
Chapter 2

Basic Concepts

In this chapter we collect information that will be needed for an under-

standing of the research work. Although details are included in some cases, many

of the fundamental principles of functional analysis are merely stated without

proof.

2.1 Banach space theory

Let X denote any nonempty set that contains with each of its elements x and each

real number α a unique element α · x, written as αx, called a scalar multiple of x.

(One could also include complex numbers α as well, but we restrict ourselves here

to the real case.) Also assume that for each two elements x, y ∈ X there exists a

unique element x+y ∈ X called the sum of x and y. The system (X, ·, +) is called

a linear space (over R) if the following conditions are satisfied. Here x, y, z ∈ X

and α, β ∈ R.

(1) x + y = y + x;

(2) x + (y + z) = (x + y) + z;

(3) α(x + y) = αx + αy;

(4) x + y = x + z implies y = z;

(5) (α + β)x = αx + βx;

(6) (αβ)x = α(βx);

(7) 1x = x.

A finite subset {x1, . . . , xn} of a linear space X is said to be linearly de-

pendent if for any α1 . . . , αn ∈ R with α1x1 + · · · + αnxn = 0 implies α1 = · · · =

αn = 0. If, in addition, every x ∈ X is a linear combination of x1, . . . , xn, that

is x = α1x1 + · · · + αnxn for some α1 . . . , αn ∈ R, then we say that X has the

dimension n.

A function ‖ · ‖ from a (real) linear space X into R is called a norm if it

satisfies the following properties for all x, y ∈ X and α ∈ R:
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(1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

(2) ‖αx‖ = |α|‖x‖;

(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

From this norm we can define a metric, induced by the norm ‖ · ‖, by

d(x, y) = ‖x− y‖ (x, y ∈ X).

A linear space X equipped with the norm ‖ · ‖ is called a normed linear space. A

normed linear space (X, ‖ · ‖) (or simply X) which is complete, i.e. every Cauchy

sequence in X is convergent, is called a Banach space.

A subset K of a Banach space is said to be convex if αx + (1 − α)y ∈ K

for each x, y ∈ K and α ∈ [0, 1].

If A ⊂ X, the set

conv(A) = ∩{K ⊂ X : K is closed, convex and K ⊃ A}

is called the closed convex hull of A. It is not difficult to see that conv(A) is closed

and convex.

The modulus of convexity of a Banach space X is the function δ : [0, 2] →
[0, 1] defined by

δ(ε) = inf

{
1−

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

The characteristic (or coefficient) of convexity of a Banach space X is the number

ε0 = ε0(X) = sup{ε ≥ 0 : δ(ε) = 0}.

Definition 2.1.1. A Banach space X with modulus of convexity δ is said to be

uniformly convex if δ(ε) > 0 for each ε ∈ (0, 2], or equivalently, if ε0(X) = 0. If

ε0(X) < 2, then X is said to be uniformly nonsquare.

Definition 2.1.2. A Banach space X is said to be strictly convex if

‖1

2
(x + y)‖ < 1,

whenever x and y are different points of the unit sphere of X.

Proposition 2.1.3. If E is a nonempty closed convex subset of a strictly convex

space X and if T : E → E is nonexpansive, then the set FixT is closed and

convex.
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A function f : X → R is said to be linear if f(αx + y) = αf(x) + f(y)

for all x, y ∈ X and α ∈ R. In addition, if |f(x)| ≤ M‖x‖ for all x ∈ X, we say

that f is a bounded linear functional. It is not difficult to see that the class of all

bounded linear functionals of X, denoted by X∗, is a Banach space equipped with

the norm defined by

‖f‖ = sup{|f(x)| : x ∈ BX} = sup{|f(x)| : x ∈ SX}

where BX = {x ∈ X : ‖x‖ ≤ 1} is the unit ball of X and SX = {x ∈ X : ‖x‖ = 1}
is the unit sphere of X.

The most well-known theorem in Banach space theory is the Hahn-Banach

theorem: for each x ∈ X there exists f ∈ X∗ such that ‖f‖ = 1 and f(x) = ‖x‖.
The topology induced by a norm is too strong in the sense that it has

many open sets. Indeed, in order that each bounded sequence in X has a norm

convergent subsequence, it is necessary and sufficient that X be finite dimensional.

