
Chapter 2

Basic Knowledge

The aim of this chapter is to give some definitions, notations and properties

of Fatou and Julia sets of meromorphic functions which will be used in the later

chapters.

2.1 Extended complex plane

The extended complex plane is the union

C = C ∪ {∞}.

To obtain a metric on C, we identify C with the horizontal plane

{(x1, x2, x3) ∈ R3 : x3 = 0}

in R3 and proceed to construct the usual model for C as a sphere. Let S be a

sphere in R3 with unit radius and center at the origin, and denote the point (0, 0, 1)

(the top point of S) by ζ. We now project each point z in C linearly towards (or

away from) ζ until it meets S at a point z∗ distinct from ζ : the map π : z 7→ z∗

is called the stereographic projection of C into S. Clearly, if |z| is large, then z∗ is

near to ζ, and we define the projection π(∞) of∞ to be ζ. With this definition, π

is a bijective map from C to S and this explains why C is also called the complex

(or Riemann) sphere: see Figure2.1.

We define the chordal metric on C by

σ(z, w) = |π(z)− π(w)|
= |z∗ − w∗|
=

2|z − w|
(1 + |z|2)1/2(1 + |w|2)1/2

where z and w are in C, while for z in C

σ(z,∞) = lim
w→∞

σ(z, w) =
2

(1 + |z|2)1/2
.
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Figure 2.1: Sterographic projection

That is, the chordal metric is the Euclidean length of the chord joining z∗ to w∗.

There is an alternative metric on C, namely the spherical metric χ, and this is

equivalent to the chordal metric σ. The spherical distance χ(z, w) between z and

w in C is, by definition, the Euclidean length of the shortest path on S (an arc

of a great circle) between z∗ and w∗. If the chord joining z∗ and w∗ subtends an

angle θ at the origin then, of course,

χ(z, w) = θ, σ(z, w) = 2 sin(θ/2)

so

σ(z, w) = 2 sin(
χ(z, w)

2
).

More useful are the inequalities

2

π
· χ(z, w) ≤ σ(z, w) ≤ χ(z, w)

which follow from the elementary inequalities

2θ

π
≤ sin θ ≤ θ, 0 ≤ θ ≤ π/2.

2.2 Entire and meromorphic functions

Let f be a function whose domain of definition contains a neighborhood of a point

z0. The derivative of f at z0, written f ′(z0), is defined by the equation

f ′(z) = lim
z→z0

f(z)− f(z0)

z − z0

,
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provided this limit exists. The function f is said to be differentiable at z0 when

its derivative at z0 exists. A function f : D → C defined on the plane domain D

is holomorphic (or analytic) in D if it has a derivative at each point in that set.

If we should speak of a function f that is holomorphic in a set S which is not

open, it is to be understood that f is holomorphic in an open set containing S. In

particular, f is holomorphic at a point z0 if it is holomorphic in a neighborhood of

z0. An entire function is a function that is holomorphic at each point in the entire

complex plane. A function f : D → C is meromorphic in D if each point of D has

a neighborhood on which either f or 1/f is holomorphic. A function f is said to

be defined near ∞ if it is defined on some set {|z| > r} ∪ {∞}, and in this sense,

f is holomorphic (or meromorphic) at ∞ if the map z 7→ f(1/z) is holomorphic

(or meromorphic) near the origin. A rational function is a function R : C→ C of

the form

R(z) =
P (z)

Q(z)
,

where P (z) and Q(z) are polynomials, not both being the zero polynomial, and

have no common factors. If P is zero, then R is the constant function zero, and

if Q is zero, then R is the constant function ∞. If Q(z) = 0, then R(z) is defined

to be ∞, and we define R(∞) as the limit of R(z) as z → ∞. The degree of R,

deg(R), is defined by

deg(R) = max{deg(P ), deg(Q)}.

If R is a constant function with value α, where α 6= 0,∞ we have deg(R) = 0,

and it is convenient to define deg(R) = 0 even when α is 0 or ∞. A function f

is transcendental meromorphic function in C if f is meromorphic in C and not

rational. Next, we distinguish three cases:

(i) f ∈M⇔ f is transcendental meromorphic in C;

(ii)f ∈ E ⇔ f is transcendental entire in C;

(iii)f ∈ R ⇔ f is rational with deg(f) ≥ 2.

Let f : C → C be a transcendental meromorphic function. A value a is

called a Picard exceptional value of f if f does not assume the value a in C. We

denote by PV (f) the set of the finite Picard exceptional values of f. According to
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the classical Picard’s theorem, f has at most one or two finite exceptional values

according to f is entire or meromorphic, respectively. Thus the set PV (f) contains

at most two points. If f has exactly one pole, which is a Picard exceptional value

of f , then f has the form

f(z) = z0 + (z − z0)−meg(z)

for some positive integer m and some entire function g(z), and f is a holomorphic

self-map of the punctured plane C\{z0}. We denote the set of such functions by

P , that is, f ∈ P if f has exactly one pole, which is a Picard exceptional value.

The reader should keep in mind that f always denotes a given meromorphic

function, unless specified otherwise.

2.3 Normal family

Definition 2.3.1 A sequence of functions {fn} converges spherically uniformly to

f on a set E ⊂ C if, for any ε > 0, there is a number N such that n ≥ N implies

χ(f(z), fn(z)) < ε,

for all z ∈ E.

Normality of meromorphic functions is an important concept, whose defi-

nition is the following:

Definition 2.3.2 A family F of functions meromorphic in a domain D is normal

in D if every sequence {fn} ⊂ F contains a subsequence which converges spher-

ically uniformly on compact subsets of D. The limit function is meromorphic or

the constant ∞. For z0 ∈ D, if there exists a neighborhood D(z0) ⊂ D of z0 such

that F is normal in D(z0), then we call that F is normal at z0.

A lot of normality criteria have been given. Based on Arzelá-Ascoli Theorem,

Montel in 1907 observed that for a family of holomorphic functions, locally bound-

edness implies equicontinuity.
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Theorem 2.3.3 (Montel) If F is a locally bounded family of holomorphic functions

on a domain D, then F is normal in D; Conversely, if F is normal in D and is

bounded on a subset of D, then F is locally bounded.

Theorem 2.3.4 (Montel) A family F of meromorphic functions in a domain D is

normal if and only if F is spherically equicontinuous in D.

The following fundamental normality test is very useful.

Theorem 2.3.5 (Montel) The family of all meromorphic (holomorphic) functions

of a domain D into the three (two)-punctured plane is normal there.

Note that the above theorem, the three (two) constants do not depend on

functions in the family. The condition can be improved as follows.

Theorem 2.3.6 [63] Let {f(z)} be a family of holomorphic functions in a domain

D. If each function f(z) of the family does not take values a(f) and b(f) such

that

|a(f)| < M, |b(f)| < M, |a(f)− b(f)| > d,

where M > 0, d > 0 are two constants independent of f , then {f(z)}is normal in

D.

For a family of meromorphic functions, we have

Theorem 2.3.7 ( Marty’s criterion)[60] A family F of meromorphic functions on

a domain D is normal if and only if the spherical derivatives

f#(z) =
|f ′(z)|

1 + |f(z)|2
are locally uniformly bounded in D for all f ∈ F .

An improvement is the following Lappan’s criterion.

Theorem 2.3.8 [58] Let F be a family of meromorphic functions in a domain D.

