v € UL_,S;.
If v ¢ Rw,, then f(v) =0.
If v € Rw,, say v = sw,, then s € M, for if s € R\ M, hence s is a unit,

Lsw, = s7lv € U!_,S;, a contradiction.

thus there exists s~!, then w, = 1w, = s~
Thus f(v) = sae; = 0.

Consequently, f(U._;S;) = 0, then f(z +y) =0=040= f(z) + f(y) for all
x,y €S;,Vi=1,2,...,t and hence f is linear on each S; € .

Finally let w € (V \ Rw,).

Then W + w, ¢ Rw,, so f(w+w,) =0 # ae; = f(w,) = f(0) + f(w,).

Therefore & does not force linearity on V. O

Lemma 3.1.7. Let R be a local ring with unique mazimal ideal M. Then V/MV is
a vector space over the field R/M under addition and scalar multiplication defined
by

(v1 + MV) + (v + MV) = (v1 + v2) + MV.
and (r+M)(v+ MV) = v+ MV.
Proof. Since R is a commutative ring with identity and M is a maximal ideal of
R, R/M is a field.

We will show that addition and scalar multiplication are well-defined.
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Let z1+MV =y, +MV and x5+ MV =y, + MV where x1,29,y1,y2 € V.
Then z;—y; € MV and x5 —y2 € MV, so (1 —y1) + (72 — y2) € MV.
Thus (21 + z2) — (y1 + y2) € MV.

This means that (x; +x2) + MV = (y1 + y2) + MV.

Next, let ri + M =ro+M and v + MV = vy + MV where r,7y € R and
V1,V € V.

Thenry —ro € M and vy —vy, € MV.

Since MV is an R—module, then (r; —ry)vy € MV and  ro(v; — v3) € MV,
then ryvy —revy € MV and  ryv; — ravg € MV,

Thus (rv1 — rovy) + (r9v1 — 1v9) € MV, so (riv; — ravg) € MV.

Hence 7rv1 +MV = rovy + MV.

Therefore  (r; + M)(v; + MV) = (12 + M)(vy + MV).

Next, we show that V/MV is a vector space over the field R/M under addition
and scalar multiplication defined above.

Let vy +MV,v,+MV € V/MV and r +M,ro+ M € R/M where wv,v3 € V
and rq,ry € R.

Then

(ry + M) ((v1 + MV) + (v2 + MV)) = (r1 + M)((v1 + v2) + MV)
=r1(v1 +v2) + MV
= (rv1 + mve) + MV
= (rv; + MV) + (1102 + MV)

= (r1 + M)(v1 + MV) + (r1 + M)(vy + MV)
and

((r1 + M) + (r2 + M))(v1 + MV) (r1+12) + M)(v; + MV)

T+ 7"2)111 + MV

= (
= (
= (r1v1 + 19v1) + MV
= (rv1 + MV) + (rqv; + MV)
= (

r1+ M) (vy + MV) + (ry + M) (vy + MV)
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and

(r1 +M)((re + M)(vy + MV)) = (11 + M)(r2v; + MV)
= ri(rovy) + MV

rira)v; + MV

=
= (7“17"2)(”01 —+ MV)
= ((ryre) + M) (v, + MV)
=

(7”1 +M)(T’2+M))(U1 +MV>

and

<1+M)(U1—|—MV) = 1U1+MV = Ul+MV

Thus we get V/MV is a vector space over the field R/M. O]

Lemma 3.1.8. Let V be a vector space over the field F' and Si,5s,...,S, be
finitely many subspaces of V- with k < |F|+1. Then S;USyU---USy is a subspace

if and only if some S; contains the others.

Proof. See [7] page 128.

Theorem 3.1.9. Let R be a local ring with unique mazimal ideal M and V = R™
and Anng(M) # 0. If every proper submodule of V contains MV and R/M is
infinite, then fln(V) = oo.

Proof. Suppose that there exists a finite set & = {51, 5, ..., 5} of proper sub-
modules of V which forces linearity, then by Proposition 3.1.6. we get V. = Ul_,S;.
By Lemma 3.1.7, we get V/MYV is a vector space over R/M and for each 1 <i <t
we get S;/MV is a proper subspace of V/MV since MV < ;.

Since U!_, (S;/MV) = (U._,S;)/MV = V/MV, UL_,(S;/MV) is a vector space on
R/M.

Because |R/M| is infinite, we get t < |R/M|+ 1.

Thus by Lemma 3.1.8. there exists 1 < j < ¢ such that S;/MV C S;/MV for
all i # 7, so S;/MV = UL_,(S;/MV) = V/MV, which contradicts to S;/MV is a
proper subspace of V/MV. Hence fin(V) = co. O
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Theorem 3.1.10. Let R be local ring with maximal ideal M such that R/M is
a field of cardinality q. Suppose that V = RM then fln(V) < g+ 2.
Proof. Since R is a commutative Noetherian ring, M is finitely generated.

Let M = (my,ma,...,my) and let (R/M)* = {u; + M,us + M, ... uy—1 + M} ;

i.e.,uy, U, ..., U; 1 1S a system of representatives for (R/M)*.

/ 11
Define S° = (myey,...,mgeq,e9,€3,...), S = (e1,myea,...,myes, €3,...) and
S; = (e1 + uea, myes, ..., myeg, e3,...) fori=1,2,...,q— 1.

Thus V=S8 US" U (ULS,).
Let S = (e1,e) and consider & = {S", 5", 51,...,5,.1,5}. Then all elements in
S are distinct, so [S] = ¢ + 2.
Suppose that f € Mg(V) is linear on each submodule in & and let v = aje; +
ases + - -+ + an,e,, be arbitrary in V.

If ay or a; € M, then v € S or 8" and f(aje; + azes + -+ + men) =
flarer) + flazez) + -+ + flamenm).

If both ay,a; € R\M, then v = ay(e; + a; ‘ases) + ases + -+ - + amen.
Since ay,as ¢ M, then aj'ay ¢ M, so there exist u; with 1 <1 < ¢ — 1 such that
aytay + M = w; + M, this means that (a;'ay — ) € M, then a;'ay — u; =
where m € M, i.e., aflaQ =wu+m, m € M. From m = rimq +romo+ -+ -+ rpmy
where r; € R, we get aymes = ajrymyes + ajromeeg + - - - 4 a1rpmyes.
Thus v = ay(e1 + wez) + ayrmesy + ases + -+ + ape, € S). Since f is linear on Sy,
flaier + agea + -+ - + amen,) = f(ai(er + wez) + aymey + azes + - - - + amen)

= f(arertajwes)+f(aymes)+f(azes)+ -+ f(amenm).

Since f is linear on S, then f(aje; + ajues) = f(arer) + f(ajwes).

Hence

f(v) = flarer) + flarwes) + flarrnes) + f(azes) + - + flamem)
= flarer) + f([ayw + ayin)es) + f(ases) + - -+ + famen) since f is linear on S
= flarer) + flagez) + -+ + f(amem).

Thus from Lemma 3.1.2., we get f is linear on V and < forces linearity on V. [
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3.2 General properties of Zg:n

In this section we want to find the forcing linearity numbers of a free
module V = ZSE), over a local ring Z,. It is easy to see that Z,x is a commutative
local ring with identity, not an integral domain such that (p) is a unique maximal
ideal of Z,.. Moreover (p) consisting of all nonunits of Z,.
Let V = Zg) and u , v be fixed positive integers with u < v.
We let M; = (eq, €9, ...,€i1,p€;, €11, -..) and
Kuo(t) = (€1, €2, .oy €u1, €y + L€y, €yt oovy €1, PEyy €41, ) Where 1 <t <p—1

= {(Z1, T, T3, ...) € V|(@, T,) € ((1,1)) ® {(0,p)),1 <t <p—1}.

