
Chapter 4

The Jordan-von Neumann Constant

and Fixed Points for Multivalued

Nonexpansive Mappings

The purpose of this chapter is to study the existence of fixed points for

nonexpansive multivalued mappings in a particular class of Banach spaces. Fur-

thermore, we demonstrate a relationship between the weakly convergent sequence

coefficient WCS(X) and the Jordan-von Neumann constant CNJ(X) of a Banach

space X. Using this fact, we prove that if CNJ(X) is less than an appropriate pos-

itive number, then every multivalued nonexpansive mapping T : E → KC(E) has

a fixed point where E is a nonempty bounded closed convex subset of a Banach

space X and KC(E) is the class of all nonempty compact convex subsets of E.

4.1 Introduction

In 1969, Nadler [54] established the multivalued version of Banach’s contraction

principle. Since then the metric fixed point theory of multivalued mappings has

been rapidly developed. Some classical fixed point theorems for single-valued non-

expansive mappings have been extended to multivalued nonexpansive mappings.

In 1974, Lim [47], using Edelstein’s method of asymptotic center, proved

the existence of a fixed point for a multivalued nonexpansive self-mapping T : E →
K(E) where E is a nonempty bounded closed convex subset of a uniformly convex

Banach space X. In 1990, Kirk and Massa [43] extended Lim’s theorem. They

proved that every multivalued nonexpansive self-mapping T : E → KC(E) has

a fixed point where E is a nonempty bounded closed convex subset of a Banach

space X for which the asymptotic center in E of each bounded sequence of X

is nonempty and compact. In 2001, Xu [66] extended Kirk-Massa’s theorem to

nonself-mapping T : E → KC(X) which satisfies the inwardness condition.

In 2004, Dominguez and Lorenzo [24] proved that every multivalued non-

expansive mapping T : E → KC(E) has a fixed point where E is a nonempty
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bounded closed convex subset of a Banach space X with εβ(X) < 1. Consequently,

they can give an affirmative answer of a problem in [65] proving that every non-

expansive self-mapping T : E → KC(E) has a fixed point where E is a nonempty

bounded closed convex subset of a nearly uniformly convex Banach space. In

chapter 3, we gave an existence of a fixed point for a multivalued nonexpansive

and 1 − χ−contractive mapping T : E → KC(X) which satisfies the inward-

ness condition, where E is a nonempty bounded closed convex separable subset

of a reflexive Banach space which satisfies the Dominguez-Lorenzo condition, i.e.,

an inequality concerning the asymptotic radius and the Chebyshev radius of the

asymptotic center for some types of sequences. Consequently, they could show

that if X is a uniformly nonsquare Banach space satisfying property WORTH

and T : E → KC(X) is a nonexpansive mapping which satisfies the inwardness

condition, where E is a nonempty bounded closed convex separable subset of X,

then T has a fixed point. Furthermore, we also ask : Does CNJ(X) < 1+
√

3
2

imply

the existence of a fixed point for multivalued nonexpansive mappings ?

In this study, we organize as follows. We define a property for a Banach

spaces which we call property (D) (see definition in Section 4.3), which is weaker

than the Dominguez-Lorenzo condition and stronger than weak normal structure

and we prove that if X is a Banach space satisfying property (D) and E is a

nonempty weakly compact convex subset of X, then every nonexpansive mapping

T : E → KC(E) has a fixed point. Then we state a relationship between the

weakly convergent sequence coefficient WCS(X) and the Jordan-von Neumann

constant CNJ(X) of a Banach space X. Finally, using this fact, we prove that

if CNJ(X) is less than an appropriate positive number, then every multivalued

nonexpansive mapping T : E → KC(E) has a fixed point. In particular, we give

a partial answer to the question which has been asked in [15].

4.2 Preliminaries

Throughout this study we let X∗ stand for the dual space of a Banach space X. By

BX and SX we denote the closed unit ball and the unit sphere of X, respectively.

Let A be a nonempty bounded subset of X.

The number

r(A) := inf
{

sup
y∈A

‖x− y‖ : x ∈ A
}
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is called the Chebyshev radius of A and the number

diam(A) := sup{‖x− y‖ : x, y ∈ A}

is called the diameter of A.

A Banach space X has normal structure (resp. weak normal structure) if

r(A) < diam(A)

for every bounded closed (resp. weakly compact) convex subset A of X with

diam(A) > 0.

A Banach space X is said to have uniform normal structure (resp. weak uniform

normal structure) if

inf

{
diam A

r(A)

}
> 1,

where the infimum is taken over all bounded closed (resp. weakly compact) convex

subsets A of X with diam A > 0.