If there exist five distinct values aj(j = 1, 2, . . . , 5) such that

sup{f#(z) : f(z) = aj, z ∈ D, j = 1, 2, . . . , 5} <∞,

then F is normal in D.
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The following lemma due to Zalcman is very important for the study of

normal families.

Lemma 2.3.9 ( Zalman)[87] Let F be a family of meromorphic functions on D :

|z| < 1 and α be a real number satisfying −1 < α < 1. Then F is not normal in

D if and only if there exist

(i) a number r, 0 < r < 1;

(ii) a sequence of points zk, |zk| < r;

(iii) a positive sequence ρk, ρk → 0 and

(iv) a sequence {fn}n∈N ⊂ F ,
such that ραkfk(zk + ρkζ) → g(ζ) spherically uniformly on compact subset of C,

where g is a non-constant meromorphic function.

Remark 2.3.10 One can choose zk and ρk properly such that,

ρk ≤ 2

f#
k (zk)

1
1+|α|

, f#
k (zk) ≥ f#

k (0).

2.4 Nevanlinna theory

In 1925, R. Nevanlinna established first and second fundamental theorems, initiat-

ing the new study of value distributions. In this section, we collect basic results of

Nevanlinna theory. We refer reader to [45] for more detail. We denote by n(r, 1
f−a)

the number of roots of f(z) = a on {|z| ≤ r} counting multiplicity and by n(r, f)

the number of poles of f(z) on {|z| ≤ r} counting multiplicity. The counting

function of f are defined as follows:

N

(
r,

1

f − a
)

=

∫ r

0

n(t, 1
f−a)− n(0, 1

f−a)

t
dt+ n

(
0,

1

f − a
)

log r, a ∈ C

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

Furthermore, define m(r, f) and m(r, 1
f−a)(a 6=∞) as

m

(
r,

1

f − a
)

=
1

2π

∫ 2π

0

log+

∣∣∣∣
1

f(reiθ)− a

∣∣∣∣ dθ,

m(r, f) =

∫ 2π

0

log+
∣∣f(reiθ)

∣∣ dθ,
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where log+ x = max{log x, 0}. The Nevanlinna characteristic function of a mero-

morphic function f is defined as

T (r, f) = m(r, f) +N(r, f).

By applying Jensen formula, it is easy to deduce the First fundamental theorem.

Theorem 2.4.1 (First fundamental theorem)[45] Let f(z) be meromorphic in |z| <
R(≤ ∞). If a is an arbitrary complex number and 0 < r < R, and

f(z)− a =
∞∑
i=m

ciz
i, cm 6= 0, m ∈ Z,

is the Laurent expansion of f − a at the origin, then we have

T (r, f) = T

(
r,

1

f − a
)

+ log |cm|+ ε(r, a),

where |ε(r, a)| ≤ log 2 + log+ a.

The order and the lower order of a meromorphic function f are defined

by

ρ = ρ(f) = lim sup
r→∞

log T (r, f)

log r
,

and

µ = µ(f) = lim inf
r→∞

log T (r, f)

log r
,

respectively.

Denote the maximum modulus of an entire function f on {|z| ≤ r} by

M(r, f) = max|z|≤r |f(z)|. Since for any entire function f ,

T (r, f) ≤ log+M(r, f) ≤ R + r

R− rT (R, f),

whenever 0 < r < R, we obtained

ρ = ρ(f) = lim sup
r→∞

log T (r, f)

log r
= lim sup

r→∞

log logM(r, f)

log r
,

and

µ = µ(f) = lim inf
r→∞

log T (r, f)

log r
= lim inf

r→∞
log logM(r, f)

log r
.

Now we state Nevanlinna’s Second fundamental theorem.
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Theorem 2.4.2 (Second fundamental theorem)[45] Let f be a non-constant mero-

morphic function, let q ≥ 2 and let a1, a2, . . . , aq be distinct finite complex numbers,

δ > 0 and suppose that |aµ − aν | > δ for 1 ≤ µ < ν ≤ q. Then

m(r, f) +

q∑
i=1

m

(
r,

1

f − ai

)
≤ 2T (r, f)−N1(r) + S(r, f)

where

N1(r) = 2N(r, f)−N(r, f ′) +N

(
r,

1

f ′

)
,

and

S(r, f) = O(log(rT (r, f))), (r →∞)

except for a set E with a finite linear measure.

Denote the deficiency of a by

δ(a, f) = lim sup
r→∞

m(r, 1
f−a)

T (r, f)
= 1− lim inf

r→∞

N(r, 1
f−a)

T (r, f)
,

for a non-constant meromorphic function f and for a ∈ C. Then it follows from

the Second fundamental theorem that

∑

a∈C
δ(a, f) ≤ 2.

Now we denote by n̄(r, 1
f−a) the number of zeros of f(z) − a in {|z| ≤ r}, each

zero being counted only once, and n̄(r, f) the number of poles of f(z) in {|z| ≤ r},
each pole counted only once. Moreover, denote

N

(
r,

1

f − a
)

=

∫ r

0

n̄(t, 1
f−a)− n̄(0, 1

f−a)

t
dt+ n̄

(
0,

1

f − a
)

log r, a ∈ C

N(r, f) =

∫ r

0

n̄(t, f)− n̄(0, f)

t
dt+ n̄(0, f) log r.

Θ(a, f) = 1− lim sup
r→∞

N(r, 1
f−a)

T (r, f)
,

θ(a, f) = lim inf
r→∞

N(r, 1
f−a)−N(r, 1

f−a)

T (r, f)
.

Then the Nevannlinna’s Second fundamental theorem can be expressed as in the

following: if f(z) is non-constant meromorphic in the finite plane, then the set of

values a for which Θ(a, f) > 0 is at most countable and

∑

a∈C
{δ(a, f) + θ(a, f)} ≤

∑

a∈C
Θ(a, f) ≤ 2.
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2.5 The fixed point theory

In this section, we will discuss the fixed points of meromorphic functions. The

study of complex dynamics begins with the description of the local behavior of a

function near its fixed points. We are concerned with the number of fixed points

and the existence of canonical coordinate systems at fixed points. These results

will enable us to establish some basic properties of the Fatou-Julia theory.

2.5.1 Classification of fixed points

Given z0, the forward orbit of z0 is the set

O+(z0) = {zn = fn(z0) : n = 0, 1, . . .};

and the backward orbit of z0 is the set

O−(z0) = {z : fn(z) = z0, n = 0, 1, . . .},

which is the collection of the pre-images of z0 under f, f 2, . . . . The point z0 is

called periodic if zn = z0 for some n. The minimum n is called its period. In

particular, if f(z0) = z0, then z0 is called a fixed point of f. The point z0 is called

pre-periodic if fk(z0) is periodic for some integer k > 0, and strictly pre-periodic

if it is pre-periodic but not periodic. A periodic point of period n is called a fixed

point of exact order n.

For periodic point z0 with period n, the orbit

O+(z0) = {z0, . . . , zn = z0}

is called the cycle and λ = (fn)′(z0) is called its multiplier(or eigenvalue). By the

chain rule,

(fn)′(z0) =
n−1∏
j=0

f ′(f j(z0)).

This has to be modified if z0 = ∞: we define λ to be the multiplier of the fixed
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point of the conjugate z 7→ 1/fn(1/z). The cycle O+(z0) is called





attracting if |λ| < 1

indifferent if |λ| = 1

repelling if |λ| > 1.