Lemma 3.2.1. Ann((p)) = {0,pF1,2p1, ..., (p — 1)pF—1}.
Proof. Let a € Ann((p)). Then ax = 0(mod p*) for all Z € (p).
By taking z = p, we get p*|ap which implies p*~!|a.

Thus a = mp*~! for some m € Z.

Since 0 < a < p*, then 0 < mp*~ < p¥, s0 0 < m < p.

Therefore a € {0, pF=1,2pF=1, ... (p — 1)pF~—1}.

Clearly {0, p=1,2pF=1, ... (p — 1)p*=1} C Ann((p)).

Hence Ann((p)) = {0, p"=1,2pF=1, ... (p — 1)pF—1}. O

Lemma 3.2.2. If &= {Sy,Ss,...,S,} is a collection of proper submodules of
V= Z(IE) which forces linearity, then Ut_S; = V.
P
Proof. Let & = {Sy,S,,...,S,} be a collection of proper submodules of
b A Z(IE) which forces linearity.
P
Since Z, is a finite local ring which has (p) as a unique maximal ideal of Z,» with

Ann((p)) # 0, then by Proposition 3.1.6. we get U!_;S; = V. O

Theorem 3.2.3.(First Sylow Theorem) Let G be a group of order p"m, withn > 1,
p prime, and gcd(p,m) = 1. Then G contains a subgroup of order p* for each

1 <i < n and every subgroup of G of order p'(i < n) is normal in some subgroup
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of order pi*t.

Proof. See [3] page 94. O

Lemma 3.2.4. IfV = Z ® Zye and M s a maximal submodule of V, then
M| = .
Proof. Let M be a maximal submodule of V. Then M is a subgroup of Zx © Z,.
Suppose |M| < p?*=1. By First Sylow Theorem, M is contained in some subgroup
K of order p?*~!. We prove that K is a submodule of V.
Let 5§ € Z,x and x € K.

If5=0,50=00=0¢€ K.

IfT§§<ﬁ,then§x:(j+1+"‘+1)$:g:+x+---+gg.

s times s times
Because r € K and K is a group, z +x +---+ 2 € K. Thus sz € K and get K
s t;:nes

is a submodule of V.

Thus M G K SV, which contradicts to the maximality of V. O

Proposition 3.2.5. (i) IfZ € Z,» and s € Z, then st = 5x.
(i) Zp(Z,y) = Z(Z,y) for all 2,y € Zy.
Proof. (i) Let z € Z,» and s € Z, we consider in three cases:

Case s = 0: We get 0z =

0
Case s >0:Thensr=2+2---+Z=x+ax+ -+ 2 =57

s tz";nes s t;;nes
Case s < 0: Then —s > 0 and s = —(—s)T = —(—s%) = —(—sx) = ST since 5T

1s an inverse of —sx.

Thus by three cases we get sT = 57 for T € Zy, s € Z.

(ii) (=) Let a € Z,(z,y). Then a = §(z,y) for some 0 < s < p*.
Since a = 5(z,y) = (57, 5y) = (57, 35Y) = (s, sy) = s(Z,y) where s € Z by (i), we
get a € Z(z, 7).
Thus Z,x(7,7) € Z(z, 7).

(<) Let b€ Z(z,y). Then b = r(z,y) for some r € Z.
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Since b = r(Z,y) = (rz,ry) = (7x,7y) = (Fz,7y) = 7(Z,y) where ¥ € Z, by (i),
we get a € Zyi(T,7).

Thus Z(Z, ) C Zy(
Hence Z,: (%, y) = Z(z,7) for all Z,7 € Zx. O

Lemma 3.2.6. If V is a finitely generated abelian group generated by n elements,
then every subgroup M of V can be generated by m elements with m < n.

Proof. See[3] page 74. O

Proposition 3.2.7. Let V = Z ® Z,y. and M a maximal submodule of V over
Zyi. Then there exist (1,g) or (¢',1) € M for some g, g € Zy.
Proof. Suppose (1,3) and (¢',1) ¢ M for all g and ¢ € /s
If there is an element (Z,7) € M such that |(Z,7)| = p*. Then ged(z,p) = 1 or
ged(y,p) =1

If ged(z,p) = 1, then there is Z € Z, such that z(Z,y) = (27,2y) =
(1,2y) € M, which is a contradiction.

If ged(y,p) = 1, then there is 5 € Z, such that 5(z,y) = (57,5y) =
(5z,1) € M, which is a contradiction.
Thus every element (zZ,y) € M, |(Z,7)| < p*.
Since V is generated by two elements, M can be generated by at most two
elements by Lemma 3.2.6, that is M = Z(z, y)+Z(u, v) for some (z,y), (u,v) € M.
Thus |M| < p**~1.
By Proposition 3.2.5, we have Z(Z,y) + Z(1,0) = Zyr (T, §) + Ly (U, D).
Thus we get M = Z,1(Z,y) + Z,(4,v). And that |M] < p*~1.

k

But M is a maximal submodule of V, so |M| = p**~!, which is a contradiction.

Therefore, there exists (1,3) or (¢',1) € M. O
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Lemma 3.2.8. Let (0,p), (p,0) € Zyx & Zyx, then

and (2) Zy(p,0) = {(9,0) | y=vp; where 0 <wv <pFt—1},

Moreover |Z,.(0,p)| = p*~* = |Z,x(p, 0)|.

Proof. (1) (C) Let a € Z,:(0,p), then a = (0, p) = (0, tp) where 0 < t < pF.
I[fO<t<ptl-1 wegetaec{(0,7)|z=up; where 0 <u <p1-1}.
If t > p*~! — 1, then by division algorithm there exists ¢, s € Z such that

k=1

t =pF g+ s where 0 < s < pF1.

Then #p = pt = p(p*~1q +5) = phq + ps = 0 + s = ps = 5p.
Since 0 < s < p*~!, this means that 0 < s < pF~! — 1.
Then a = (0,p) € {(0,Z) | # = up ; where 0 <u < pFt—1}
Thus Z,x(0,p) C {(0,Z) | # =up ; where 0 <u <pF'—1}.
(D) Let a € {(0,Z) | # = up ; where 0 <wu <p*t—1}.
Then there exists 0 < b < p*~! — 1 such that a = (0, bp) = b(0, p).
Since 0 < b < p*~! — 1, then b € Z,.
Thus a € Z,«(0,p) and {(0,z) | # = up ; where 0 <u < p"' —1} CZ,(0,p).
Thus we get Z,x(0,p) = {(0,%) | z = up ; where 0 <u < ptt — 1}
Next, we show that |Z,(0,p)| = p*~*.
Let (0,21) = (0, ), then there is 0 < y;,y» < p*~! — 1 such that z; = y;p and
L2 = Y2p-
Suppose that y; > 7. Then 0 <y —yp < pF1 — 1.
Thus (0,72p) = (0,72p), 0 Y1P = 72p and 0 = Jip — 2P = (%1 — v2)p-
Hence 4, — 9o = 0 since 0 < 4 — 3o < pF~ 1 — 1.
Thus y; = ys.
Hence {(0,7) | x = up ; where 0 <u < p* ! — 1} has order p*~1.
This means that |Z,:(0,p)| = p*~".
(2) By using the same proof as given in (1), we get

Zy(p,0) = {(y,0) | y=vp; where 0 <wv <p"'—1} and |Z,(p,0)] =pFt. O
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Lemma 3.2.9. Let V = Z, @ Zy and M a maximal submodule of V. Then
M contains elements x,y such that |z| = p* , |y| = p*~! and M = (z) ® (y).
Proof. Let M be a maximal submodule of V.

By Proposition 3.2.7. we get (1,7) or (¢',1) € M where 0 < g,g < p*.

We consider in two cases.

Case it (1,5) € M where 0 < g < p".

We defined f : M — M by

Let (z1,71), (22,92) € M and (21, 11) = (72, ¥2).

