Chapter 4
The Jordan-von Neumann Constant
and Fixed Points for Multivalued

Nonexpansive Mappings

The purpose of this chapter is to study the existence of fixed points for
nonexpansive multivalued mappings in a particular class of Banach spaces. Fur-
thermore, we demonstrate a relationship between the weakly convergent sequence
coefficient WC'S(X) and the Jordan-von Neumann constant Cj(X) of a Banach
space X. Using this fact, we prove that if Cyj(X) is less than an appropriate pos-
itive number, then every multivalued nonexpansive mapping 7' : E — KC(F) has
a fixed point where FE is a nonempty bounded closed convex subset of a Banach

space X and KC(F) is the class of all nonempty compact convex subsets of F.

4.1 Introduction

In 1969, Nadler [54] established the multivalued version of Banach’s contraction
principle. Since then the metric fixed point theory of multivalued mappings has
been rapidly developed. Some classical fixed point theorems for single-valued non-

expansive mappings have been extended to multivalued nonexpansive mappings.

In 1974, Lim [47], using Edelstein’s method of asymptotic center, proved
the existence of a fixed point for a multivalued nonexpansive self-mapping 7' : £ —
K (F) where E is a nonempty bounded closed convex subset of a uniformly convex
Banach space X. In 1990, Kirk and Massa [43] extended Lim’s theorem. They
proved that every multivalued nonexpansive self-mapping 7' : £ — KC(F) has
a fixed point where F is a nonempty bounded closed convex subset of a Banach
space X for which the asymptotic center in E of each bounded sequence of X
is nonempty and compact. In 2001, Xu [66] extended Kirk-Massa’s theorem to
nonself-mapping 7' : £ — KC(X) which satisfies the inwardness condition.

In 2004, Dominguez and Lorenzo [24] proved that every multivalued non-

expansive mapping 7' : £ — KC(FE) has a fixed point where E is a nonempty
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bounded closed convex subset of a Banach space X with €3(X) < 1. Consequently,
they can give an affirmative answer of a problem in [65] proving that every non-
expansive self-mapping 7' : £ — KC(F) has a fixed point where E is a nonempty
bounded closed convex subset of a nearly uniformly convex Banach space. In
chapter 3, we gave an existence of a fixed point for a multivalued nonexpansive
and 1 — y—contractive mapping 7' : F — KC(X) which satisfies the inward-
ness condition, where E is a nonempty bounded closed convex separable subset
of a reflexive Banach space which satisfies the Dominguez-Lorenzo condition, i.e.,
an inequality concerning the asymptotic radius and the Chebyshev radius of the
asymptotic center for some types of sequences. Consequently, they could show
that if X is a uniformly nonsquare Banach space satisfying property WORTH
and T : F — KC(X) is a nonexpansive mapping which satisfies the inwardness
condition, where E is a nonempty bounded closed convex separable subset of X,
then 7' has a fixed point. Furthermore, we also ask : Does C\j(X) < %ﬁ imply

the existence of a fixed point for multivalued nonexpansive mappings ?

In this study, we organize as follows. We define a property for a Banach
spaces which we call property (D) (see definition in Section 4.3), which is weaker
than the Dominguez-Lorenzo condition and stronger than weak normal structure
and we prove that if X is a Banach space satisfying property (D) and FE is a
nonempty weakly compact convex subset of X, then every nonexpansive mapping
T : E — KC(FE) has a fixed point. Then we state a relationship between the
weakly convergent sequence coefficient W(C'S(X) and the Jordan-von Neumann
constant C\j(X) of a Banach space X. Finally, using this fact, we prove that
if ONj(X) is less than an appropriate positive number, then every multivalued
nonexpansive mapping 7 : E — KC(FE) has a fixed point. In particular, we give

a partial answer to the question which has been asked in [15].

4.2 Preliminaries

Throughout this study we let X* stand for the dual space of a Banach space X. By
Bx and Sx we denote the closed unit ball and the unit sphere of X, respectively.