In particular, the cycle O+(z0) is called super-attracting if and only if λ = 0. The

indifferent cycles are subdivided into two situations:





rationally indifferent if λm = 1 for some m ∈ N

irrationally indifferent if λ = e2πiθ, θ ∈ R\Q.

A rationally indifferent cycle is also called a parabolic cycle.

2.5.2 Fixed points of iterated functions

The first thing is to know whether or not there exists a fixed point for fn.

Theorem 2.5.1 (see in [48]) If f ∈ E , then for each integer n ≥ 2, f(z) has

an infinite number of periodic points of period n. If f ∈ P, then f always has

infinitely many fixed points.

Note that any fixed point of f is a fixed point of fn for any positive integer

n. The example ez + z shows that the conclusion does not hold for n = 1.

W. Bergweiler proved that for any n ≥ 2, f ∈ E , f has infinitely many

repelling fixed points of period n.

2.5.3 Attracting and repelling fixed points

Let f(z) be holomorphic on some neighborhood of z = 0. We first suppose that

z = 0 is an attracting (but not super-attracting) or repelling fixed point of f .

Then near z = 0

f(z) = λz + a2z
2 + · · · ,

where λ( 6= 0) is the multiplier. We show that f(z) can be reduced to a simple

normal form. The following result is proved by G. Koenigs [54] in 1884.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



15

Theorem 2.5.2 (Koenigs linearization theorem) [54] If λ satisfies |λ| 6= 0, 1, then

there exists a local holomorphic change of coordinate w = φ(z) with φ(0) = 0 such

that φ ◦ f ◦ φ−1 is the linear map w 7→ λw for all w in some neighborhood of the

origin. Furthermore, φ is unique up to multiplication by a non-zero constant. We

call φ a Koenigs map.

If z0 is an attractive fixed point, then there exists a disk D = {|z−z0| < r}
in which the sequence fn(z)(n = 1, 2, . . .) converges uniformly to z0.

Next we deal with super-attractive fixed points. Let f be holomorphic in

some neighborhood of the origin. If z = 0 is a super-attractive fixed point of f ,

then

f(z) = azp + ap+1z
p+1 + · · · a 6= 0, p ≥ 2.

In 1904, Böttcher [31] proved the existence of the conjugation.

Theorem 2.5.3 (Böttcher) [31] If z = 0 is a super-attractive fixed point of f , then

there is a conformal map w = φ(z) of a neighborhood of 0 onto a neighborhood of 0

that conjugates f(z) to wp. The conjugating function is unique up to multiplication

by a (p− 1)th root of unity.

2.5.4 Rationally indifferent fixed points

Now we consider the case that z = 0 is a rationally indifferent fixed point of f ,

that is, the multiplier is a root of unity. Choose a neighborhood N of the origin

that is small enough so that f maps N conformally onto some neighborhood N0

of the origin.

A connected open set U , with compact closure U ⊂ N ∩N0, will be called

an attracting petal for f at the origin if

f(U) ⊂ U ∪ {0}

and
⋂

k≥0

fk(U) = {0}.

Similarly, V ⊂ N ∩N0 is a repelling petal for f if V is an attracting petal for f−1.
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Theorem 2.5.4 [62] Let

f(z) = z + azn+1 + higher terms (a 6= 0, n ≥ 1)

be holomorphic in some neighborhood N of the origin. Then there exist n disjoint

attracting petals Ui and n disjoint repelling petals Vi so that the union of these

2n petals, together with the origin itself, forms a neighborhood N0 of the origin.

These petals alternate with each other, so that each Ui intersects only Vi and Vi−1

(where V0 is defined to be Vn).

Now we show the existence of a local conjugation near rationally indifferent

fixed point z = 0.

Theorem 2.5.5 [62] Let

f(z) = λz + azn+1 + higher terms (a 6= 0, n ≥ 1)

be holomorphic in some neighborhood N of the origin, where λ is a primitive qth

root of unity. Then there exists a local holomorphic change of coordinate w = φ(z)

such that φ ◦ f q ◦ φ−1 is the linear map z 7→ w+ 1 for all w in some neighborhood

of the origin.

2.5.5 Irrationally indifferent fixed points

Once more we consider holomorphic functions of the form

f(z) = λz + a2z
2 + a3z

3 + · · · ,

defined in some neighborhood of the origin, where the multiplier λ is of the form

λ = e2πiθ, θ ∈ R\Q.

Next we will study whether or not this function conjugates to the linear

map w 7→ λw.

In 1938, Cremer proved that if |λ| = 1 and lim infn→∞ |λn − 1| 1n = 0,

then there is a holomorphic function f(z) = λz + · · · such that no linearization

is possible. Later in 1942, Siegel gave an example of unimodular λ for which
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linearization is possible. In order to state this result clearly, some facts in number

theory are needed.

A real number θ is Diophantine if it is badly approximable by rational

numbers, in the sense that there exist c > 0 and µ <∞ so that

∣∣∣∣θ −
p

q

∣∣∣∣ ≥
c

qµ

for all integers p and q, q 6= 0. This occurs if and only if λ = e2πiθ satisfies

|λq − 1| ≥ c′q1−µ, q ≥ 1,

for some constant c′. In fact, as qθ − p→ 0,

|λq − 1| = |e2πi(qθ−p) − 1| ∼ 2πq

∣∣∣∣θ −
p

q

∣∣∣∣ .

For fixed µ > 2, if E is the set of θ ∈ [0, 1] such that |θ− p
q
| < q−µ infinitely

often, then the measure of E satisfies

|E| ≤
∞∑
q=n

2 · q−µ · q = O(n2−µ)→ 0.

Thus almost all real numbers are Diophantine.

We call an irrationally indifferent fixed point a Siegel point or Cremer

point depending whether a local linearization is possible or not. Similarly we can

define the Siegel cycle and the Cremer cycle.

Theorem 2.5.6 (Siegel)[33] If θ is Diophantine, and if f has fixed point at 0 with

multiplier e2πiθ, then there exists a local change of coodinate z = h(w), which

conjugates f to the irrational rotation w 7→ λw.

As an application of this theorem, we obtain the following result.

Corollary 2.5.7 [48] Let z0 be a Siegel point. Then there exists a disk D : {|z −
z0| < r} and a sequence of positive integers nk(k = 1, 2, . . .) tending to ∞ such

that in D, the sequence fnk(k = 1, 2, . . .) converges uniformly to z0.
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2.6 The Fatou and Julia sets

In this section, we will deduce some elementary properties of the Fatou and Ju-

lia sets of meromorphic functions. There are some difference properties between

rational functions and transcendental functions, due to the existence of Picard

exceptional values.

2.6.1 Definition of the Fatou and Julia sets

Let f be a meromorphic function. We define

F (f) = {z ∈ C : the sequence {fn} is well-defined and normal at z}

and J(f) = C \ F (f),. They are called the Fatou set and the Julia set of f

respectively. According to the definition, it is easily verified that F (f) is open

(possibly empty) and J(f) is closed.

A set S is called forward invariant (or invariant) under f if z ∈ S implies

that f(z) ∈ S or f(z) is undefined; A set S is called backward invariant under

f if z ∈ S implies that w ∈ S for all w satisfying f(w) = z. A set S is called

completely invariant if it is both forward and backward invariant.

For f ∈ R, the Julia set J(f) and the Fatou set F (f) are completely

invariant, that is,

f(J(f)) = J(f) = f−1(J(f))

and

f(F (f)) = F (f) = f−1(F (f)).