So &1 = @, 41 = > and T1g = Tag.

We get, f((21,91)) = (T1,719) = (T2, 729) = [((22,92)).

Thus f is well-defined.

Let K ={g](0,7) € Kerf and 0 <y < p*} and K' = {y |5 € K}.

Thus X' € NU{0}.

Let d be the smallest positive element in K.

We claim that Kerf = {(0,9)|§ € Zy} N M = Z,.(0, d).

Since f((0,7)) = (0,0g) = (0,0), it follows that {(0,7)|7 € Z,x} N M C Kerf.
Let (a,b) € Kerf.

Thus (a,ag) = f((a,b)) = (0,0), so @ = 0 and

(@,0) = (0,0) € {(0,9)|7 € Z } N M.

Thus Kerf ={(0,9)|y € Zx} N M.

Let a € Z,x(0,d).

Then a = ¢(0,d) = (0, ed) where e € Z,x, so f(a) = f(0,ed) = (0,0g) = (0,0).
Thus a € Kerf and Z,.(0,d) C Kerf.

Let (0,7m) € Kerf.

Consider m and d, by division algorithm we get m = xd + r for some z € Z,
0<r<d.

Since (0, zd) and (0,m) € Kerf, then (0,7) € Kerf.

If  # 0, then r € K’ and r < d which is a contradiction.

This implies that m = zd € Z,» and so (0, m) = x(0,d) € Z(0,d).



But by Proposition 3.2.5. Z(0,d) = Z,.(0,d), so (0,m) € Z,.(0,d).
Thus Kerf C Z,(0,d).
Therefor Kerf = {(0,9)|y € Z} N M = Z,x(0,d) where d is the smallest positive
element in K.
Next, we show that f is an idempotent endomorphism of M.
Let (z,y) € M. We get
ff(z,9)) = f((z,79)) = (z,79) = f((z,9)).
Thus f is an idempotent.
Let 0 € Zy, (Z,y) € M. We have,
nf((z,y)) = n(z,7g) = (nz,nTg) and
f(n(z,9)) = f((nz,ny)) = (nT, nTg).
Thus f € My, (M).
Next, we show that f € Endg , (M).
Let (1, 171), (T2,92) € M. We get,
F(@,90) + (72.92)) = f((@10 + T2, 91 + 42)) = (@1 F 72, (w1 + 22)g) and
F((#1,50) + f(72,2)) = (71 + T19) + (22 + T29)) = (71 + @2, (21 + 22)g).
Thus f((21,51) + (22, 2)) = f((#1,51)) + f((£2,92)) and so f € Endp , (M).
Now, we show that Imf = Z,(1, g).
By the definition of f we see that Imf is a submodule of Z(1,9).

Let (a,b) € Z,x(1,§), so (@,b) = m(1,§) for some m € Z.

And f((m,mg)) = (m,mg) = (a,b), then (a,b) € Imf.

Thus Imf = Z,«(1, g).

By Lemma 2.3.3, M = Z(1,3) ® Z,(0,d) = ((1,9)) @ ((0,d)) where 0 < g < p*.
Since |[M| = p?*~! and ged(1,p) = 1, then |(1,g)| = p* and |(0,d)| = p*~*.

Case ii: (¢',1) € M where 0 < ¢’ < p.

We defined f: M — M by

1((@,9) = (ug.9)
Let L={z | (z,0) € Kerfand 0 <z <p*}yand L' ={x |7 € K}.

Let ¢ be the smallest positive element in L.

Then f is an idempotent endomorphism with
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Kerf ={(z,0)|z € Z} N M = Z,(¢,0) where ¢ is the smallest positive element
in L.

By the same prove as we give in case i, we get

M =Zu (4, 1) & Z,x(2,0) = (¢, 1)) ® ((&,0)) where 0 < ¢ < p*.

Since |M| = p**~' and ged(1,p) = 1, then |(¢',1)| = p* and |(¢,0)| = p*~ . O

By Lemma 3.2.8. and in case i of Lemma 3.2.9, we get Z,:(0,p) C Kerf =
Zy-(0,d), so Z,x(0,p) = Z,x(0,d) since they have the same order pF~!.

Similarly, we get Z,(p,0) = Z, (¢, 0).

Lemma 3.2.10. If V = Z,: ® Z,x is a module over the ring Z,x, then all distinct
mazimal submodules of V are of the forms ((1,t)) & ((0,p)) where 0 <t <p—1
and ((0,1)) & ((p, 0)).

Proof. Let M be a maximal submodule of V. Thus |M| = p*~1.

Then M = ((1,7)) @ {(0,p)) or (¢, 1)) ® ((p,0)) where I,t’ € Zy.

We claim that ((1,%)) @ ((0,p)) = ((1,5)) @ ((0,p)) where 0 < s < p— 1.
Consider ((1,t)) @ ((0,p)), we have

t =ap+ s for some a € Z,0 < s < p— 1 by division algorithm.

Consider ((t',1)) @ ((p,0)), we have
t' = bp+r for some b € Z,0 < r < p — 1 by division algorithm.
#,1) = (bpT7.1) = (7, 1) +b(5,0) € (7, 1)) & ((5,0)). Hence (7, 1)) & ((5,0))
1

)Y @ ((p,0)) have order p**~1
thus (¢, 1)) @ ((5,0)) = (7, 1)) @ ((5,0)) where 0 <7 <p— 1.
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Consider ((7,1)) @ {((p,0)) where 0 <r <p— 1.
If r = 0, then ((7, 1)) & ((p, 0)) = ((0,1)) @ ((p, 0)).
If r # 0, then ged(r,p) = 1, there exists ¢ € Z,. such that &7 = 1 € Z
and (r,1) = 7(L,¢) € ((1,0)) @ ((p, 0)).
Since (7, 1)) @ ((p,0)) and ((1,¢)) @ ((p,0)) have order p*~*,
thus (7, 1)) ® ((p, 0)) = ((1,2)) ® {(p,0)).

Next, consider {(1,¢)) & ((p,0)), we get
c=dp+gforsomede Z,0<g<p—1.

Then (1,¢) = (1,dp + g) = (1,9) +d(0, p) and we have (p,0) = p(1,9) +(—9)(0, p).
Since {(1,¢)) ® ((p,0)) and ((1,9)) & ((0,p)) have order p?*~1,
we have (1)) & {(5,0)) = (1, 8)) & ((0,7)) where 0 < g <p—1.
Hence maximal submodules of V are of the form
((1,%)) @ ((0,p)) where 0 <t <p—1

and {(0,1)) @ ((p,0)). O

Note that if V. = Z, ® Z,, then M are of the forms ((1,%¢)) ® ((0,0)) where
0<t<p-—1or{0,1))® ((0,0)). O

Lemma 3.2.11.  For each i,u,v € N, M; and K,,(t) where 1 < ¢t < p—1
are mazximal submodules of V.= ZSE).
Proof. Let 7; : ZSE) — Z,» be the projection map.
Let M; C G CV with G # M;.
We show that G = V.
Since 7;(M;) = Z,» for all j # i, then 7;(G) = Z,« for all j # i since M; C G.
At the component i we get m;(M;) = (p). But (p) = mj(M;) & 7,;(G), then
7;(G) = Z, since (p) is maximal ideal of Z,x
Thus we get ;(G) = Zy for all j € N, then G = V.
Therefore M; is a maximal submodule of V.