This fact leads us to consider other weaker topologies on normed spaces which are

related to the linear structure of the spaces to search for subsequential extraction

principles. So it is worthwhile to define the weaker topology for a Banach space

X. We say that a net (xα) in X converges weakly to x, denoted by

w − lim
α

xα = x,

if limα f(xα) = f(x) for all f ∈ X∗. A subset K of X is weakly closed if it is

closed in the weak topology, that is, if it contains the weak limit of each of its

weakly convergent nets. The weakly open sets are now taken as those sets whose

complements are weakly closed. The resulting topology on X is called the weak

topology on X. Sets which are compact in this topology are said to be weakly

compact.

It is important to know that the weak topology on a Banach space is a

Hausdorff topology, and that weak limits are unique. This is because the func-

tionals in X∗ separate points in X, that is, given any two points x 6= y ∈ X there

exists an f ∈ X∗ such that f(x) 6= f(y). This is an another consequence of the

Hahn-Banach Theorem.

For x ∈ X and f ∈ X∗ define i(x)(f) = f(x). It is easily seen that i(x) ∈
X∗∗ and that, in fact, the mapping i : X → X∗∗ is an isometric isomorphism,

called the canonical embedding of X into X∗∗. If i(X) = X∗∗, then X is said to

be reflexive.
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Analogously we can also consider the weak convergence in X∗. Moreover,

there is an other important mode of convergence: if (x∗n) is a sequence in the dual

space X∗ and x∗ ∈ X∗, then we say that x∗n converges ∗-weakly to x∗, denoted

by x∗n
w∗→ x∗, if x∗n(x) → x∗(x) for all x ∈ X. By the definition, we see that norm

convergence implies weak convergence and, in turn, implies ∗-weak convergence in

the dual space.

We now collect for later using some well-known properties of the weak and

weak* topology. Despite the fact that proofs of these results can be found in any

standard functional analysis text we included selected details.

Proposition 2.1.4. A convex subset K of a Banach space is weakly closed if and

only if it is closed.

The above leads to the following.

Proposition 2.1.5. If a subset K of a Banach space is weakly compact, then

conv(K) is also weakly compact.

Neither of the above facts holds for the weak* topology. However the

following holds for both topologies.

Proposition 2.1.6. If K ⊂ X is weakly compact (or weak* compact if X is a dual

space), then K is bounded.

The following fact holds only for the weak* topology (except, of course, in

reflexive spaces).

Proposition 2.1.7. (Alaoglu’s Theorem) The unit ball BX∗ (hence any ball) in a

dual space X∗ is always compact in the weak* topology.

The following says that in the weak topology compactness is equivalent to

sequential compactness. This fact holds also for the weak* topology on X∗ if X is

separable, because in this case the weak* topology is metrizable, but it does not

holds in general for the weak* topology.

Proposition 2.1.8. (Eberlein-Smulian Theorem) For any weakly closed subset A of

a Banach space the following are equivalent.

(1) Each sequence (xn) in A has a subsequence which converges weakly to a point

of A.

(2) Each net (xα) in A has a subnet which converges weakly to a point of A.
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(3) A is weakly compact.

The following lists are the several properties which characterize reflexivity.

Proposition 2.1.9. For a Banach space X the following are equivalent.

(1) X is reflexive.

(2) X∗ is reflexive.

(3) BX is weakly compact in X.

(4) Any bounded sequence in X has a weakly convergent subsequence.

(5) For any f ∈ X∗ there exists x ∈ BX such that f(x) = ‖f‖.

(6) For any bounded closed convex subset K of X and any f ∈ X∗ there exists

x ∈ K such that f(x) = sup{f(y) : y ∈ K}.

(7) If (Kn) is any descending sequence of a nonempty bounded closed convex

subsets of X, then ∩∞n=1Kn 6= ∅.

We conclude this section by noting that Property (7) above offers a quick

way, which we will not prove here, to confirm the following fact.

Theorem 2.1.10. If X is a uniformly convex Banach space, then X is reflexive.

A more general result is the following.

Theorem 2.1.11. If X is a uniformly nonsquare Banach space, then X is reflexive.

2.2 Multivalued mappings

Let E be a bounded closed convex subset of a Banach space X and T : E → E

a nonexpansive mapping. The problem of finding suitable geometrical condition

on X which assures the existence of a fixed point for T has been widely studied

in the last 40 years. In the case of multivalued nonexpansive mappings T : E →
K(E), a very general problem is the following : Does T have a fixed point under

the suitable condition on X which assure the existence of fixed point for single-

valued mappings? The answer to this question is unknown, but some papers have

appeared showing geometrical properties on X which state fixed point results for

multivalued mappings.
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Let X be a Banach space and E a nonempty subset of X. We shall

denote by FB(E) the family of nonempty bounded closed subsets of E, by K(E)

the family of nonempty compact subsets of E, by FC(E) the family of nonempty

closed convex subsets of E, and by KC(E) the family of nonempty compact convex

subsets of E. Let H(·, ·) be the Hausdorff distance on FB(X), i.e.,

H(A, B) = max{ sup
a∈A

dist(a,B), sup
b∈B

dist(b, A) }, A,B ∈ FB(X),

where dist(x,C) = inf{‖x − c‖ : c ∈ C} is the distance from the point x to the

subset C. A multivalued mapping T : E → FB(X) is said to be a contraction if

there exists a constant k ∈ [0, 1) such that

H(Tx, Ty) ≤ k‖x− y‖, x, y ∈ E. (2.2)

In this case, we also say that T is k−contractive.