However, for transcendental function, we will see the difference. The reason is

that f possibly has finite Picard exceptional values. For f ∈M∪ E

F (f) = f−1(F (f)) = f(F (f)) ∪ {PV (f) ∩ F (f)}.

In particular, if f has no Picard exceptional values, then f−1(F (f)) = F =

f(F (f)).
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2.6.2 Some properties of the Fatou and Julia sets

A point a ∈ C is said to be a Fatou exceptional value of the meromorphic function

f if the set O−(a) is finite.

We denote by FV (f) all the Fatou exceptional values of f. Note that

according to Nevanlinna’s second fundamental theorem, we have FV (f) contains

at most two points, and PV (f) ⊂ FV (f).

For any b ∈ C\FV (f), we have

J(f) ⊂
( ∞⋃
n=0

f−n(b)

)
.

Furthermore, if b ∈ J(f)\FV (f), then

J(f) =

( ∞⋃
n=0

f−n(b)

)
.

Note that the above results follow from Nevanlinna’s second fundamental theorem.

Now we define the set

P0 = P0(f) = O−(∞) = {z ∈ C : fn(z) =∞ for some n ∈ N}.

Let f be a function which has either at least two poles or exactly one pole, which

is not a Picard exceptional value. Then J(f) = P ′0. From the definition of the

Julia set, we see that P0 ⊂ J(f). For f ∈ E which has no unbounded component,

the Fatou exceptional value always belongs to J(f).

Next we give some basic properties.

Theorem 2.6.1 [48] Let f be a meromorphic function. Then

1. if f ∈ E ∪R∪P, then F (fp) = F (f) and J(fp) = J(f) for any positive integer

p. (Here we not include f ∈M because fn may not be meromorphic in C so that

F (fn) and J(fn) are not completely defined.);

2. J(f) contains an infinite number of points;

3. J(f) is perfect, that is, J(f) = {J(f)}′;
4. J(f) is the closure of repelling periodic points of f ;

5. (Expansivity of the Julia set) for any z0 ∈ J(f) and any neighborhood D of z0,

if A is a bounded and closed subset of C and A∩ FV (f) = ∅, then there exists an
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integer N > 0 such that for any n ≥ N , A ⊂ fn(D);

6. if J(f) has an interior point, then J(f) = C for f ∈ R and J(f) = C for

f ∈M.

Theorem 2.6.2 [48] If z0 ∈ J(f), then for each finite value a, there exist a sequence

of points ζk → z0 and a sequence of positive integers nk →∞ such that

fnk(ζk) = a (k = 1, 2, . . .),

except at most for two finite values. If f is entire, then there is at most one such

exceptional value.

For any meromorphic function f , the Fatou set F (f) contains all attracting

points, super-attracting points and all Siegel points of f ; the Julia set J(f) contains

all repelling points, all rationally indifferent points and all Cremer points.

Since for f ∈ E ∪R ∪ P , F (fp) = F (f) and J(fp) = J(f) then we obtain

that the Fatou set F (f) contains all attracting cycles, super-attracting cycles and

all Siegel cycles of f ; the Julia set J(f) contains all repelling cycles, all rationally

indifferent cycles and all Cremer cycles.

2.7 The components of the Fatou set

For a meromorphic function f , we focus on the behavior of the components of

the Fatou set F (f) and the behavior of f on its Fatou set. We will see that

there are some essential differences among rational functions, transcendental entire

functions and transcendental meromorphic functions.

2.7.1 Types of the components

Let U be a maximum domain of normality of the iterates of f namely, a component

of F (f). This domain is also called a stable domain or a Fatou component.

Consider a fixed component U of F (f). There are several possibilities for

the orbit of U under f .

(1) If fn(U) ⊂ U for some integer n ≥ 1, then we call U a periodic component of
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F (f). The minimum n is the period of the component, In particular, if n = 1, then

such a component U is said to be an invariant component or a fixed component.

(2) If fm(U) is periodic for some integer m ≥ 1, then we call U a pre-periodic

component of F (f). In particular, if U is pre-periodic but not periodic, then we

call U a really pre-periodic component.

(3) Otherwise, all fn(U) are disjointed, and we call U a wandering domain.

We have the classification theorem that was stated by I. N. Baker, J. Kotus

and Y. Lü Lyubich [18] as follows.

Theorem 2.7.1 [18] Let f be a transcendental meromorphic function and let U be

a periodic component of period m. Then we have the five possibilities:

(1) U contains an attracting periodic point z0 of period m, then fnm(z) → z0

for z ∈ U as n → ∞, and U is called the immediate attractive basin of z0.

Furthermore, U is called a super-attracting domain or an attracting domain

provided that z0 is super-attracting or not.

(2) ∂U contains a periodic point z0 of period m and fnm(z) → z0 for z ∈ U as

n → ∞. Then (fm)′(z0) = 1. In this case, U is called a parabolic domain (or

Leau domain).

(3) There exists an analytic homeomorphism φ : U →4 such that φ◦fm◦φ−1(z) =

e2παiz for some α ∈ R\Q, where 4 = {z : |z| < 1}. In this case U is called a

Siegel disc. We have the following commutative diagram

U
fm−−−→ Uyφ

yφ

4 e2παiz−−−→ 4
(4) U is doubly connected and fm is conjugate to either a rotation of an annulus

or to a rotation followed by an inversion. This U is called a Herman ring (an

Arnold-Herman ring). The Siegel disc and Herman ring are referred to as rotation

domains.

(5) fnm(z)→ z0 ∈ ∂U for z ∈ U as n→∞ but fm is not holomorphic at z0, and

U is called a Baker domain (or infinite Fatou component, or essentially parabolic

domain, or domain at ∞).
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Theorem 2.7.2 [48] Any f ∈ E does not have Herman rings and the only case for

the Baker domain in the classification theorem is z0 =∞.

The existence of the Baker domain can be seen from the following exam-

ples.

Example 2.7.3 Let f(z) = z + 1 + e−z. Then the right half-plane is f−invariant

and Re(fn(z))→ +∞ for z in the right half-plane.

Example 2.7.4 Let f(z) = 1
z
− ez. We have

f 2(z) =
z

1− z exp(−z)
− exp

(
1

z
− ez

)
∼ z + z2 + · · ·

as z → 0 in W (ε) = {z : 3
4
π < arg z < 5

4
π, |z| < ε}. There is a component U of

F (f), which contains (−ε, 0) for small positive ε. Further, f 2(U) ⊂ U, f 2n → 0 in

U . Obviously f 2 is undefined at 0.

Theorem 2.7.5 [20] If f ∈ R, then every Fatou component of f is eventually

periodic. This implies that f has no wandering domains.

For any component U of a Fatou set F (f), it is easy to see that f(U)

is contained in some component V of F (f). If f is rational, we have f(U) = V

(see A. F. Beardon [20]). However, if f is transcendental, it is possible that

f(U) 6= V . Bergweiler-Rohde and Herring independently proved that for any

entire function f , V \ f(U) contains at most one point which is an asymptotic

value of f . Concerning this question, Hua-Yang proved that for f ∈ P , if U and

V are two Fatou components such that f(U) ⊂ V , then V = f(U).

2.7.2 Singular points

Singular points play an important role in the study of dynamics of meromorphic

functions. Let f be a meromorphic function. A point a ∈ C is said to be a non-

singular point(of the inverse function f−1) if it has a neighborhood V such that

f : f−1(V ) → V is an unbranched cover. The set of singular points is denoted

by sing(f−1). Singular points(or singularities) are of the following types (see R.