Let Kyo(t) CSCVwith S#AV,1<t<p-—1.
Next, we show that S = K,,(t)
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Since Ky, (t) = {(£1, T, T3, . . . )|(Tu, ) € ((1,) & (0,p)) }.
Then 7;(Kyy(t)) = Zye for all j # u,v.
Thus we get m;(S) = Z,x for all j # u,v since K, (t) C S.
For each (s;) € S.
Consider at components u, v of (s;) € S.
If (5,5,) ¢ (L5) & (0,7), then we get (1,8) & (3,5)) + (5, %)) C
Tu(S) & m,(S) since Ky, (t) € S.
By the maximality of ((1,%)®(0,p)), we get Zx®Zyx = ((1,£)B(0,p))+((Su, $v))
7. (S) @ m,(S), then m,(S) ® 7,(S) = Zpr © Zy:, 50 S =V, a contradiction.
Then (su,$,) € ((1,£) & (0,p)), 5 € Kun(2).

Thus K, (t) where 1 <t < p— 1 are maximal submodules of V. O

Proposition 3.2.12. Let V = ZSE). Then mazimal submodules of V are of the
form M; or K, (t) where 1 <t <p—1.
Proof. Let W be a maximal submodule of V.
For each u,v € N, let
W = {(Zu, ) € Zye ® Zyy| there is (a;) € W such that @, = a, and @, = a,}.
We prove that W, is a submodule of Z,r & Z,.
Let (by, b,), (Cu, Gy) € W, then there exists (—¢,, —¢,) € Wy, such that
éu+ (—¢,) =0 and ¢, + (—¢,) = 0 since W is subgroup of V.
Then (b, by) + (—¢u, —Gy) = (by — ¢y, by — &) € W, because W is subgroup of V.
Hence W, is a subgroup of Z @ Zx.
Let 5 € Z,» and (2, T,) € Wy,.
If 5 =0, 5(2y, T,) = 0(2, ) = (0,0) € Wy,

If1 <5< pF, then 5(ay, %) = $(Fu, ) = (T, T) + (T, Ty) + - - + (Tuy T).

(.

vV
s times

Since (2, ) € W, and Wy, is a group, (&, Ty) + (T, Ty) + -+ - + (T, Ty) € W
Thus 5(zy, T,) € Wy, for all 5 € Z,» and (2, 7,) € Wy,.

Therefore W, is a submodule of Z,x @ Z.

Since Zyx @ Z,x is finitely generated, every submodule of Z @ Z,» is contained

in a maximal submodule. Thus W,, C ((1,%)) @ ((0,p)) where 1 < ¢t < p—1
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or Wy, C ((0,1)) ® ((p,0)), by Lemma 3.2.10. Therefore W C K,,(t) where
1<t<p—1or W CM,. Because W is maximal, so W = K,,(t) or W = M,,
where 1 <t <p-—1. O

Proposition 3.2.13. IfV = ZSE), then fln(V) # 0.
Proof. Since Z,: is a local ring having (p) as a unique maximal ideal with

Ann((p)) # 0, then fin(V) # 0 by Proposition 3.1.4. O]

Lemma 3.2.14. Let V =Z0). Then
(1) V.= M; UM; U (U Ky (1))
(ii) MiﬂMjﬁ(ﬂf;fKij(t)) = (€1, €9, ey €i1, DEiy €it1y -vs €j—1, PEjy €51, ...

Proof. (i) Letve V.

Thus v = vie1 + v9es + ... + V€., We consider in two cases :

Case it v; € (p) or v; € (p). Then we get v € M; UM,.

Case ii: ©; ¢ (p) and v; ¢ (p).

Then ged(p, v;) = 1. This means that (v;) = Z

pk.

Then there exists n € Z, such that v;n = v;.

Thus

V= V161 -+ Vo9 S Vi—1€i—1 + V;€; -+ Vit1€i+1 + -+ Ujflejfl
+ (vin)ej + vjs1€j41 + - - + Upey,  ( since v; = U;n)
= y1e1 + vgey + - - -+ vi_161 + vi(e; + nej) + vipreip + o0+

Vj—1€5-1 + Vj+1€541 + o+ U

By division algorithm, there exist, s,l € Z suchthat 1 < s <p—1land n=Ip+s

since p { v;.
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Thus we have

v=uvie1 + ves + - +vi_re,_1 +vi(e; + (s + Ip)ej) + vipr€ip1 + .
+vj_1€j-1 + vj1€jp1 + o+ Ul
=v1e + voey + - +vim1e-1 + vi(e; + s€j) + Vg€ + - F V1€
+ vi(lpe;) + vjy1€j41 + - - + Umem,
so that v € K;;(s) where 1 <s <p—1.

Thus from both cases we get V. C M; UM; U (U'ZKy;(t)).
Therefore V.= M; UM, U (U2 Ky;(t)).

(i) Leta € (e1,€2,...,€i—1,D€i\€it1, ..., €j—1,P€j,€js1,...)and 1 <t <
p—1.
Then

a=aie; + azea + - -+ ai_16,1 + a;(pe;) + ai1€i01 + - - + aj_1€51
+aj(pe;) + ajr1ej41 + -+ amenm

= (a_l,a_g, s A1, AP, Qg1 - - A1, QD Ay, - )
Thus a € M; N M.
We have p|(a;p — a;pt) for all 1 <t < p — 1 since pla;pt and p|a;p.
Then there exists a; € Z for all 1 <t < p— 1 such that a;p = a;p — a;pt.
Hence a;p = (a;t + a;)p.
Thus

T i T —— s ®
a = (a1, a2, ..., G_1, @D, Giy1, - - - y Aj—1, (ait + a’i)p7 Aj+1, - - )
= i€y +azéz + -+ Q161 + P + Aip1€i41 + -+ Aj1€5-1
/
+ ((a;t + a;)p)e; + aji1€j41 + -+ - + amen,
= a1e; +ages + -+ aj_1e,1 + aple; +tej) + aipr€i01 + -+ aj-1€54
/
+ ai(pej) + Aj+1€541 + ot Al

Then a € K;;(t) forall 1 <t <p—1. So

(e1,€2, ..., €i1,D€i, €141, - -, €51, D€}, €541, - - - ) © My M N (M2 Ky5(8)).
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It is clear that M; N M; C (e, €2, .., €i—1,P€i, €it1y- -y €j—1,DEjy €1, - - ).

Next, we show that ﬂf;llKij(t) C(e1,€2, ..., €i1,D€, €it1s- -, €j—1,DEj, €1, ... ).
Let 2 = () € MKy,

Then z € K;;(t) forall 1 <t <p-—1.

Consider at components i, j.

Let #; = G, then @#; = at + bp where @ and b € Zx.

Thus #; = @ +bip = 2a+byp = 3a +bsp = --- = (p—1)a + b,_1p where
61,[;2,[;3,...,mezpk since 1 <t <p-—1.

This means that @+ byp = 2a + bap , S0 bip — bop = @ .

Since bip — bop € Zyep = (p) , then a € (p) and that af € (p) where 1 <t <p—1
since (p) is an ideal of Z,x.

Thus =; = at + bp € (p).

Hence z;, 7; € (p).

Consequently © € (e1,€a,...,€i_1,D€i, €it1s- -, €j—1,D€j, €jt1, .- ).

Thus ﬁf;llKij(t) C (€1,€2, .y €i1,PEiy ity -y €51, PEjy €jp1,y .- ).

Therefore MZQMJ N (ﬁ?;lle(t» <~ <€1, €2,...,6,_1,P€;, €41, ..-,€j-1, PEj, €541, >|:]

Let MZﬂMJﬂ(ﬂf;llK”(t)) = <61, €2, .., €,—1,P€;, €441, ..y, €51, PEj, €541, > =
Band g, = e;+te; where 1 <t < p—1. Then M; = (B, e;), ¢; & M;U(U'_Ky;(1))
and Mj = <B,6Z‘>, €; ¢ Mz U (Uf:_llKZ](t))

Lemma 3.2.15. (i) K;;(t) = (B, g:) for all1 <t <p—1.
(i) g¢ & M; UM, U (UsziKij(5)) where 1 <s#t <p—1.
Proof. (i) Let1<t¢<p—1anda € K;(t).