If (2.2) is valid when k = 1, then T is called nonexpansive. A point x is a

fixed point for a multivalued mapping T if x ∈ Tx.

In 1969, Nadler [54] established the multivalued version of Banach’s con-

traction principle.

Theorem 2.2.1. [54] Let X be a complete metric space and T : X → FB(X) a

contraction. Then T has a fixed point.

In contrast to Banach’s Contraction Principle for single-valued mapping,

the preceding theorem does not assert that the fixed point is unique.

The following method and results deal with the concept of asymptotic

centers. For a bounded sequence {xn} in a Banach space X and E a bounded

subset of X we associate the number

r(E, {xn}) = inf{lim sup
n→∞

‖xn − x‖ : x ∈ E}

and the set

A(E, {xn}) = {x ∈ E : lim sup
n→∞

‖xn − x‖ = r(E, {xn})}.

r(E, {xn}) and A(E, {xn}) are called, respectively, the asymptotic radius

and the asymptotic center of {xn} relative to E.
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If X is reflexive and E is closed and convex, then A(E, {xn}) is always a

nonempty closed convex subset of E for any bounded sequence {xn} in X. To see

this observe that for each ε > 0 the set

Cε = {x ∈ E : lim sup
n→∞

‖xn − x‖ ≤ r(E, {xn}) + ε}

is nonempty by definition of r(E, {xn}) and straightforward argument shows that

each of the set Cε is closed and convex. Hence

A(E, {xn}) = ∩ε>0Cε,

and the letter set is nonempty by weak compactness of E.

Clearly, A(E, {xn}) is a nonempty weakly compact convex set as E is [32,

Goebel and Kirk].

Definition 2.2.2. A bounded sequence {xn} is said to be regular relative to a

bounded subset E of a Banach space X if r(E, {xn}) = r(E, {xni
}) for all subse-

quences {xni
} of {xn}; further, {xn} is said to be asymptotically uniform relative

to E if A(E, {xn}) = A(E, {xni
}) for all subsequences {xni

} of {xn}.

Lemma 2.2.3. [31, Goebel], [47, Lim] Let {xn} be a bounded sequence in a Banach

space X and E a bounded subset of X. Then

(i) there always exists a subsequence of {xn} which is regular relative to E;

(ii) if E is seperable, then {xn} contains a subsequence which is asymptotically

uniform relative to E.

Lemma 2.2.4. If E is a nonempty bounded closed convex subset of a uniformly

convex Banach space X, then for any bounded sequence {xn} in X, the asymptotic

center A(E, {xn}) consists of exactly one point.

By using Edelstein’s method of asymptotic centers, T.C. Lim [47] obtained

a fixed point theorem for multivalued nonexpansive mappings.

Theorem 2.2.5. Let E be a nonempty bounded closed convex subset of a uniformly

convex Banach space X and T : E → K(E) a nonexpansive mapping. Then T has

a fixed point.

In 1990, W.A. Kirk and S. Massa [43] proved the following theorem.
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Theorem 2.2.6. [43] Let E be a nonempty bounded closed convex subset of a

Banach space X and T : E → KC(E) a nonexpansive mapping. Suppose that the

asymptotic center in E of each bounded sequence of X is nonempty and compact.

Then T has a fixed point.

Definition 2.2.7. Let E be a nonempty closed subset of a Banach space X. The

inward set of E at x ∈ E is given by

IE(x) = {x + λ(y − x) : λ ≥ 1, y ∈ E}.

In case E is a nonempty closed convex subset of a Banach space X, we have

IE(x) = {x + λ(y − x) : λ ≥ 0, y ∈ E}.

A multivalued mapping T : E → 2X is said to be inward (resp. weakly inward)

on E if

Tx ⊂ IE(x) (resp. Tx ⊂ IE(x)) for all x ∈ E.