Nevanlinna [64]):
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1. a is a critical value (or an algebraic singularity), i.e., there exists z0 ∈ C
such that f(z0) = a, f ′(z0) = 0. Such a point z0 is called a critical point of f. We

denote by CV (f) all these values;

2. a is an asymptotic value(or transcendental singularity), i.e., there exists

a curve Γ going to ∞ such that f(z)→ a as z →∞ along Γ. All these values are

denoted by AV (f). In particular, if a has a simply connected neighborhood V such

that for some component U of the set f−1(V ) the mapping f : U → V \{a} is an

universal covering, then a is called a logarithmic branch point, and U is called an

exponential tract. In addition, if there exists a neighborhood V0 and a component

U0 of f−1(V0) such that f(z) 6= a for z ∈ U0, then a is called direct, otherwise it is

indirect. Obviously, a logarithmic branch point is direct;

3. limit points of types 1 and 2.

For any transcendental meromorphic function f , we have

sing(f−1) 6= ∅.

In fact, for any transcendental meromorphic function f , we let = be the Riemann

surface defined by the inverse z = f−1(w). z = f−1(w) is single-valued function

and maps = conformally onto C. By Iversen’s Theorem, the asymptotic values

of f(z) correspond to the boundary of = and vice versa. A corollary of Iversen’s

Theorem is that any Picard value of a meromorphic function is an asymptotic value

of the function. Based on singularities, for the family of meromorphic functions,

we introduce two subclasses S and B.

S = {f : f has only finitely many critical and asymptotic values.}

According to A. E. Eremenko and Y. Lü Lyubich, the letter S was choosen in

honor of Speiser, who introduced this class.

B = {f : sing(f−1) is bounded}.

We remark that B\S 6= ∅. For example, let

ga(z) = π2 − a sin
√
z/
√
z,
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where π2 < a < 2π2. Then all critical points of ga are real and positive and are

denoted by zj, 0 < z1 < z2 < · · · . The critical values are denoted by cj = ga(zj).

Obviously, cj → π2 as j →∞. We also note that π2 is the only asymptotic value

of ga. Hence ga ∈ B\S.
A meromorphic function f is said to be of finite type or bounded type if

f ∈ S or f ∈ B respectively. Note that if f ∈ S, then the Fatou set F (f) has no

Baker and Wandering domains.

If f is of finite order, then we have the following best estimate which is so

called Denjoy-Carleman-Ahlfors Theorem.

Lemma 2.7.6 (Denjoy-Carleman-Ahlfors Theorem) [64] If the inverse function of

a meromorphic function f has n direct singularities, n ≥ 2, then

lim inf
r→+∞

T (r, f)

r
n
2

> 0.

Consequently, the inverse function to a meromorphic function of finite order ρ

has at most max {2ρ, 1} direct singularities. Moreover, an entire function of finite

order ρ has at most 2ρ finite asymptotic values.

Example 2.7.7 The entire function

w(z) =

∫ z

0

sin tq

tq
dt (q > 0 is an integer)

is of order q and has 2q finite asymptotic values

eνπi/q
∫ ∞

0

sin tq

tq
dt, ν = 1, . . . , q.

Thus the above theorem is the best possible.

Concerning the indirect singularity, W. Bergweiler and A. E. Eremenko

[24] proved the following result.

Lemma 2.7.8 [24] For a meromorphic function f of finite order, every indirect

singularity of f−1 is a limit of critical values.
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In 1959, W. K. Hayman conjectured that for any transcendental meromor-

phic function f and any n ≥ 1, fnf ′ takes every nonzero and finite value infinitely

often. The final solving of this conjecture is mainly based on the above lemma.

Now we consider relations between fn(sing(f−1)) and sing(f−n). Put

E(f) =
⋃
n≥0

fn(sing(f−1)).

A point a ∈ E(f) if and only if a ∈ sing(f−n) for some positive integer n.

The post-singular set of f is defined to be the closure of the forward orbit

of singular points:

E := E(f) = E(f) ∪ E ′(f),

where E ′(f) is the derived set of E(f).

Theorem 2.7.9 [48] A cycle of a super-attracting domain contains at least one

critical value (and critical point). A cycle of an attracting domain or a parabolic

domain contains infinitely many singular values (and singular points). The bound-

ary of the cycle of a Siegel disc and a Herman ring is contained in E.

For f ∈ E , if z0 is a Cremer point of f , then z0 ∈ E ′(f).

2.7.3 Connected components

The following results is standard.

Proposition 2.7.10 [20] (i) The closure of a connected set is connected.

(ii) A compact set K in C is disconnected if and only if there exists a Jordan curve

γ which separates K.

(iii) A domain D is simply connected ⇔ C \D is connected ⇔ the boundary ∂D

is connected ⇔ each component of D is simply connected.

Theorem 2.7.11 [48] Let f ∈ E satisfy one of the following statements

(i) f is bounded on some curve Γ going to ∞;

(ii) F (f) has an unbounded component,

then all Fatou components are simply connected.
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Theorem 2.7.12 [48] Let f ∈ E and all Fatou components of f is bounded. Then

J(f) is connected if and only if J(f) ∪ {∞} is connected in C.

Theorem 2.7.13 [20] Let P (z) be a nonlinear polynomial. Then

(i) ∞ ∈ F (P ) and F∞ is completely invariant, where F∞ is a component of F (P )

which contains ∞;

(ii) unbounded component of F (P ) is either simply connected or infinitely con-

nected; and

(iii) each bounded component of F (P ) is simply connected.

2.7.4 Completely invariant components

In this subsection, we will study the completely invariant components of the Fatou

set. Recall that a set U is completely invariant with respect to f if z ∈ U if and

only if f(z) ∈ U.

Theorem 2.7.14 [20] Let f ∈ M. If U is a completely invariant component of

F (f), then

(i) U is unbounded;

(ii) all components of F (f) are simply connected when f ∈ E ;

(iii) ∂U = J(f).

For any meromorphic function f , if the Fatou set F (f) has two or more

completely invariant components U0, U1, . . ., then each component is simply con-

nected. For rational functions, there are at most two completely invariant com-

ponents. But for transcendental entire functions, the case is different. I. N. Baker

showed that if f ∈ E , then f(z) has at most one completely invariant component

and if f ∈M∩ S, F (f) has at most two completely invariant components.

Now we will discuss the number of the Fatou components. For f ∈ E , the

number of the Fatou components is either 0, 1 or ∞, and the number of multiply

connected Fatou components is either 0 or ∞ and for f ∈ R, the number of the

Fatou component is either 0, 1, 2 or∞. A natural problem is when the Fatou set

has only one component and when it has infinitely many components. Wang-Hua

proved the following result.
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Theorem 2.7.15 [48] Let f ∈ E and z ∈ J(f). If V is an open neighborhood of z,

then

1. F (f) has only one component if and only if V meets one component of F (f);

2. F (f) has infinitely many components if and only if V meets infinitely many

components of F (f).

For f ∈ R, we have the following result.

Theorem 2.7.16 [20] Let f ∈ R and F0 be a completely invariant component of

F (f). Then

(i) ∂F0 = J(f);

(ii) F0 is either simply connected or infinitely connected;

(iii) all other components of F (f) are simply connected; and

(iv) F0 is simply connected if and only if J(f) is connected.

2.7.5 Limit functions

A function φ(z) is a limit function of {fn} on a Fatou component U if there is

some subsequence of {fn} that converge locally uniformly to φ on U . We denote

by L(U) all such functions.