Let X be a Banach space without Schur property, that is, there is weakly

convergent sequence which is not norm convergent. The weakly convergent se-

quence coefficient WCS(X) [12] of X is the number

WCS(X) := inf

{
A({xn})
ra({xn})

}
,

where the infimum is taken over all sequences {xn} in X which are weakly (not

strongly) convergent, A({xn}) := lim supn→∞{‖xi − xj‖ : i, j ≥ n} is the asymp-

totic diameter of {xn}, and ra({xn}) := inf{lim supn→∞ ‖xn−y‖ : y ∈ conv({xn})}
is the asymptotic radius of {xn}.

Some equivalent definitions of the weakly convergent sequence coefficient

can be found in [3, p. 120] as follows :

WCS(X) = inf
{ limn,m;n 6=m ‖xn − xm‖

limn→∞ ‖xn‖ : {xn} converges weakly to zero ,

lim
n,m;n 6=m

‖xn − xm‖ and lim
n→∞

‖xn‖ exist
}

,

WCS(X) = inf
{

lim
n,m;n 6=m

‖xn − xm‖ : {xn} converges weakly to zero,

‖xn‖ = 1 and lim
n,m;n6=m

‖xn − xm‖ exists
}

,
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WCS(X) = inf
{ A({xn})

lim supn→∞ ‖xn‖ : {xn} converges weakly to zero
}

and

WCS(X) = inf
{ a

lim supn→∞ ‖xn‖ : {xn} converges weakly to zero and

lim
n,m;n6=m

‖xn − xm‖ = a
}

.

It is easy to see, from the definitions of WCS(X), that 1 ≤ WCS(X) ≤ 2,

and it is known that WCS(X) > 1 implies X has weak uniform normal structure

[12].

For a Banach space X, the Jordan-von Neumann constant CNJ(X) of X,

introduced by Clarkson [13], is defined by

CNJ(X) = sup

{‖x + y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2
: x, y ∈ X not both zero

}
.

The constant R(a,X), which is a generalized Garcia-Falset coefficient [29], is in-

troduced by Dominguez [20] : For a given nonnegative real number a,

R(a,X) := sup{lim inf
n

‖x + xn‖},

where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and all weakly null

sequences {xn} in the unit ball of X such that limn,m;n 6=m ‖xn − xm‖ ≤ 1.

A relationship between the constant R(1, X) and the Jordan-von Neumann

constant CNJ(X) can be found in [57] :

R(1, X) ≤
√

2CNJ(X).

4.3 Main results

Definition 4.3.1. A Banach space X is said to satisfy property (D) if there exists

λ ∈ [0, 1) such that for any nonempty weakly compact convex subset E of X, any

sequence {xn} ⊂ E which is regular asymptotically uniform relative to E, and any

sequence {yn} ⊂ A(E, {xn}) which is regular asymptotically uniform relative to

E we have

r(E, {yn}) ≤ λr(E, {xn}). (4.8)
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Recall the Dominguez-Lorenzo condition introduced in [15] as follow : A

Banach space X is said to satisfy the Dominguez-Lorenzo condition if there exists

λ ∈ [0, 1) such that for every weakly compact convex subset E of X and for every

bounded sequence {xn} in E which is regular relative to E,

rE(A(E, {xn})) ≤ λr(E, {xn}).

It is clear from the definition that property (D) is weaker than the Dominguez-

Lorenzo condition. In fact, property (D) is strictly weaker than the Dominguez-

Lorenzo condition as shown in [21]. The next result shows that property (D) is

stronger than weak normal structure.

Theorem 4.3.2. Let X be a Banach space satisfying property (D). Then X has

weak normal structure.

Proof. Suppose on the contrary, thus there exists a weakly null sequence {xn} ⊂
BX such that lim

n→∞
‖xn − x‖ = 1 for all x ∈ C = conv({xn}) (see [63]).

By passing through a subsequence, we may assume that {xn} is regular relative

to C. We see that r(C, {xn}) = 1 and A(C, {xn}) = C. Moreover {xn} is asymp-

totically uniform relative to C. Indeed, let {xnk
} be a subsequence of {xn} we

have

A(C, {xnk
}) =

{
x ∈ C : lim sup

k→∞
‖xnk

− x‖ = r(C, {xnk
})} = C.

Since {xn} ⊂ C = A(C, {xn}) and X satisfies property (D) with a corresponding

λ ∈ [0, 1), we have

r(C, {xn}) ≤ λr(C, {xn})
which leads to a contradiction. ¤

The following results will be very useful in order to prove our main theo-

rem.