Let A be a nonempty bounded subset of X.

The number

r(A) :=inf { sup ||z — y|| : = € A}
yeA
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is called the Chebyshev radius of A and the number
diam(A) ;= sup{||lx — y|| : z,y € A}
is called the diameter of A.
A Banach space X has normal structure (resp. weak normal structure) if

r(A) < diam(A)

for every bounded closed (resp. weakly compact) convex subset A of X with
diam(A) > 0.

A Banach space X is said to have uniform normal structure (resp. weak uniform

f diam A -1
in (A) ,

where the infimum is taken over all bounded closed (resp. weakly compact) convex
subsets A of X with diam A > 0.

normal structure) if

Let X be a Banach space without Schur property, that is, there is weakly
convergent sequence which is not norm convergent. The weakly convergent se-
quence coefficient WCS(X) [12] of X is the number

WCS(X) := inf {%} ,

where the infimum is taken over all sequences {z,} in X which are weakly (not
strongly) convergent, A({z,}) := limsup,_ . {llz; — ;|| : 4,5 > n} is the asymp-
totic diameter of {z,, }, and r,({z, }) := inf{limsup,,_, . ||zn—y| : y € conv({z,})}

is the asymptotic radius of {x,}.

Some equivalent definitions of the weakly convergent sequence coefficient

can be found in [3, p. 120] as follows :

li n,MNFEM n - <m
WCS(X) = inf{ — l il Hﬁ Hx | : {x,} converges weakly to zero ,
1My — 00 || Tn

lim ||z, — 2| and lm ||z, exist},
n,m;n#m n—00

WCOS(X) = inf {

lim ||z, — zn] : {x,} converges weakly to zero,
n,m;n#m

lzol = 1and  lim ||z — 2| exists},
n,m;n#m
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A({zn})

hm Supn—>oo ||{L‘n||

WCS(X) = inf { : {x,} converges weakly to zero}

and

a

WCS(X) = inf{

_ : {x,} converges weakly to zero and
hm SUPp, 00 ||$n||

m}}{gém | — || = a}.

It is easy to see, from the definitions of WCS(X), that 1 < WCS(X) <2,
and it is known that WCS(X) > 1 implies X has weak uniform normal structure
[12].

For a Banach space X, the Jordan-von Neumann constant Cyj(X) of X,
introduced by Clarkson [13], is defined by

lz + gl + |z — yll?
:x,y € X not both zero ;.
2[|[* + 2]ly[]?

Cxy(X) = sup{

The constant R(a, X), which is a generalized Garcia-Falset coefficient [29], is in-

troduced by Dominguez [20] : For a given nonnegative real number a,
R(a, X) := sup{liminf ||z + z,||},

where the supremum is taken over all z € X with ||z|| < a and all weakly null

sequences {z,} in the unit ball of X such that limy, ;.nzm |20 — T < 1.

A relationship between the constant R(1, X) and the Jordan-von Neumann
constant O\ j(X) can be found in [57] :

R(1,X) < 1/2CN7(X).

4.3 Main results

Definition 4.3.1. A Banach space X is said to satisfy property (D) if there exists
A € [0, 1) such that for any nonempty weakly compact convex subset £ of X, any
sequence {x,} C F which is regular asymptotically uniform relative to F, and any
sequence {y,} C A(E,{z,}) which is regular asymptotically uniform relative to

E we have

r(E A{yn}) < Ar(E,{zn}). (4.8)
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Recall the Dominguez-Lorenzo condition introduced in [15] as follow : A
Banach space X is said to satisfy the Dominguez-Lorenzo condition if there exists
A € [0, 1) such that for every weakly compact convex subset E of X and for every

bounded sequence {x,} in E which is regular relative to F,

re(A(E, {zn})) < Ar(E, {zn}).

It is clear from the definition that property (D) is weaker than the Dominguez-
Lorenzo condition. In fact, property (D) is strictly weaker than the Dominguez-
Lorenzo condition as shown in [21]. The next result shows that property (D) is

stronger than weak normal structure.