For any Fatou component U , L(U) does not contain any repelling fixed

point of f . If ζ is a constant limit function then either ζ is a fixed point of f or

ζ =∞. For any nonconstant entire function, all constant limit functions of fn in

(pre-)periodic components are in E ′(f)∪ {∞}, except possibly in (pre-images of)

super-attracting components.

Theorem 2.7.17 [48] Suppose that U is a forward invariant Fatou component and

every limit function in L(U) is constant. Then L(U) contains exactly one element,

with value b, say, and fn(z) converges to b locally and uniformly in U . This implies

that U is of the type (1), (2) and (3) in theorem 2.7.1.

I. N. Baker [5] further proved the following result on the location of con-

stant limit functions.
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Theorem 2.7.18 [5] For f ∈ E ∪ P, any constant limit function of a sequence

fnk(z) in a component of F (f) belongs to L = E(f) ∪ A, where A = {∞} or

{0,∞} provided that f is entire or f ∈ P respectively.

For some special Fatou component, we have better results.

Theorem 2.7.19 [48] Let f ∈ E ∪ P, and let U be a wandering domain of f . If

f ∈ E, then all limit functions of {fn} in U are constants and are contained in

(E ′(f)∩J(f))∪{∞}; If f ∈ P and U is a bounded annulus, then the only possible

limit functions of {fn} in U are constants 0 and ∞.

Theorem 2.7.20 [48] Suppose that U is a forward invariant Fatou component and

every limit function in L(U) is constant. Let b be the unique limit function in

Theorem 2.7.17. Then exactly one of the following holds:

(i) b =∞;

(ii) b is an attracting fixed point of f and b ∈ U ;

(iii) b is a rationally indifferent fixed point of f and b ∈ ∂U .

Next we give some results about nonconstant limit functions, see [48] for

more details..

Theorem 2.7.21 [48] Suppose that U is a forward invariant Fatou component and

L(U) contains some non-constant limit functions. Then

(i) f is conformal in U ;

(ii) the identity map I is in L(U);

(iii) any non-constant limit function is conformal in U ;

(iv) L(U) does not contain any constant limit function.

Moreover U is either a Siegel disc or Herman ring.

From the prove of the above theorem we immediately obtain the following

result.

Theorem 2.7.22 [48] Let f ∈M. If in a component D of F (f), some subsequence

of {fn} has a non-constant limit function, then there is a component D1 of F (f)
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and a positive integer p such that fp(z) maps D1 univalently onto D1 and for

some increasing sequence of integers nk one has fpnk(z) → z in D1. Moreover

fN(D) ⊂ D1 for some N .

I. N. Baker showed that for any f ∈ E ∪ P , if E(f) has an empty interior

and a connected complement, then no sequence {fnk} has a non-constant limit

function in any component of F (f).

2.8 The functions in class M

The iteration of meromorphic functions at once leads us out of a closed system:

if we iterate meromorphic f in C we are also iterating f 2, which is not in general

meromorphic, so there must be a more general version of the theory. This suggests

trying to extend the classical theory of Julia and Fatou as far as possible while

retaining its basic results. An early step in this direction was taken by H. Radström

[74] who also pointed out that the Fatou - Julia approach is appropriate for analytic

functions of the punctured plane C∗ = C\{0} to itself. The case of the punctured

plane has been developed by various authors, for example in ([11], [28], [52], [53],

[55], [56], [59]).

It is of more than purely aesthetic interest that the class of functions to be

studied in an extended theory should be closed under iteration or even arbitrary

functional composition. One reason is that in the classical theory it is often very

convenient in proofs to replace a function by its iterate of some higher order. For

example points of period p of f can be discussed as fixed points of fp . Also f

and fp have the same Fatou and Julia sets.

The smaller class which obviously includes the meromorphic functions with

one essential singularity and which is closed under composition in the class K=

{f : there is a compact countable set E(f) ⊂ C such that f is meromorphic in

C\E(f) but in no larger set}. This class has been studied by Bolsch ([29], [30]),

independently, broader generalizations have been given in [47].

In [16], I. N. Baker, P. Domínguez and M. E. Herring gave a simplified

presentation of some parts of [47]. They introduced the class M={f : there is
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a compact totally disconnected set E = E(f) such that f is meromorphic in

Ec = C\E and the cluster set of f at any point z0 ∈ E with respect to Ec, that

is, the set C(f, Ec, z0)= {w ∈ C : w = limn→∞ f(zn) for some sequence zn ∈ Ec

with zn → z0} is equal to C. If E = ∅ we make the further assumption that f is

neither constant nor univalent in C}.
It was proved that the class M is closed under functional composition

and for any f, g ∈ M, E(f ◦ g) = E(g) ∪ g−1(E(f)). The composition of a finite

number of meromorphic functions is a member in the class M and has only at

most countably many essential singularities.

For f ∈ M, the set Sing(f−1) of singular values of some branch of f−1

consists of the critical values f(c), where f ′(c) = 0, together with the set of all

asymptotic values of f : w is an asymptotic value of f if there is some z0 ∈ E(f)

and the path γ(t), 0 ≤ t < 1, in Ec such that γ(t)→ z0 and f(γ(t))→ w as t→ 1.

Further, Ej(f) = ∪j−1
k=0f

−k(E(f)) is the set of essential singularities of f j. We use

the following notations about singularities of the inverse function. For f ∈M, set

Sp(f) = {a ∈ C : a is a finite singularity of f−p}. (2.1)

and

P (f) = ∪+∞
p=1Sp(f). (2.2)

That is, P (f) is the set where some branch of f−n has singularity for some n ∈ N,

or P (f) = ∪∞j=0f
j(Sing(f−1)\Ej(f)), where E0(f) = ∅. Thus P (f) consists of the

forward orbit of Sing(f−1), so far as this is defined. For a set A, the derived set

of A is denoted by A′.

2.8.1 The Fatou and Julia sets

For any f ∈ M, we may define f 0 to be the identity function with E0 = ∅, and,

inductively, f 1 = f, fn = f ◦ fn−1 for n ≥ 2. We obtain fn ∈ M, for all n ∈ N,

with En = E(fn) = ∪n−1
j=0 f

−j(E)= {singularities of fn}. Clearly if we set

J1(f) = {∪+∞
n=0En} (2.3)
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and

F1(f) = C\J1(f), (2.4)

then F1(f) is the largest open set in which all fn are defined. Further, f(F1) ⊂ F1.

As in [16], for f ∈ M, we define the Fatou set of f , denoted by F (f),

to be the largest open set in which (i) all iterates fn are meromorphic and (ii)

the family {fn} is a normal family; and the Julia set of f , denoted by J(f), is

defined to be the complement of F (f), that is, J(f) = C\F (f). If the set J1(f) is

either empty or contains one point or two points, then f is conjugate to a rational

function or an entire function or a holomorphic function of the punctured plane

C∗, respectively. In these cases the condition (i) is trivial and the Fatou sets are

determined by (ii). In all other cases, by Montel’s theorem, we have F (f) = F1(f)

and J(f) = J1(f). It is easy to see that for f ∈ M, F (f) is open and completely

invariant. Let U be a connected component of F (f), then fn(U) is contained in

a component Un of F (f). If for some n ∈ N, Un = U , namely fn(U) ⊂ U , then U

is said to be periodic. If for some pair of m 6= n, Um = Un, but U is not periodic,

then U is said to be preperiodic. If whenever m 6= n, Um 6= Un, then U is called a

wandering domain of f . For a periodic component of F (f) we have the following

classification theorem [16]:

Theorem 2.8.1 [16] Let U be a periodic component of the Fatou set of period p.