Theorem 4.3.3 (Dominguez and Lorenzo [22]). Let E be a nonempty weakly

compact separable subset of a Banach space X, T : E → K(E) a nonexpansive

mapping, and {xn} a sequence in E such that lim
n→∞

d(xn, Txn) = 0. Then there

exists a subsequence {zn} of {xn} such that

Tx ∩ A 6= ∅, ∀x ∈ A := A(E, {zn}).

Theorem 4.3.4 (Dominguez and Lorenzo [24]). Let E be a nonempty weakly

compact convex separable subset of a Banach space X. Assume that T : E →
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KC(E) is a contraction mapping. If A is a closed convex subset of E such that

Tx ∩ A 6= ∅ for all x ∈ A, then T has a fixed point in A.

We can now state our main theorem.

Theorem 4.3.5. Let E be a nonempty weakly compact convex subset of a Ba-

nach space X which satisfies property (D). Assume that T : E → KC(E) is a

nonexpansive mapping. Then T has a fixed point.

Proof. The first part of the proof is similar to the proof of Theorem 4.2 in [22].

Therefore, we only sketch this part of the proof. From [45] we can assume that E

is separable. Fix z0 ∈ E and define a contraction Tn : E → KC(E) by

Tn(x) =
1

n
z0 + (1− 1

n
)Tx, x ∈ E.

By Nadler’s theorem [54], for any n ∈ N, Tn has a fixed point, say x1
n. It is

easy to prove that lim
n→∞

dist(x1
n, Tx1

n) = 0. By Lemma 2.2.3, we can assume that

sequence {x1
n} ⊂ E is regular asymptotically uniform relative to E. Denote A1 =

A(E, {x1
n}). By Theorem 4.3.3 we can assume that Tx ∩ A1 6= ∅ for all x ∈ A1.

Fix z1 ∈ A1 and define a contraction Tn : E → KC(E) by

Tn(x) =
1

n
z1 + (1− 1

n
)Tx, x ∈ E.

Convexity of A1 implies Tn(x) ∩ A1 6= ∅ for all x ∈ A1. By Theorem 4.3.4, Tn has

a fixed point in A1, say x2
n. Consequently, we can get a sequence {x2

n} ⊂ A1 which

is regular asymptotically uniform relative to E and lim
n→∞

dist(x2
n, Tx2

n) = 0. Since

X satisfies the property (D) with a corresponding λ ∈ [0, 1), we have

r(E, {x2
n}) ≤ λr(E, {x1

n}).

By induction, we can find a sequence {xk
n} ⊂ Ak−1 = A(E, {xk−1

n }) which is regular

asymptotically uniform relative to E,

lim
n→∞

dist(xk
n, Txk

n) = 0,

and

r(E, {xk
n}) ≤ λr(E, {xk−1

n }) for all k ∈ N.

Consequently,

r(E, {xk
n}) ≤ λr(E, {xk−1

n }) ≤ ... ≤ λk−1r(E, {x1
n}).
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In view of [3, p. 48], we may assume that for each k ∈ N,

lim
n,m;n 6=m

‖xk
n − xk

m‖ exists,

and in addition ‖xk
n − xk

m‖ < lim
n,m;n6=m

‖xk
n − xk

m‖+ 1
2k for all n,m ∈ N and n 6= m.

Let {yn} be the diagonal sequence {xn
n}. We claim that {yn} is a Cauchy sequence.

For each n ≥ 1, we have for any positive number m,

‖yn − yn−1‖ ≤ ‖yn − xn−1
m ‖+ ‖xn−1

m − yn−1‖
= ‖yn − xn−1

m ‖+ ‖xn−1
m − xn−1

n−1‖
≤ ‖yn − xn−1

m ‖+ lim
i,j;i6=j

‖xn−1
i − xn−1

j ‖+
1

2n−1

Taking upper limit as m →∞,

‖yn − yn−1‖ ≤ lim sup
m→∞

‖yn − xn−1
m ‖+ lim

i,j;i6=j
‖xn−1

i − xn−1
j ‖+

1

2n−1

≤ r(E, {xn−1
n }) + lim sup

i
‖xn−1

i − yn‖+ lim sup
j

‖xn−1
j − yn‖+

1

2n−1

≤ 3r(E, {xn−1
n }) +

1

2n−1

≤ 3λn−2r(E, {x1
n}) +

1

2n−1
.

Since λ < 1, we conclude that there exists y ∈ E such that yn converges to y.

Consequently,

dist(y, Ty) ≤ ‖y − yn‖+ dist(yn, Tyn) + H(Tyn, T y) → 0 as n →∞.