Theorem 4.3.2. Let X be a Banach space satisfying property (D). Then X has

weak normal structure.

Proof. Suppose on the contrary, thus there exists a weakly null sequence {z,} C
By such that lim ||z, —z|| =1 for all z € C = conv({z,}) (see [63]).
By passing thlr“l(;uOgOh a subsequence, we may assume that {z,} is regular relative
to C. We see that r(C,{z,}) = 1 and A(C,{x,}) = C. Moreover {z,} is asymp-
totically uniform relative to C. Indeed, let {z,,} be a subsequence of {z,} we
have

ACAzn,}) ={zeC: hll;njogp |20, = z|| = r(C, {2y, })} = C.

Since {z,} C C = A(C,{z,}) and X satisfies property (D) with a corresponding
A €[0,1), we have
r(C,{wn}) < Ar(C{zn})

which leads to a contradiction. O

The following results will be very useful in order to prove our main theo-

rem.

Theorem 4.3.3 (Dominguez and Lorenzo [22]). Let E be a nonempty weakly
compact separable subset of a Banach space X, T : E — K(FE) a nonexpansive
mapping, and {x,} a sequence in E such that lim d(x,,Tz,) = 0. Then there

n—oo

exists a subsequence {z,} of {x,} such that
TrNA#0D, VeeAd:=AE,{z.}).

Theorem 4.3.4 (Dominguez and Lorenzo [24]). Let E be a nonempty weakly

compact convexr separable subset of a Banach space X. Assume that T : E —
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KC(E) is a contraction mapping. If A is a closed convex subset of E such that
TrNA#0D for all z € A, then T has a fized point in A.

We can now state our main theorem.

Theorem 4.3.5. Let E be a nonempty weakly compact conver subset of a Ba-
nach space X which satisfies property (D). Assume that T : E — KC(E) is a

nonexpansive mapping. Then T has a fixed point.

Proof. The first part of the proof is similar to the proof of Theorem 4.2 in [22].
Therefore, we only sketch this part of the proof. From [45] we can assume that E
is separable. Fix zg € E and define a contraction 7,, : £ — KC(E) by

1 1

By Nadler’s theorem [54], for any n € N, T, has a fixed point, say z}. Tt is
easy to prove that lim dist(z),Tz.) = 0. By Lemma 2.2.3, we can assume that
sequence {zl} C Enigoroegular asymptotically uniform relative to E. Denote A; =
A(E,{z!}). By Theorem 4.3.3 we can assume that Te N A; # (0 for all z € A;.

Fix z; € A; and define a contraction 7,, : E — KC(E) by

1 1
T, (z) = ! ST < E)Tm, r e L.

Convexity of Ay implies T;,(z) N Ay # 0 for all x € A;. By Theorem 4.3.4, T,, has
a fixed point in A;, say x2. Consequently, we can get a sequence {22} C A; which

is regular asymptotically uniform relative to E and lim dist(z?,Tz?) = 0. Since

n—od

X satisfies the property (D) with a corresponding A € [0, 1), we have
r(E{an}) < Mr(B, {z,}).

By induction, we can find a sequence {25} C A, = A(E, {zF~'}) which is regular

asymptotically uniform relative to F,

lim dist(z*, Tx%) = 0,

n—oo

and
r(B,{zF}) < Ar(E,{z"'}) for all k € N.

Consequently,

r(B, {zf}) < Ar(E, {2"')) < <N (B {2l )).
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In view of [3, p. 48], we may assume that for each k € N,

lim ||zF — 2% || exists,
n,m;n#Em

and in addition |lzf — 2k || < lim |[|zF — 2 || + 5 for all n,m € N and n # m.
7 ; m

Let {y,} be the diagonal sequence {z]'}. We claim that {y,} is a Cauchy sequence.