Then a = (@1,072, .. - ,&i_l,di,ai+1, . o ,aj_l,al-t + a;p, Ajy1, - - )

= (0,0,...,O,Ji,(),...,O,ait,O,...)—i—(a‘l,a_g,...,ai,l,O,aiH,...,aj,l,ajp,ajﬂ,...)

= Q;G¢ + (dl,CL_Q, ceey CLZ‘_I,O,CLH_h sy Aj—1,05D, Qg1 - - - )

Then a € (B, g;) since (dy,da, ..., 8-1,0,@i1,- ., 0Gj_1, 8D, Gj41,---) € B.
Conversely, by above lemma we have B C K;;(t) and g, € K;;(t), so (B,¢;) C
K;;(1).
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Thus K;;(t) = (B, g) forall 1 <t <p—1.

(ii) Obviously, g ¢ M; UM, since ¢y =e; +te; and 1 <t <p— 1.
Suppose that there exists s such that 1 < s#t <p—1and ¢ € K;;(s).
Then there exists a € K;;(s) such that

ge = a = (a1, G2, ..., W1, Qg Wit 15 s A1, AiS + AP, Wji1, ).

Consider components i and j of g;, we get @; = 1 and t = @;5+@;p = 5+a;p where
aj € Zipk.
If a; = 0, then ¢ = § which implies s = ¢, a contradiction.
If a; #0, thent =s+a;p ¢ {1,2,...,p—1 }, a contradiction.
Thus we must have g; ¢ K;;(s) for all s distinct from t.
Hence g; ¢ M; UM, U (Us2K;5(s)) where 1 <s#t <p—1. O

Proposition 3.2.16. Let & = {M;, M;, K;;(1),K;;(2),...,K;;(p — 2), K;;(p — 1)}.
Then § does not force linearity on V = Zg).

Proof. Let S; = K;;(1),5; = K;;(2), ...,Sp-1 = Kij(p—1),S, = M;, Sp41 = M, and
0 # a € Ann((p)), then ag; # 0 where g; = €; + e;. We have by Lemma 3.2.15.
that K;;(1) = (B, ¢1), so for convenience let B = (b, ba, b3, ... ).

We choose p*~1 € Ann({p)) and define f : V — V by

BpF g, veS =Ky, (1) and v = > =1 Byby + Bar,

0 , vES,x# L

flo) =

We first show that f is well-defined.

If v € Sy is also represented as v = 3 _, v,b, + g1, then we have (8 —)g1 € B.
This means that § —~ € (p), since if 3 — ¢ (p), then ged(B — v,p) = 1, we
must have (3 — ) = Z, so there exists m € Z,» such that m(8 —v) = 1, then
g1 =1g1 =m(B —v)g1 € B, a contradiction.

Since p*~1t € Ann((p)), then (3 —v)p*tg1 =0, ie., BpF~tg = yp g
Suppose that v € S; NS, x # 1.

Thus v also has representation, v = Zyzl dyby + 091 since v € Sy, then

U= ,—10,by = dg1.
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Since Zy:l 6,b, € S, by Lemma 3.2.14, then dg; € S,, which implies § € (p), since
if 0 ¢ (p), then ged(d, p) = 1, we must have (§) = Z,, so there exists 71 € Z,x such
that n(6) = 1, then g; = 1g; = n(d)g1 € S, a contradiction by Lemma 3.2.15.
Consequently f(v) = dpf~te; = 0.

Thus f is well-defined on V.

We note that f is not the zero function since f(g;) = p* g, # 0.

Next, we show that f € Mg , (ZSE)).

For v € S; , say v = Zy:l Byby + Bgr and for any 7 € Zyr, we have rv € Sy, so
rf(v) =rBpFtg, = f(rv).

Now suppose v € S,z # 1.

Then f(v) =0 and for any 7 € Z,, rf(v) = 0.

Moreover, rv € S, which implies f(rv) = 0.

Thus rf(v) = f(rv) for all 7 € Z,x and v € V.

Hence f € My , (ZSE)).

Next, we show that f is linear on each S, in .

Foreach vy = 37 _, Byby+0g1,v2 = >, 8,b,+0g1 € Sy, we have f(v1) = B g
and f(vy) = 6p*g;. Since S; is a module, v; + vy € S, s0 f(v1 + vy) =
FOZ =1 (0y+8)by+(0+3)g1) = (6+8)p" g1 = 0p* g1 +6p" g1 = f(v1)+f(v2).
Then f is linear on S;.

Since f(S;) =0 for all z # 1, then f is linear on S,, = # 1.

Hence f is linear on each S, in .

Because g1 + go ¢ S; since if g1 + g2 € S1, we get g2 = (1 +g2) — 1 € Sy, a
contradiction by Lemma 3.2.15.

However, f(g1) + f(g2) =" "'g1 + 0 # 0= f(g1 + g2)-

This shows that f ¢ Endy , (V).

Thus & does not force linearity on V. OJ
Next, we show that fin(V) < p+ 2 where V = Zg).

Proposition 3.2.17. Let V = ZSE), then fin(V) < p+2.
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Proof. Since V = ZSE) where Z,x is a local ring and has (p) as a unique maximal
ideal of Z,». Moreover Z,: /(p) is a field of cardinality p. Then by Theorem 3.1.10.
we get fin(V) < p+2. O

Lemma 3.2.18. Let ulesi = V where S; is a mazximal submodule of V and
¢ < p, then
(i) (p)V is a submodule of S;.
(ii) S;/(p)V is a proper subspace of V /(p)V over the field Z,./(p).
(iil) US_,[Si/(p)V] is a subspace of V/(p)V over the field Z./(p).
Proof. (i) Clearly (p)V is a submodule of V.
Next, we will show that (p)V C S; where S; is maximal submodule of V.
Let S; be a maximal submodule of V and (a;) € (p)V, then we consider in two
case:
Case iz S, = M;.
Let (ax) € (p)V = (pe1, pea, pes, ... ).
Then

(ax) = arpey + agpes + - - - + aj_1pej_1 + a;jpe; + aj1peji1 + -+ -+ ampen
= (ap)er + (azples + - - + (a5-1p)ej1 + a;(pej) + (ajap)eja + - - + (amp)em
Thus (ax) € (e1,€2,...,€j—1,P€j,€j+1,...) = M.
Hence (p)V C M,.
Case ii: S; = K, () where 1 <t <p—1.
Let (ax) € (p)V = (pe1, pea, pes, ... ).
Then
(ak) =aiper + agpes + - -+ + ay_1pey—1 + Qupey + up1Peuss + . ..
+ ay-_1pey—1 + aypey + Ayp1peyi1 + -+ ampen
=aipey + agpes + -+ + ay_1pey—_1 + ayp(ey + tey) + ayip1peyrt + - - -
+ ay_1pey—1 + (ay — ayt)pey, + ayi1peyir + - + ampenm.

Thus (dk) € <617€27' . 'aeu—17(eu+tev)76u+1a ey Cu—1,PCy; Eytl, - >

Hence (ay) € Kyy(t) where 1 <t <p—1.
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Thus from both cases we get (p)V C S;.
Therefore (p)V is submodule of S;.

(ii) By (i) we have (p)V is a submodule of S;, then S;/(p)V is de-
fined, so we get S;/(p)V is a subspace of V /(p)V over the field Z, /(p) see Theorem
3.1.7. and proper since S; is maximal submodule of V.

(i) Since UL, [S;/(p)V] = (U,S;)/(B)V = V/(p)V. 0

Proposition 3.2.19. If < = {Sy,S2,...,S¢}, ¢ < p is a collection of mazimal
submodules of V = Zg), then & does not force linearity on V.

Proof. Suppose that & forces linearity on V, then by Lemma 3.2.2. we get
Ui_,S; = V.