Hence y is a fixed point of T. ¤

Theorem 4.3.6. Let E be a nonempty weakly compact convex subset of a Banach

space X with

CNJ(X) < 1 +
WCS(X)2

4
.

Assume that T : E → KC(E) is a nonexpansive mapping. Then T has a fixed

point.

Proof. We will prove that X satisfies property (D). Since CNJ(X) < 1+ WCS(X)2

4
,

we choose λ =
2
√

CNJ(X)−1

WCS(X)
< 1. Let D be a nonempty weakly compact convex

subset of X, {xn} ⊂ D and {yn} ⊂ A(D, {xn}) be regular asymptotically uni-

form sequences relative to D. We will show that (4.8) is satisfied. By choosing
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a subsequence, if necessary, we can assume that {yn} converges weakly to y ∈ D

and

lim
k,j;k 6=j

‖yk − yj‖ = l for some l ≥ 0. (4.9)

Let r = r(D, {xn}). The condition (4.8) easily follows when r = 0 or l = 0. We

assume now that r > 0 and l > 0. Let ε > 0 so small that 0 < ε < l ∧ r. From

(4.9) we assume that

∣∣‖yk − yj‖ − l
∣∣ < ε for all k 6= j. (4.10)

.

Fix k 6= j. Since yk, yj ∈ A(D, {xn}) and using the convexity of A(D, {xn}), we

can assume, passing through a subsequence, that

‖xn − yk‖ < r + ε, ‖xn − yj‖ < r + ε, (4.11)

and ∥∥∥xn − yk + yj

2

∥∥∥ > r − ε for all large n. (4.12)

From the definition of CNJ(X), by (4.10), (4.11), and (4.12) we have for n large

enough,

CNJ(X) ≥ ‖2xn − (yk + yj)‖2 + ‖yk − yj‖2

2‖xn − yk‖2 + 2‖xn − yj‖2

≥ 4(r − ε)2 + (l − ε)2

4(r + ε)2
.

Since ε is arbitrary small, it follows that

CNJ(X) ≥ 4r2 + l2

4r2
.

Since

WCS(X) = inf
{ limj,k;j 6=k ‖uj − uk‖

lim supj ‖uj‖ : uj
w→ 0, lim

j,k;j 6=k
‖uj − uk‖ exists

}
,

we can deduce that

CNJ(X) ≥ 1 +
WCS(X)2(lim supn ‖yn − y‖)2

4r2

≥ 1 +
WCS(X)2r(D, {yn})2

4r2
.

Consequently,

r(D, {yn}) ≤
2
√

CNJ(X)− 1

WCS(X)
r = λr(D, {xn})
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as desired. ¤

In order to prove our next result, we need the following theorem which

states a relationship between the weakly convergent sequence coefficient and the

Jordan-von Neumann constant of a Banach space X.

Theorem 4.3.7. For a Banach space X,

[WCS(X)]2 ≥ 2CNJ(X) + 1

2[CNJ(X)]2
.

Proof. Since CNJ(X) ≤ 2 and the result is obvious if CNJ(X) = 2, we can assume

that CNJ(X) < 2. It is known that CNJ(X) < 2 implies X and X∗ are reflexive.

Put α =
√

2CNJ(X). Let {xn} be a normalized weakly null sequence in X and

d := limn,m;n 6=m ‖xn − xm‖. Consider a sequence {fn} of norm one functionals for

which fn(xn) = 1. Since X∗ is reflexive we can assume that {fn} converges weakly

to some f in X∗. Let ε be an arbitrary positive number and choose K ∈ N large

enough so that |f(xn)| < ε and d−ε ≤ ‖xn−xm‖ ≤ d+ε for any m 6= n; m, n ≥ K.

Then we have

lim
n

(fn − f)(xK) = 0 and lim
n

fK(xn) = 0.

Since lim
n,m;n 6=m

‖xn−xm

d+ε
‖ < 1 and ‖ xK

d+ε
‖ ≤ 1, we have, by the definition of R(1, X),

lim sup
n

‖xn + xK‖ ≤ (d + ε)R(1, X) ≤ (d + ε)
√

2CNJ(X) = (d + ε)α.

We construct elements of X̃ and X̃∗ :

x̃ =
{xn − xK

d + ε

}
U

, ỹ =
{xn + xK

(d + ε)α

}
U

,

f̃ = {fn}U , and g̃ = ˙fK .

Here ḣ denotes an equivalence class of the sequence {hn} such that hn ≡ h for all

n ∈ N. Clearly x̃, ỹ ∈ BX̃ and f̃ , g̃ ∈ SX̃∗ . Moreover,

f̃({xn}U) = 1 and |f̃( ˙xK)| = |ḟ( ˙xK)| < ε.