Then precisely one of the following is true:

(i) U is a (super)attracting domain of a (super)attracting periodic point a of f of

period p such that fnp|U → a as n→ +∞ and a ∈ U .

(ii) U is a parabolic domain of a rational neutral periodic point b of f of period p

such that fnp|U → b as n→ +∞ and b ∈ ∂U .

(iii) U is a Siegel disc of period p such that there exists an analytic homeomor-

phism φ : U →4, where 4 = {z : |z| < 1}, satisfying φ (fp (φ−1 (z))) = e2παiz for

some irrational number α and φ−1(0) ∈ U is an irrational neutral periodic point

of f of period p.

(iv) U is a Herman ring of period p such that there exists an analytic homeomor-

phism φ : U → A, where A = {z : 1 < |z| < r}, satisfying φ (fp (φ−1 (z))) = e2παiz
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for some irrational number α.

(v) U is a Baker domain of period p such that fnp|U → c ∈ J (f) as n→ +∞ but

f p is not meromorphic at c. If p = 1, then c ∈ E (f).

2.8.2 Subclasses of the class M

There are several subclasses of the class M which are introduced in [16] including

those studied by Bolsch in [29] and [30]. To suit our purpose, we introduce some

subclasses and their dynamical properties as follows.

Definition 2.8.2 Let f ∈M. Then

(i) f is in class K if there is a compact countable set E(f) ⊂ C such that f is

meromorphic in C \ E(f) but in no larger set.

(ii) f is in class MPk, where k is an integer not less than two, if E(f) 6= ∅ and

for each z0 ∈ E(f) and open set U which contains z0, f takes in U \ E(f) every

value in C with at most k exceptions.

(iii) f is in class MAk, where k ∈ N, if E(f) 6= ∅ and for each z0 ∈ E(f) the

function f has the k islands property at z0, namely for any neighborhood U of z0

and k simply-connected domains 4i in C which have disjoint closures and which

are bounded by sectionally analytic Jordan curves, there is a simply-connected

subdomain D in U \ E(f) such that f maps D univalently onto one of the 4i.

(iv) f is in class MA if f is in class MAk for some k ∈ N, that is, MA is a union

of all MAk, k ∈ N.
(v) f is in class MS if the set of singular values of f−1 is finite.

(vi) f is in class MSR if f ∈ MS and the complement of E(f) is of class OAD

(If W is a domain in the plane and F is a function analytic in W , the Dirichlet

integral of F is defined by DW (F ) =
∫ ∫

W
|F ′(z)|2dxdy. An analytic function with

finite Dirichlet integral is said to be of the class AD. The domain W is said to be

of class OAD if the only functions of class AD on W are constants).

The followings results were established in [16]:

Theorem 2.8.3 [16] Let f ∈M. Then the following statements are true.

(i) K ⊂MAk ⊂MPk−1, K ⊂MP2 ∩MA5, K ∩M ⊂MSR.
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(ii) The subclasses K, MPk, MAk, and MS are closed under composition.

(iii) If f ∈MS, then f has no Baker domains.

(iv) If f ∈MSR, then f has no wandering domains.

We do not assert that MSR is closed under composition. A subset which

is closed under composition is MS0 = { f : f ∈MS and E(f) has capacity zero},
since f, g ∈MS0 implied Cap{E(g)∪g−1(E(f))}=0, see, for example ([75], p. 69).

The most immediate application, for which we have many examples is for f in the

class K. Clearly MS ∩K ⊂MS0 ⊂MSR.

We noted a result on the connectivity of invariant and periodic components

in the case when E(f) is compact and countable, that is f ∈ K. A. Bolsch [30]

showed that if f ∈ K and U is a periodic component of F (f), then the connectivity

of U is 1, 2 or ∞.

Next we will show you some dynamics of some subclasses of the class M.

I. N. Baker and A. P. Singh [15] proved that if f ∈MAk and F (f) has a component

H of connectivity at least k, then singleton components are dense in J(f).

I. N. Baker , P. Domínguez and M. E. Herring [17] studied the completely

invariant domains in the Fatou set for the subclass MS of the class M. They

obtains two main results.

Theorem 2.8.4 [17] Suppose that f ∈ MS and F (f) has a simply-connected com-

pletely invariant domain U0. If w0 is an isolated point of E(f), then w0 is accessible

in U0.

Theorem 2.8.5 [17] Suppose that f ∈ MS. If E(f) has an isolated point, then f

has at most two completely invariant domains.

Note that a boundary point z of D is said to be accessible from the interior

of D if one can find a simple Jordan line where all points but z are interiors in D

and so that it links z to any point a inside D; the line may consist of finite number

of segments of straight lines or of an infinitely of segments having z as limit point.
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2.8.3 Standard properties of Julia sets

Next, we collect the main properties of F (f) and J(f) of the function f in class

M. First we introduce the backward orbit O−(w) of a point w ∈ C, defined by {z:

fn(z) = w for some n ∈ N} and the α- limit set α(w) of w which is the set of

the limit points of O−(w). Recall that a generic property of points in a complete

metric space is one which holds for all points outside a set of first category.

Theorem 2.8.6 [16] Suppose that f ∈M as defined above. Then

(1) F (f) is completely invariant in the sense that z ∈ F (f) if and only if f(z) ∈
F (f). Thus z ∈ J(f)\E if and only if f(z) ∈ J(f);

(2) for every positive integer p, F (fp) = F (f) and J(fp) = J(f);

(3) if ψ is a Möbius transformation and fψ = ψ ◦ f ◦ ψ−1, then fψ ∈ M, F (fψ) =

ψ(F (f)) and J(fψ) = ψ(J(f));

(4) J(f) is perfect;

(5) for a generic point w ∈ C, the set α(w) contains J(f). If f ∈ MPk, then the

exceptional set X(f)= {z : O−(z) is a finite set } contains at most k elements

and for w not in X(f), α(w) contains J(f), while if w ∈ J(f)\X(f) we have

O−(w) = J(f);

(6) if J(f) has a non-empty interior, then F (f) = ∅;
(7) if f ∈ MAk for some k(≥ 5) ∈ N, then repelling periodic points are dense in

J(f);

(8) If E(f) has the local Picard property, namely there exist no open set V with

E∩V 6= ∅ and no function f meromorphic in V \E(f) with an essential singularity

at each point of E∩V such that f omits three values in V \E(f), then every point

of J(f) is a limit point of periodic points of f . (We do not assert that the periodic

points are repelling.)

2.8.4 The Fatou components and singularities

I. N. Baker [14] studied the connections between the Fatou components and the

singularities of the inverse functions. He showed that for f ∈ MA, if U is a

wandering domain of F (f), then any limit function of a sequence of iterates in
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U is a constant which lies in (P (f))′, and if U is a component of F (f) such that

fn → a in U , where a ∈ C, the either (i) a is an attracting fixed point of f , (ii) a

is a parabolic fixed point of f , or (iii) a ∈ E(f) ∩ Sing(f−1).