We have V/(p)V is a vector space over the field Z, /(p) under addition and scalar
multiplication defined by

(v1 +(PV) + (v2+ (V) 4 (v1 4+ v2) +(D)V.
and (r+ (p))(v+ (P)V) # rv + (p)V.
Since & = {S1,S2,...,S,} is a collection of maximal submodules of V, we must
have V/(p)V = Ui_1Si/(B)V = Ui (Si/ () V).
We have Si/(p)V, So/(p)V, ..., S¢/(p)V are finitely many subspaces of V/(p)V
over Z,./(p) with ¢ < p = | Zy / (p) | and U_,(S;/(p)V) is a subspace of

V/(pV

By Lemma 3.1.8. we get there exists j such that 1 < j < /and S;/(p)V 2 S;/(p)V
for all ¢+ # 7.

We prove that S; C S, for all ¢ # j.

Suppose not, then there exists ¢ # j and S; € S;. So there exists € S; and
x ¢ 8S;.

This means that x + (p)V € S;/(p)V and z+ (p)V ¢ S;/(p)V

Hence S;/(p)V € S;/{(p)V , a contradiction.

Thus S; € S; for all 7 # j.

Therefore V =U{_;S; CS;, so V =S, which contradicts to the maximality of S;.

Hence & = {S1,Ss, ..., Se} does not force linearity on V. O
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Lemma 3.2.20. FEvery proper submodule of V = ZSE) s contained in a maxi-
mal submodule.
Proof. Let W be a proper submodule of V.
For each u,v € N, let
W = {(Zu, Tv) € Zpe ® Zyy| there is (a;) € W such that x, = a, and z, = a,}.
We prove that W, is a submodule of Zx ® Zx.
Let (by,b,), (Cu, Gy) € W, then there exists (—¢é,, —¢,) € Wy, such that
¢y + (—¢,) =0 and ¢, + (—¢,) = 0 since W is subgroup of V.
Then (by, by) + (—Cu, —C) = (by — €4, by — &) € Wy, because W is subgroup of V.
Hence W, is a subgroup of Zx ® Zx.
Let 5 € Zyx and (2, T) € Wy,
If 5 =0, 5(2y, Ty) = 0(2y, 7,) = (0,0) € Wy,

If1 <5< pF, then 5(y, ) = s(F, &) = (T, T) + (T, Ty) + -+ - + (Tu, Tp).

~~

s times

Since (2, T,) € W, and Wy, is a group, (&, Ty) + (Zu, Ty) + - + (T, Ty) € W,
Thus 5(2y, 7,) € Wy, for all 5 € Zx and (2, ©,) € Wy,

Therefore W, is a submodule of Zx @ Z.

Since Zyx @ Zy,x is finitely generated, every submodule of Zx @ Z, is contained
in a maximal submodule. Thus W,, C ((1,%)) @ ((0,p)) where 1 < ¢t < p—1
or Wy, € ((0,1)) & ((p,0)), by Lemma 3.2.10. Therefore W C K,,(t) where
1<t<p—1orWCM,.

By Proposition 3.2.12, maximal submodules of V are of the form M; or K,,(t)
where 1 <t <p-—1,i,u,v €N.

Thus the prove is complete. O

Corollary 3.2.21. If
ule of V.= ZSE), then

={S1,52,...,5¢}, £ < pis a collection of proper submod-

& W

does not force linearity on V.
Proof. Let & = {S1,Ss,...,S}, £ < p be a collection of proper submodules of V,
then by Lemma 3.2.20. we get & = {S|,S;,...,S;} , 1 <t < the collection of

maximal submodules of V such that for each 1 <4 <t there exists 1 < j <t with



34

S; CS,.

Thus by Proposition 3.2.19, we get &' does not force linearity on V, this means
that there exists a homogeneous function f such that f|s,' are linear but f is not
linear on V where 1 < j <. J

Thus f is linear on each S; in & but not linear on V.

So & does not force linearity on V. OJ

By Proposition 3.2.17, we have fin(V) < p+ 2 and Proposition 3.2.13 and
Corollary 3.2.21 show that fin(V) ¢ {0,1,2,...,p}. Hence fin(V) = p+1 or
p+ 2.

3.3 Forcing linearity number for ZgN)

Let V = ZéN) and u, v be fixed positive integers such that u < v.
Then M; = (eq,e2,...,€,-1,0,€41,...) and
Kuo(1) = (€1, €9, ey 01, €4 + €, €utty ooy €91, 0, €y, o)
= {(z1, 22,23, ...) € V|(zy,x,) € ((1,1)) ® ((0,0))}.
= {(w1, 22,5, ) | (2w, 20) € ((1,1))}
since p =2 and k = 1.

Lemma 3.3.1. Let M;,M;, M, where ¢« < j < k be mazimal submodules of V,
Proof. Let U =M, UM; UM, , then we choose (a;) € V be such that

1 , tedi gk},
0 , otherwise.

Thus it is obvious that (a;) ¢ U. O

We aim to prove that
Ki1j1(1) UKinz(l) UK25J3<1) = V Where il S ig é ig lff il = iQ, jg = j3 and jl = i3.
Let S = {i1,i2,43}, T = {j1,j2,J3} and X = SUT.
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For each =,y € X define

T~y ST =1.

Then ~ is an equivalence relation on X . Let { Py, Py, P3, ..., P,, } be the partition
of X with respect to ~ . Let C = J;", P;, where P;, N T =@ and C' = [J;2, P},
where P;, NS = 0.

Lemma 3.3.2. (i) C=S\T and C' =T\S.
(ii) 4, € C and js € C.
Proof. (i) Let x € C, then there exist k such that x € P;, where P;, N'T = Q.
Thus = € P;, and ¢ T.Since P;, C S, then z € Sand z ¢ T, so x € S\ T,
consequently C C S\ T.
Converse, let x € S\ T. Then z € Sand z ¢ T.
Thus there exist k such that x € P;, where P;, N'T = 0.
Hence z € | J;_, P;, = C.Then z € C.
Consequently, we get S\ T C C.
Thus complete the prove and similarly we can show that C' = T\ S.

(ii) is obvious. O

Proposition 3.3.3. Let K, ;,(1),K;,5,(1) and Ky, (1) be all distinct. Then

Ki i (UK, (1) UK, (1) =V where iy < iy < i3 if and only if iy = i3, jo = Js
and 7, = is3.

Proof.(=) Let S = {i1,i2,43}, T = {J1,2,73} and X =SUT.

Then i1 < 71,19 < Jo and i3 < 7J3.

For each x,y € X define
T~y = T =Y.

Then ~ is an equivalence relation on X. Let {Py, Po, ..., P,,} be the partition of X
with respect to ~. Let C = |J;_, P;, where P;,, N'T = @ and C" = |J;, P;, where
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For convenience let U = K;, ;, (1) UK,,;, (1) UK, (1).

We first show that i; = 5.
Suppose not, so i, # i1 and i3 # i1. Then we consider in three cases :

Case 1: If SNT = O, then we choose (ax) € V be such that

: if keC,
0 otherwise.

Thus we get,
(ar) & Ky (1)
(ax) ¢ Ki,j, (1) since a;, = 1,a;, = 0.
(ar) ¢ Kiajs (1)

Then (ax) ¢ U, a contradiction.

since a;, = 1,a; = 0.

since a;, = 1,a;, = 0.

Case 2: If |SNT|=1, then suppose C; = SN T and consider as follow:

If j4 = iy, then we choose (a;) € V be such that

1 if ke CyuU{is),

Qg =
0 otherwise.

Thus we get,
(ar) & Kiyj (1)
(ax) ¢ Ki,j, (1) since a;, = 1,a,, = 0.
(ar) ¢ Kiaja (1)

Then (ax) ¢ U, a contradiction.

since a;, = 0,a; = 1.

since a;, = 1,a;, = 0.