Next theorem is very useful in order to prove the results on fixed points

for multivalued mappings

Theorem 2.2.8. [47] Let E be a nonempty closed subset of a Banach space X

and T : E → F (X) a contraction which satisfies the weak inwardness condition :

Tx ⊂ IE(x) for all x ∈ E. Then T has a fixed point.

In 2001, H.K. Xu [66] extended Kirk and Massa’s theorem to a nonself

mapping T : E → KC(X) which satisfies the inwardness condition.

Theorem 2.2.9. [66] Let E be a nonempty bounded closed convex subset of a

Banach space X and T : E → KC(X) a nonexpansive mapping with satisfies the

inwardness condition : Tx ⊂ IE(x) for all x ∈ E. Suppose that the asymptotic

center in E of each bounded sequence of X is nonempty and compact. Then T has

a fixed point.

2.3 Measures of noncompactness in metric fixed point

theory

Recall that the Kuratowski, separation, and Hausdorff measures of noncompact-

ness of a nonempty bounded subset B of a complete metric space X are respec-

tively defined as the numbers:

α(B) = inf{d > 0 : B can be covered by finitely many sets of diameters ≤ d},
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β(B) = sup{ε > 0 : there exists a sequence {xn} in B such that sep({xn}) ≥ ε},
where sep({xn}) = inf{d(xn, xm) : n 6= m},
and

χ(B) = inf{d > 0 : B can be covered by finitely many balls of radii ≤ d}.

Then we have

χ(B) ≤ β(B) ≤ α(B) ≤ 2χ(B)

for all bounded subsets B of X.

Proposition 2.3.1. Let φ denote α, β or χ and B be a family of bounded subsets

of X. Then the following properties are satisfied in any complete metric space X :

(1) Regularity: φ(B) = 0 if and only if B is precompact.

(2) Invariant under passage to the closure : φ(B) = φ(B) for all B ∈ B.

(3) Semi-additivity : φ(B1 ∪B2) = max{φ(B1), φ(B2)}, ∀B1 ∈ B, ∀B2 ∈ B.

(4) Monotonicity : B1 ⊂ B2 implies φ(B1) ⊂ φ(B2), ∀B1 ∈ B, ∀B2 ∈ B.

(5) φ(B1 ∩B2) ≤ min{φ(B1), φ(B2)}, ∀B1 ∈ B, ∀B2 ∈ B.

(6) Generalized Cantor’s intersection theorem : If {Bn} is a decreasing sequence

of nonempty closed convex subsets of X and limn→∞ φ(Bn) = 0, then the

intersection B∞ of all Bn is nonempty and compact.

If X is a Banach space, then we also have :

(7) Semi-homogeneity : φ(tB) = |t|φ(B) for any real number t and B ∈ B.

(8) Algebraic semi-additivity : φ(B1 +B2) ≤ φ(B1)+φ(B2), ∀B1 ∈ B, ∀B2 ∈ B.

(9) Permanence under translations : φ(x0 + B) = φ(B) for any x0 ∈ X and

B ∈ B.

Definition 2.3.2. Let X be a Banach space and φ = α, β or χ. The modulus of

noncompact convexity associated to φ is defined in the following way:

4X,φ(ε) = inf{1− dist(0, A) : A ⊂ BX is convex, φ(A) ≥ ε},

where BX is the unit ball of X.

The characteristic of noncompact convexity of X associated with the mea-

sure of noncompactness φ is defined by

εφ(X) = sup{ε ≥ 0 : 4X,φ(ε) = 0}.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



14

The relationships among the different moduli are

4X,α(ε) ≤ 4X,β(ε) ≤ 4X,χ(ε),

and consequently,

εα(X) ≥ εβ(X) ≥ εχ(X).

See [3, Ayerbe et al.] for all these and more details.

A multivalued mapping T : E → 2X is called φ−condensing (resp. 1 −
φ−contractive) where φ is a measure of noncompactness if, for each bounded

subset B of E with φ(B) > 0, there holds the inequality

φ(T (B)) < φ(B) (resp. φ(T (B)) ≤ φ(B)).

Here T (B) = ∪x∈BTx.

2.4 Ultrapower techniques

Ultrapowers of a Banach space are proved to be useful in many branches of math-

ematics. Many results can be seen more easily when treated in this setting. We

recall some basic facts about the ultrapowers. Let F be a filter on N, that is

F ⊂2N, satisfying :

(1) If A ∈ F and A ⊂ B ⊂ N, then B ∈ F .

(2) If A, B ∈ F , then A ∩B ∈ F .