On the other hand,

g̃({xn}U) = 0 and g̃( ˙xK) = 1.
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Let consider

‖f̃ − g̃‖ ≥ (f̃ − g̃)(x̃) = f̃(x̃)− g̃(x̃)

=
1

d + ε

(
f̃({xn}U)− f̃( ˙xK)− [g̃({xn}U)− g̃( ˙xK)]

)

≥ 1

d + ε

(
1− ε− 0 + 1

)
=

2− ε

d + ε
.

On the other hand,

‖f̃ + g̃‖ ≥ (f̃ + g̃)(ỹ) = f̃(ỹ) + g̃(ỹ)

=
1

(d + ε)α

(
f̃({xn}U) + f̃( ˙xK) + g̃({xn}U) + g̃( ˙xK)

)

≥ 1

(d + ε)α

(
1− ε + 0 + 1

)
=

2− ε

(d + ε)α
.

Thus we have

CNJ(X̃∗) ≥ ‖f̃ + g̃‖2 + ‖f̃ − g̃‖2

2‖f̃‖2 + 2‖g̃‖2

≥
(2−ε

d+ε
)2 + ( 2−ε

(d+ε)α
)2

4

=
( 1

d + ε

)2((2− ε)2

4
+

(2− ε)2

4α2

)
.

Since ε is arbitrary and the Jordan-von Neumann constants of X∗, X, X̃ and X̃∗

are all equal, we obtain

CNJ(X) ≥ ( 1

d2

)(
1 +

1

2CNJ(X)

)
.

Thus

[WCS(X)]2 ≥ 2CNJ(X) + 1

2[C NJ(X)]2
.

¤
Using Theorem 4.3.7, we obtain the following corollary.

Corollary 4.3.8. [17, Theorem 3.16], [59, Theorem 2] Let X be a Banach space. If

CNJ(X) < 1+
√

3
2

, then X and X∗ has uniform normal structure.

Proof. Let X̃ be a Banach space ultrapower of X. Since CNJ(X̃) = CNJ(X),

Theorem 4.3.7 can be applied to X̃. The inequality in Theorem 4.3.7 implies
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WCS(X̃) > 1 if CNJ(X̃) < 1+
√

3
2

. Since WCS(X̃) > 1 implies X̃ has weak

normal structure [12] and since X̃ is reflexive, it must be the case that X̃ has

normal structure. By [27, Theorem 5.2], X has uniform normal structure as

desired. ¤

Recall that the Cardano’s formula is a formula for solving the polynomial

of degree three ; ax3 + bx2 + cx + d = 0.

The solution of ax3 + bx2 + cx + d = 0 is

x =
{

q +
[
q2 + (r − p2)3

] 1
2

} 1
3

+
{

q − [
q2 + (r − p2)3

] 1
2

} 1
3

+ p

where

p =
−b

3a
, q = p3 +

bc− 3ad

6a2
and r =

c

3a
.

Using the inequality appearing in Theorem 4.3.7, we see that CNJ(X) <

1+ WCS(X) 2

4
if 8(CNJ(X)) 3−8(CNJ(X)) 2−2CNJ(X)−1 < 0. By applying the

Cardano’s formula to the equation 8(CNJ(X)) 3−8(CNJ(X)) 2−2CNJ(X)−1 = 0

we have

p =
1

3
, q =

61

432
and r = − 1

12
.

Thus

CNJ(X) =





61

432
+

[
(

61

432
)2 +

(
(− 1

12
)− (

1

3
)2

)3
] 1

2





1
3

+





61

432
−

[
(

61

432
)2 +

(
(− 1

12
)− (

1

3
)2

)3
] 1

2





1
3

+
1

3

=

{
61

432
+

[
3721

186624
− 343

46656

] 1
2

} 1
3

+

{
61

432
−

[
3721

186624
− 343

46656

] 1
2

} 1
3

+
1

3

=

{
61

432
+

(
109594944

8707129344

) 1
2

} 1
3

+

{
61

432
−

(
109594944

8707129344

) 1
2

} 1
3

+
1

3
.

Therefore the equation 8(CNJ(X)) 3 − 8(CNJ(X)) 2 − 2CNJ(X) − 1 = 0

has a unique real solution which is 1.273....
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This implies that CNJ(X) < 1 + WCS(X) 2

4
if CNJ(X) < c0 = 1.273....

Hence we can state :

Corollary 4.3.9. Let E be a nonempty bounded closed convex subset of a Banach

space X with

CNJ(X) < c0 = 1.273....

Assume that T : E → KC(E) is a nonexpansive mapping. Then T has a fixed

point.
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