If j; = i3, then we choose (ay) € V as follow

1 if keCyU {?;2},

0 otherwise.
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Thus we get,
(ax) ¢ Kiyj, (1)
(ar) ¢ Kiyj, (1) since a;, = 1,a;4, = 0.
(ar) ¢ Kiyja (1)

Then (ax) ¢ U, a contradiction.

since a;, = 0,a;, = 1.

since a;, = 1,a;, = 0.

If jo = i3, then we choose (a;) € V be such that

1 if ke Ciu{i},

0 otherwise.

Thus we get ,

(ar) & Kij (1)

(ax) ¢ Ki,j, (1) since a;, = 0,a;, = 1.
1)

(ax) & Kigs
Then (ax) ¢ U, a contradiction.

since a;;, = 1,a; = 0.

since a;, = 1,a;, = 0.

Case 3: If |SNT|=2, then j; = iy and jo = i3. Suppose C; = {j1}, then

we choose (a;) € V as follow

1 if keC,UuC,

0 otherwise.

Thus we get,
(ar) ¢ Kiyj (1)
(ax) ¢ Ki,j, (1) since a;, = 1,a;, = 0.
(an) & Ki,j,(1)

Then (ax) ¢ U, a contradiction.

since a;, = 0,a;, = 1.

since a;, = 0,a;, = 1.

Hence by the three cases, we get i1 = 1.

So ji # Ja.
Suppose j1 < ja
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Now, we will show that jo = j3.
Suppose that js # j3, then we have j; # jo and jo # js.
Case 1: If SNT = @, then we choose (a;) € V be such that

1 if keC,
0 otherwise.

Thus we get,
(ar) & Kiyj (1)
(ar) ¢ Ki,j, (1) since a;, = 1,a4, = 0.
(ax) & Kiyjy (1)

Then (ax) ¢ U, a contradiction.

since a;; = 1,a; = 0.

since a;, = 1,a;, = 0.

Case 2: If |SNT|=1, then suppose C; = SN T and consider as follow:

If j; = i3, then we choose (a;) € V be such that

1 if kEClu{jg},

Qg =
0 otherwise.

Thus we get,
(ar) ¢ K5 (1)
(ar) ¢ Ki,j,(1) since a;, = 0,a;, = 1.
(ax) & Kiyjy (1)

Then (ax) ¢ U, a contradiction.

since a;;, = 0,a; = 1.

since a;, = 1,a;, = 0.

If jo = i3, then we choose (a;) € V be such that

1 if ke Cu{jl,

ap =
0 otherwise.

Thus we get,
(ar) ¢ Ki,j, (1) since a;, = 0,a;, = 1.
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(ax) ¢ Ki,j, (1) since a;, = 0,a;, = 1.
(Clk) ¢ Ki3j3(1) since A3 = 1,CLj3 =0.
Then (ax) ¢ U, a contradiction.

Hence by both cases we must have j, = js.

Finally, we will show that j; = i5. Suppose that j; # i3, then we choose (a;) € V

as follow
1 it ke {i, 3},

a =
0 otherwise.

Thus we get,

(ar) & K5, (1)

(ax) ¢ Ki,j, (1) since a;, = 1,a,, = 0.

(ar) & Kiaja (1)

Then (ax) ¢ U, a contradiction.

since a;, = 1,a;, = 0.
1 » 1

since a;, = 1,a,, = 0.
3 )3

Hence 7, = i3.

(«=) Let iy =iy =i , jo = jg = £ and j; = i3 = j.
We show that K;;(1) U Ki(1) UKje(1) = V.
Let (ax) € V. We consider the components 4, j and ¢ of (ay).
Since Zy = {0,1} there are at least two components from 4, j and ¢ which have
the same values.
Then (ay) € K;;(1) or K (1) or Kjp(1).
Thus V C K;;(1) UK;(1) UK;e(1) and the prove is complete. O

Next, we prove that, if M, , K;;(1) and S are maximal submodules of

V with My UK;;(1)US =V, then S=M, or M, and ¢ =i or j.

Lemma 3.3.4. K, (1) UKy, (1) SV where iy < is.

Proof. We have i1 < ji,is < jo and i1 < 1s.
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If i1 = iy, then j; # ja. So choose (ax) € V be such that

1 3 ke {jl?j?}
ap =

0 , otherwise.

Then (ax) & Kiyj, (1) UKy (1)
If 71 < 79, then we consider in two cases:

J1 = j2: Let (ax) € V be such that

1 , k€ {iy,is}
A =
0 , otherwise.
Then (ax) ¢ Ki,j, (1) UKy, (1).
J1 # Jo: Let (ag) € V be such that
1 ) k € {Z.27j1}
ap —
0 , otherwise.
Thus (ak) §é Kiljl(l) U Kiz]é(l)' O

Proposition 3.3.5. M, UK;;(1) US = V where S is a mazimal submodule of
V o ifand only if (=i and S=M;; orl{ =3 and S=M,.

Proof. (=) Let M,UK;;(1)US =V such that S is a maximal submodule of V.
We show that S = M, or S = K, (1).

If S = Ky,(1), we consider in two cases:

Case 1: If £ € {i, j,u, v}, then My U Ky;(1) UKy, (1) € Kij(1) UKy (1) S V.

Case 2: If ¢ ¢ {i,j,u,v}, then there is (ax) € V — K;;(1) UK, (1). Let (by) € V
be such that

1 L k=t
by =

ay , k#L
So (bk) & My UK;;(1) UKy,(1) and thus M, UK;;(1) U Ky(1) S V.
Thus S = K, (1) can not be happen and hence S = M,.
Next, we prove that {¢,t} = {i,j}.



41

If ¢ ¢ {i, 7}, then we consider in two cases.

Case 1: If t ¢ {i,j}, then choose (a;) € V be such that

1 , ke{lt i}

0 , otherwise.

Then (ay) ¢ M, U K;;(1) U M,.
Case 2: If t € {4, j}, in this case we consider in two subcases.
(1) If t = i, then choose (ax) € V be such that

1 , ke{td}

ar =
0 , otherwise.
Then (a) ¢ M, UK;;(1) UM,.
(2) If t = j, then choose (a;) € V be such that

1, ked{lj}

a, =
0 , otherwise.
Then (ag) ¢ M, UK;;(1) UM,;.
Thus, we see that if £ ¢ {7, j}, then M, UK;;(1) UM, & V, which contradics to
our assumption.
Similarly, if ¢ ¢ {4, j}, also leads to a contradiction.
Thus {¢,t} C {i,j}.
Now, we prove that ¢ # t.
Suppose that £ = ¢, then M, U Ky;(1) US = M, U K;;(1) UM, = M, UK;;(1) & V.
Since, if ¢ = i we choose (ay) € V be such that ay =1 = a;, a; = 0, then
(ax) ¢ My UK;;(1), which is a contradiction.
If / = j we choose (a;) € V be such that a;, = 0, ay = 1 = a;, then
(ar) ¢ M, UK,;;(1), which is a contradiction.
Thus ¢ # t and {(,t} = {i,j}.
Therefore, { =7 and S = M;; or £ = j and S = M,.
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(<) If ¢ =1dand S=M;, then M, UK;;(1) US =M, UK;;(1) UM; =V by
Lemma 3.2.14.

If ¢ =jand S =M, then M UK;;(1) US = M; UK;;(1) UM; =V by

Lemma 3.2.14. 0

Lemma 3.3.6.

(1) K1) NKi(1) NKje(1) = (er, ez, ..., €i—1, (€i + €5 + €r), €i41, ..., €51,
0,€j41, -5 €01, 0, €011, ...).

(i) M;NM,;NK;;(1) =(er,e2,...,-1,0,€41,...,€i-1,0,€j41,...).

Proof. (i) Let (ax) € K;;(1) NK;(1) NKje(1), consider as follow.

If a; =0, then a; =0 and a, = 0.