For each n > 1, we have for any positive number m,

lyn =yl < My — 20 M+ 125" = Yl

= g — 25 ML+ ll2n " — 257l

1
< O n—1 Ii n—1__ _n-1
< Ml =+ Jim g — 2
Taking upper limit as m — oo,
: n—1 - n—1 n—1 1
I = gl < lmsup g, — a7 4 lim Jla? ™ — a5+ 5
< (B Az ) Flimsup (277 — g + Timsup |25 = yull + 5
1 J
e 1
S 3T(E7 {ajn 1}) + 2“]71
1
< 3N"Pr(E {xp}) +

2n—1‘

Since A < 1, we conclude that there exists y € E such that y, converges to y.
Consequently,

dist(y, Ty) < ||y — ynl|| + dist(yn, Tyn) + H(Tyn, Ty) — 0 as n — oo.
Hence y is a fixed point of T. O

Theorem 4.3.6. Let E be a nonempty weakly compact convex subset of a Banach

space X with

WCS(X)?

O VA2

Assume that T : E — KC(F) is a nonexpansive mapping. Then T has a fized

CNJ(X) <1+

point.

Proof. We will prove that X satisfies property (D). Since Cnj(X) < 1+ w,

2\/CN J-1
WCS(X)
subset of X, {z,} € D and {y,} C A(D,{z,}) be regular asymptotically uni-

we choose A = < 1. Let D be a nonempty weakly compact convex

form sequences relative to D. We will show that (4.8) is satisfied. By choosing
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a subsequence, if necessary, we can assume that {y,} converges weakly to y € D
and

; — il = > (). :
kljlir;] |y — y;]| =1 for some [ >0 (4.9)

Let r = r(D,{x,}). The condition (4.8) easily follows when r = 0 or [ = 0. We
assume now that » > 0 and [ > 0. Let € > 0 so small that 0 < ¢ < [ Ar. From

(4.9) we assume that

i —y;ll = 1] <e for all k # j. (4.10)

Fix k # j. Since yi,y; € A(D,{z,}) and using the convexity of A(D,{z,}), we

can assume, passing through a subsequence, that

and

|z =yl <7 +€, |20 —y5]| <7 4¢, (4.11)
’ Ty — ykT_l_yj >r —e for all large n. (4.12)
From the definition of C\j(X), by (4.10), (4.11), and (4.12) we have for n large

enough,

1220 — (i + yp)II* + Ny — i ll®
2/|lzn — yll* + 2[lzn — y; 12

4r—e)?+ (I —¢)?

- A(r +¢)? '

ONy(X) >

Since ¢ is arbitrary small, it follows that

Ar? + [?
4rz

ONJ(X) >

Since

lmy oz [y — wil|
lim sup; ||u,|

WCS(X) = inf {

w . .
A o t }
U O,j’kl;glék |lw; — u|| exists ¢,

we can deduce that

WCS(X)*(limsup, [y, — yl|)?
_l’_
4r2
WCS(X)*r(D, {yn})?
4r2 '

CNJ(X) > 1

v

1+

Consequently,

H(D. fn}) < VNI LD )

WCS(X)
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as desired. O

In order to prove our next result, we need the following theorem which
states a relationship between the weakly convergent sequence coefficient and the

Jordan-von Neumann constant of a Banach space X.

Theorem 4.3.7. For a Banach space X,

9 ZCNJ(X) +1
WESHl 2 Sion a7

Proof. Since Cyj(X) < 2 and the result is obvious if Cj(X) = 2, we can assume
that O j(X) < 2. It is known that C\j(X) < 2 implies X and X* are reflexive.
Put o = \/2CNj(X). Let {x,} be a normalized weakly null sequence in X and
d = limy, ;mntm ||Tn — Tm||. Consider a sequence {f,} of norm one functionals for
which f,,(z,) = 1. Since X* is reflexive we can assume that {f,,} converges weakly
to some f in X*. Let € be an arbitrary positive number and choose K € N large
enough so that |f(z,)| < e and d—e < ||x,—xy,|| < d+-¢€ for any m # n; m,n > K.
Then we have

lirILn(fn — f)(zx) =0 and lign fr(z,) =0.