A filter U on N is called an ultrafilter if it is maximal with respect to

the the ordering of filters on N given by set-inclusion. That is, if U ⊂ F and F
is a filter on N, then F = U . An ultrafilter is called trivial if it is of the form

{A : A ⊂ N, n0 ∈ A} for some fixed n0 ∈ N, otherwise, it is called nontrivial.

Let {xn} be a sequence in a Hausdorff topological space X and U a ultra-

filter on N. The sequence {xn} is said to converge to x with respect to U , denoted

by

lim
U

xn = x,

if for each neighborhood U of x, {n ∈ N : xn ∈ U} ∈ U .

Limits along U are unique and if {xn} is a bounded sequence in R, then

lim inf
n→∞

xn ≤ lim
U

xn ≤ lim sup
n→∞

xn.
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Moreover, if E is a closed subset of X and {xn} ⊂ E, then limU xn belongs to E

whenever it exists.

We will use the fact that

(1) U is an ultrafilter if and only if for any subset A ⊂ N, either A ∈ U or

N\A ∈ U .

(2) If X is compact, then the limU xn of a sequence {xn} in X always exists and

is unique.

(3) Suppose {xn} converges to x in the topology of the space X. Then {xn}
converges to x with respect to any ultrafilter U .

(4) Let X be a linear topological vector space. Suppose that {xn} and {yn} are

sequences in X such that limU xn and limU yn exist. Then

lim
U

(xn + yn) = lim
U

xn + lim
U

yn

and

lim
U

αxn = α lim
U

xn,

for any scalar α ∈ R.

Let (X, ‖ · ‖) be a Banach space and U an ultrafilter on N.

Consider the Banach space

l∞(X) = {x = {xn} ⊂ X : sup
n
‖xn‖ < ∞}.

The subset defined by

NU = {x = {xn} ∈ l∞(X) : lim
U
‖xn‖ = 0}

is a closed linear subspace of l∞(X).

The Banach space ultrapower of X (over U) is defined to be the quotient

space

XU = l∞(X)/NU

equipped with the quotient norm. When it is not necessary to mention the ultra-

filter, we write X̃ instead of XU . The equivalence class of an element x = {xn} ∈
l∞(X) is denoted by x̃ = {xn}U . It follows from (2) above and the definition of

the quotient norm that

‖x̃‖ = ‖{xn}U‖ = lim
U
‖xn‖.
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The mapping J : X → X̃ defined by

J (x) = {x}U = {xn}U , where xn = x for all n ∈ N

is an isometric embedding of X into X̃. Using the map J , one may identify X

with J (X) seen as a subspace of X̃. When it is clear we will omit mention of the

map J and simply regard X as a subspace of X̃.

If E is a subset of a Banach space X, we associate to it subset Ẽ of X̃

defined by

Ẽ = {{xn}U : xn ∈ E for each n ∈ N}.
The following properties hold :

(1) If E is convex, then Ẽ is convex.

(2) If E is closed, then Ẽ is closed.

(3) If E is bounded, then Ẽ is bounded with diam(Ẽ) = diam(E).

If X is a Banach space and {fn} is a sequence in X∗ with supn≥1 ‖fn‖ < ∞,

then we can define the functional f̃ = {fn}U : XU → R by

f̃({xn}U) = lim
U

fn(xn).

We have f̃ ∈ (XU)∗ and ‖f̃‖ = limU ‖fn‖.

Theorem 2.4.1. Let X be a Banach space and U a nontrivial ultrafilter on N.

Then the following statements are equivalent :

(1) X̃ is strictly convex.

(2) X̃ is uniformly convex.

(3) X is uniformly convex.

References for more detailed treatment and proofs of all the result here

stated are [2, Aksoy and Khamsi] and [61, Sims].
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2.5 Nonexpansive retracts

A nonexpansive retraction of a metric space (X, d) onto one of its subspace E

is a nonexpansive mapping R of X onto E (i.e.,d(R(x), R(y)) ≤ d(x, y) for each

x, y ∈ X) which leaves each point of E fixed. In this case E is said to be a

nonexpansive retract of X.

Recall that T : E → X is said to satisfy the conditional fixed point

property (CFP) if either T has no fixed points, or T has a fixed point in each

nonempty bounded closed convex set it leaves invariant.

The following theorem has been proved by Bruck [11].

Theorem 2.5.1. If E is a nonempty closed convex locally weakly compact subset

of a Banach space X, T : E → E is nonexpansive and T satisfies (CFP), then

FixT is a nonexpansive retract of E.

Consequently, we have

Corollary 2.5.2. If E is a nonempty bounded closed convex subset of a uniformly

convex Banach space X and T : E → E is nonexpansive, then FixT is a nonex-

pansive retract of E.
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