Thus (ag) = (a1, a9,...,0i-1,0,ai41,...,0j-1,0,a;41, ..., ar—1,0,a041,...).
=aje; +ages + -+ a1, +0(e;) + apr€i41 + -+ aj_1ej1
+0(e;) + ajr1ej41 + -+ ap—1e0—1 + 0(eg) + apyr€001 + - - ..
=aie; +ages + -+ a1, + 0(e; + €5+ €p) + aip1€i41 + ...

+ aj—1€5—1 + 0+ Aj41€541 + s+ ap_1€p-1 + 0+ Apir1€p41 + ...

Then (ay) € (e1,€2,...,€i1, (e;i+ej+er), €iv1, ..., €j-1,0,€j41,...,€0-1,0,€p41,...).

If a;=1,thena;=1anda,=1.
By the same prove as above then we get

(ak) & <€1,€2,...,€i_1, (61' +€j +€g),6i+1,...,€j_1,0, €11, ...,65_1,0,€g+1,...> ;

Conversely,
let (a'k:) € <€17 €2, ..., €1, (ei + €j + 65)7 Citly 5 €j—1, 07 €jt1s -5 €01, Oa €e+15 > :
Then (ak) =a1e] +agey + -+ a;_1€6;_1 + ai(ei -+ € -+ 6@) + ;116541 + ...
+aj_1€j-1 +0+ajej41 + -+ ap—1e-1 0+ appieppq + o

- (al, A2y e ooy j—1y Qjy Qjq1y v v oy Qj—1, gy g1y e vy Qp—1, Agy Apq1,y - oo )

Thus (ax) € Ki;(1) N Ki(1) N Kjp(1) since the components ¢, j , ¢ are the same.
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Therefore K”(l)ﬂKw(l)ﬁK]g(l) = <€1, €2, ...,€i_1, (€i+€j+€g>, €itl, .-y €51, O, €i+1,

...,65_1,07654_1, >

(i) By Lemma 3.2.14. let p = 2.

Therefore M; N M; NK;;(1) = (e1,e2,...,€i-1,0, €41, ..,€j-1,0,€j11, ...

For convenience, let

B = <€1,€2, .. .,62‘_1,0,61‘_,_1, R ,ej_l,(), €it1y- - >,

C = <€1,62, ey €61, (€i =|e € 1 6@),€i+1, ceey €j,1,0,€j+1, c. ,6g71,0,€(+1, ) P

and g1 =e; +e¢j.

Lemma 3.3.7. (i) K;;(1) = (Cier) if i<j<U{.
(i) Ky() = (Bg0),
Proof. (i) It is clear that e, € K;;(1) and C C K;(1).
Then (C, ep) C K;;(1).
Conversely , let (a;) € K;;(1).

). O

>7

Thus (ar) = are1 + azes + - - + ai_1€i-1 + a;(e; + €;) + @iy1€i41 + -+ - + aj_1€j-1

+0e; +aj1€j41 + -+ ap_1€p—1 + aep + appi€opr + -+ Al

= (al,ag,...,ai,l,ai,aiﬂ,...,aj,l,ai,aﬂl,...,ag,l,ag,aul,...)

= (al,ag,...,ai_l,ai,aiﬂ,...,aj_l,ai,ajﬂ,...,ag_l,ai —ai+ag,ag+1,...)

= (al,a2, ey A1, Ay Ay, - - - ,CLj_l,CLi,CLj_H, ey Qp1,04, ey, - - ) -+ (CLg =— ai)eg
= (CL1€1 + azeg + - -+ a;1€,-1 + ai(ei K €; I 6@) + ;116411 r ok 1B a;—1€5-1

+ Oej +aj1€j41 + 0+ ap1€0-1 + Oeg + apri1€041 + -+ + amem) + (ag — ai)eg.

Hence (a) € (C,e,) and we must have K;;(1) C (C, ep).
Therefore K;;(1) = (C,ep) where i < j < /.
(ii) is obvious by Lemma 3.2.15. when ¢ = 1.

Similarly as above lemma we can show that
(i) Kj(l)= (C,ey)ifi<y <.
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)

(i) M;= (B,e)ifi# .

Proposition 3.3.8. Let & = {K;;(1),Ki(1),K;e(1)}. Then S does not force
linearity on V.

Proof. Let S; = K;;(1) , So = Kj(1) and S5 = K;,(1).

Then V =S; US, US3 and S; = K;;(1) = (C, ey) where i < j < /.

For convenience, we put C' = (c1, o, ¢3, ... ).

Since e; #0, we define f : V — V by

Bey , veEStand v =) _, B+ Pey,

0 , U € SyUS;3.

flo) =

We first show that f is well-defined.

If v € S; is also represented as v =) __, 7s¢s + yep, then we have (8 —v)e, € C.
This mean that (8 — ) = 0, since if (5 — ) # 0, then (6 — ) = 1, then we get
er = (6 —v)e, € C which is a contradiction.

Consequently (3 — 7v)e, = 0e, = 0. Hence (e, = vey.

Suppose that v € S;NS,, t # 1.

Then v also has a representation, v = Y __, ds¢s + dey.

Since ) ., dsc5 € Sy, we obtain de, € S; which implies 6 = 0.

Consequently f(v) = de, = 0e, = 0.

Thus f is well-defined on V.

We note that f is not the zero function since f(e;) = e, # 0.

Next, we show that f € My, (ZgN)).

For v € Sy, say v = > __, Bscs + Be, and for r € Zy, we have rv € Sy, so
rf(v) = rBe, = f(rv).

Now, suppose v € S;,t # 1.

Then f(v) = 0 and for any r € Zy, rf(v) = 0.

Moreover, rv € Sy, which implies f(rv) = 0.

Thus , rf(v) = f(rv) for all r € Zy and v € V.

Hence f € Mg, (ZéN)).
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It is clear that f is linear on each S; in .
Since e; + e, ¢ Sy, f(e; +ep) =0.

But f(e;) + f(ee) = O0+e # 0.
Then f ¢ Endy, (Z{").

This shows that & does not force linearity on V. OJ

Proposition 3.3.9. Let & = {M;,M;,K;;(1)}. Then S does not force linearity
on V.

Proof. Since p =2 and £ = 1 , then by Proposition 3.2.16 we get & does not
force linearity on V = ZEN). 0

Next, we show that fin(V) = 4 where V = ZgN).

Proposition 3.3.10.  The forcing linearity number of V = ZéN) 15 4.

Proof. By Proposition 3.2.13, Proposition 3.2.17. and Corollary 3.2.21, we get
fin(V) <4 and fin(V) ¢ {0,1,2}.

Now, we show that fin(V) # 3.

Let & = {51, 53, 53} be a collection of proper submodules of V, then by Lemma
3.2.20. there exists &' = {9, 9,,5;} a collection of maximal submodules of V
such that S; C S for all i = 1,2, 3.

If U;?;IS; &V, then Q" does not force linearity on V by Proposition 3.1.6.

If UL ,S;
{Ki; (1), Kie(1), Kje(1)} or § = {M;, M;, K;;(1)}, we consider in two cases:

Case i: If &' = {K;;(1), K(1),K;,(1)}, then by Proposition 3.3.8 we get 3" does

= V, then by Proposition 3.3.3 and Proposition 3.3.5 we get &' =

not force linearity on V. This means that there exists a homogeneous function f
such that f is linear on each S; in 3" but f is not linear on V.

Thus f is linear on each S; in & but not linear on V where 1 <7 < 3.

Then we get & does not force linearity on V.

’

Case ii : If & = {M;,M;,K;;(1)}, then by Proposition 3.3.9 we get 0es not

W

d
force linearity on V. By considering as the above case, then we get & does not
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force linearity on V.

Thus from both cases we must have fin(V) # 3. Therefore fin(V) = 4.0