Since hngé [ #2222 ]] < 1 and ||| < 1, we have, by the definition of R(1, X),

limsup ||z, + 2| < (d+e)R(1, X) < (d+¢)1/2CN3(X) = (d + &)

We construct elements of X and X+

(G e MR AL (e M
f={fdu ;and §= fx.

Here h denotes an equivalence class of the sequence {hy} such that h, = h for all

n € N. Clearly 7,y € By and f.ge Ss.. Moreover,

fzadu) =1 and |f(zk)| = |f(zk)| <e.

On the other hand,
d{zx,}u) =0 and g(zk)=1.
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Let consider
IF =l = (=9 = (@)~ 3@)
= ( F({an}u) = (@) = [§({zn}u) — 3(2k)])
2 —

1
> A —(1-e—-0+1) =

d—l—s

On the other hand,

If+al > (F+9)@) = f@) +3@)
)+

= &Hiﬁgﬂ{nm T Fwi) + {wadu) + i)
1 2—¢
e P G R Bl e
Thus we have
W ralrf -l
NI = 2
(3_;92 + ((d2+_5a)2
- 4
i 1 .2 (2—5)2 (2_5)2
- <d+e) 4w )

Since ¢ is arbitrary and the Jordan-von Neumann constants of X*, X X and X*

are all equal, we obtain

Cnp(X) > (%)(1+m).

Thus
ZCNJ( ) +1

WESF 2 55 P

Using Theorem 4.3.7, we obtain the following corollary.

Corollary 4.3.8. [17, Theorem 3.16], [59, Theorem 2] Let X be a Banach space. If
CnjX) < 1+2\/§, then X and X* has uniform normal structure.

Proof. Let X be a Banach space ultrapower of X. Since CNJ (X) = ONj(X),
Theorem 4.3.7 can be applied to X. The inequality in Theorem 4.3.7 implies
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WCS(X) > 1 if CNJ(X) < %g Since WCS(X) > 1 implies X has weak
normal structure [12] and since X is reflexive, it must be the case that X has

normal structure. By [27, Theorem 5.2], X has uniform normal structure as
desired. OJ

Recall that the Cardano’s formula is a formula for solving the polynomial
of degree three ; ax® + bx? + cx +d = 0.
The solution of ax® + bx? + cx +d = 0 is

1 1
3

xz{q+[q2+(r—p2)3}%}3+{q— [q2+(r—p2)3}%} +p

where
—b 3., be — 3ad d c
= — = ——— and r = —.
p 3a’ =p 6a2 3a

Using the inequality appearing in Theorem 4.3.7, we see that CNj(X) <

2 . .
1—|—% if 8(Cnyj(X))?—8(CNj(X))?—=2CN;(X)—1 < 0. By applying the
Cardano’s formula to the equation 8(Cyj(X))* —=8(CNj(X))?—20N(X)—1=0

we have

U L
P=35 47 o AT = "1
Thus
1y 5
61 61 1 1.\%?
X — o ar 2 s \ (7 2
ONg(X) 432 +'[(432) + (( 12) (3) ) ]

61 61 1 1,\*]? 1
432 [(432) + <( 12) (3) ) ] *3
8L
_J6r a2 343 12| °
] 432 186624 46656
A 8
61 3721 343 12 1° 1
4+ — — — + =
432 | 186624 46656 3
_ [ 61 (10959494 N
) 432 8707129344
o 109594944 \ 2 §_+ 1
432 8707129344 3

Therefore the equation 8(CNj(X))? — 8(Cnj(X))? —20Nj(X) —1=0

has a unique real solution which is 1.273....
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This implies that Cyy(X) < 1+ YE5E5 i O j(X) < ¢ = 1.273....

Hence we can state :

Corollary 4.3.9. Let E be a nonempty bounded closed convex subset of a Banach
space X with
CNJ(X) < co=1.273....

Assume that T : E — KC(F) is a nonexpansive mapping. Then T has a fized

point.