J. H. Zheng [85] also discuss this subject and obtained many results. First,

we set J∞(f) = ∪+∞
n=0E(fn). If J∞(f) has at least three points, then J(f) = J∞(f),

so F (f) is the largest open set in which all fn, n ∈ N are meromorphic. If J∞(f)

consists of two points, then f is a holomorphic function of C∗ onto itself up to a

Möbius transformation. If J∞(f) consists of one point, then f is a transcendental

entire function. If J∞(f) is empty, then f is a rational function. He showed that

for f ∈ M and if U is a wandering domain of f , then every limit function of

convergent subsequence of {fn |U} lies in the derived set of P (f). This result was

proved in [27] for f being entire and in [82] and [84] deduced that for f ∈M and

a component U of F (f), if {fnp |U} → q( as n → +∞), then either q lies in the

derived set of Sp(f) or is a periodic point of f of period k ≤ p and fp(q) = q.

Moreover for e ∈ J∞(f), if e /∈ (Sp(f))′, then there exist no components of F (f)

in which fnp(z)→ e as n→ +∞, which is a generalization of Theorem F in [16].

Now we give some sufficient conditions for f ∈ M has no wandering do-

mains and Baker domains.

Theorem 2.8.7 [85] Let f ∈ M. If (Sing(f−1))′ ∩ E(f) = ∅ , J(f) ∩ (P (f))′ is

finite and (P (f))′ ∩ J∞(f)\E(f) = ∅, then f has no wandering domains.

Theorem 2.8.8 [85] Let f ∈ M. Then f has no Baker domains of period k ≤ p,

if one of the following statements holds:

(1) f(z) has no asymptotic values which lie in J∞(f, p) = ∪p−1
n=0f

−n(E(f));

(2) (Sp(f))′ ∩ E(f) = ∅.

As an application of Theorem 2.8.7 and Theorem 2.8.8, J. H. Zheng gave

a sufficient condition to determine the Julia set of transcendental meromorphic

function equal to Riemann sphere.

Theorem 2.8.9 [85] Let f ∈ M with (Sing(f−1))′ ∩ E(f) = ∅ . Assume that

J(f)∩(P (f))′ is finite and (P (f))′∩J∞(f)\E(f) = ∅ and for every b ∈ Sing(f−1),

b is pre-periodic or b ∈ J∞(f) or fn(b)→ E(f) as n→∞. Then J(f) = C.
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From Theorem 2.8.9, he also showed that there exist µ and λ such that

the Julia set of a transcendental meromorphic function f(z) = µ + z + ez + λ
ez−1

is the Riemann sphere. Note that such function is not of bounded type.

The method of A. E. Eremenko and M. Lü Lyubich ([40], pp. 993–994)

gives the following results.

Theorem 2.8.10 [40] If f ∈M and if e ∈ E(f) is not a limit point of singularities

of f−1 then there is no invariant component of F (f) in which fn → e.

Corollary 2.8.11 [40] If f ∈MSR, then every component of F (f) is eventually pe-

riodic and the only periodic components are associated with attracting or parabolic

periodic points or are part of a cycle of Siegel discs or Herman rings.

I. N. Baker, P. Domínguez and M. E. Herring [16] studied the relation

between singular orbits and Fatou domains. The results which hold for rational

functions generalize with little change in the proof.

Lemma 2.8.12 [16] If f ∈ M and if gn(k) are branches of the inverses of fn(k)

which are meromorphic in the domain U , k ∈ N, then {gn(k)} is normal in U .

Lemma 2.8.13 [16] (i) If f ∈ M and G1, . . . , Gp is periodic cycle of Fatou com-

ponents in which the iterates converge to either an attracting or parabolic periodic

cycle of points then G1 ∪ . . .∪Gpcontains the forward orbit of some singular point

of f−1.

(ii) If G1, . . . , Gp is a cycle of Seigel discs or Herman rings (i.e. each Gi is a

Seigel disc or Herman ring of fp), then each point of ∪i(∂Gi) is a limit point in

the orbit of singularities of f−1.

They also studied dynamics of the subclasses MSR of the class M.

Theorem 2.8.14 [16] Suppose that f ∈MSR and suppose that there is an attract-

ing fixed point whose Fatou component G contains all the singular points of f−1.

Then J(f) is totally disconnected.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



37

2.8.5 Semiconjugation of functions in class M

J. H. Zheng [85] also discussed the connection between dynamics of two functions

f(z) and g(z) in the class M satisfying the functional equation

h(f(z)) = g(h(z)) (2.5)

where h(z) is meromorphic in C. He proved that for f, g and h which satisfy (2.5),

if J(f) = J∞(f) and either ∞ ∈ E(f) or f(∞) 6= ∞, then h(J(f)) = J(g) and

h(F (f)) = F (g). Combining this result with Bergweiler’s result [23], he obtain that

for f(z) and g(z) in M with either ∞ ∈ E(f) or f(∞) 6= ∞, if exp f(z) = g(ez),

then exp J(f) = J(g) and expF (f) = F (g).

Two function f(z) and g(z) in class M are called permutable if f ◦g = g◦f
in C\(E(f) ∪ E(g) ∪ g−1(E(f)) ∪ f−1(E(g))).

As an immediate application of the relation between J(f) and F (f) which

satisfy (2.5), for any two permutable transcendental meomorphic functions f(z)

and g(z) in C , we have J(f) = J(g).

The following result is about a dynamic connection between Fatou com-

ponents of f and g which satisfy (2.5).

Theorem 2.8.15 [85] Let f, g and h be functions in class M such that (2.5) holds.

If h maps any component of F (f) onto a hyperbolic domain, then the following

statement hold.

(i) If f has no wandering domains, then g has no wandering domains;

(ii) If U is a periodic component of F (f), then h(U) is contained in a periodic

component of F (g), and they are of the same type, unless U is a Baker domain or

Herman ring. If U is a Herman ring, then the component V of F (g) containing

h(U) must be a Siegel disc or Herman ring.

The result (i) in Theorem 2.8.15 was proved in [25] for f and g being

entire. From Theorem 2.8.15 and Theorem E in [16], if it of finite type, then

the composition of two transcendental meromorphic functions has no wandering

domains. If f and g are both meromorphic functions in C and f is of finite type
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such that f ◦ g is of finite type, then g ◦ f has no wandering domains, for g must

map any component of F (f ◦ g) onto a hyperbolic domain.

To complete this subsection, we will introduce the concepts of orbits which

approach a singular point.

For transcendental entire functions f , A. E. Eremenko [37] studied the set

I(f) = {z ∈ C : fn(z)→∞ as n→∞}. (2.6)

A. E. Eremenko also proved that for such functions (a) I(f) 6= ∅ and indeed (b)

J(f) = ∂I(f) and (c) J(f)∩ I(f) 6= ∅. It has been observed that if f is a function

of C∗ to itself with essential singularities at 0 and ∞ then the same results hold,

and by symmetry we could replace ∞ by 0 in the definition of I(f).

P. Domínguez [36] showed that Eremenko’s results can applied to tran-

scendental meromorphic functions if one replaces the definition (2.6) by

I(f) = {z ∈ C : fn(z)→∞ as n→∞ and fn(z) 6=∞}. (2.7)

Consider now for f ∈M and for e ∈ E(f), we define

I(f, e)={z ∈ C : fn(z) is defined for all n and fn(z)→∞ as n→∞}.

Theorem 2.8.16 [16] If for some k ∈ N we have f ∈ MPk, then for e ∈ E(f) we

have:

(1) I(f, e) 6= ∅;
(2) J(f) = ∂I(f, e);

(3) J(f) ∩ I(f, e) 6= ∅.
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