Chapter 3
Solutions of Functional Equation

foS=5%of

3.1 Some known results

Let f be a C? function on C. Newton’s method, Halley’s method and the

Schwarzian derivative of f are defined respectively as follows

)
Nile) = ==
£(2)
Hf(Z) = Z—f/(z)_f(;}f(/;()z)
BN OO
5@ = 250 3<f’(2)> '

Assume that f has a simple zero at ¢ so that f/({) # 0. J. Palmore [69]
and [70] studied the role of Schwarzian derivatives of N and H in controlling the
order of convergence of N and H to ¢ respectively. The main results in [69] and

[70] are as follows:

Theorem 3.1.1 [69] Let [ be a differentiable function on C. Let N and S be the
Newton’s function and the Schwarzian deriwvative of f. If f has a simple zero (
such that f'({) # 0, then N"({) = S(C). If f"(¢) =0, then N has convergence to
¢ of order 3 or greater. If S(¢) = 0, then N has convergence to ¢ of order 4 or

greater.

Theorem 3.1.2 [70] Let f be a differentiable function on C. Let H and S be the
Halley’s function and the Schwarzian derivative of f. If f has a simple zero (
such that f'(¢) # 0, then H"({) = —2 (@) H has convergence to ¢ of order 4
or greater if and only if S(¢) =0
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P. Niamsup, J. Palmore and Y. Lenbury [67] studied the role of Schwarzian
derivatives of composition function between H and N, namely H o N and N o H,
in controlling the order of the simple root ¢ of f. They obtained the following

results.

Theorem 3.1.3 Let f be a differentiable function on C. Let H,Nand S be the
Halley’s function, Newton’s function and Schwarzian deriwative of f, respectively.
If f has a simple zero ¢ such that f'(C) # 0, then the values of the first five
derivatives of H o N at ¢ are zero, and (H o N)9(¢) = — (%) (]}T(CC))) - 5(Q).
Therefore, H o N has order of convergence to ¢ equal to 6 or greater. The order

of H o N is controlled by the second derivative and by the Schwarzian derivative

of f evaluated at (.

Theorem 3.1.4 Let f be a differentiable function on C. Let H, Nand S be the
Halley’s function, Newton’s function and Schwarzian derivative of f, respectively.
If f has simple zero ¢ such that f'(¢) # 0, then the values of the first five derivatives

of N o H evaluated at ¢ are zero, and (N o H)®(¢) = 10 (J;c/,l((g))), (H"(¢))? =

1! 3
< (%) (’;,8) -S(C). Therefore, N o H has order of convergence to  equal to 6

or greater and the order of convergence is controlled by the second derivative and

by the Schwarzian derivative of f evaluated at C.

A successive approzimation S(z) of f(z) may be obtained by setting
f(z) = 0 and then write this equation as z = S(z). For example, if f(z) is a
quadratic polynomial with roots a and b such that 0 < |a| < |b] < 1, that is

f(z) = (z —a)(z — b), then S(z) = Z:(gib) is a successive approximation of f(z)

having z = a as a global attractor. In general, Halley’s method, Newton’s method
and successive approximation are iterative methods which can be used to locate
roots of functions where the order of convergence of these methods are three, two
and one, respectively. P. Niamsup and J. Palmore ([65] and [66]) studied the roles
of Schwarzian derivative of Halley’s method, Newton’s method and the composite
between two methods in controlling the order of convergence of these methods.
The following relations between Halley’s method, Newton’s method and successive

approximation for f(z) = (2 —a)(z—b),a,b € C such that 0 < |a| < |b| were given
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in [65] and [68], where S(z) = #ﬁib) The following are some of these relations:
(1) HoS=S%0H,
(2) NoS=S?0N,
(3) (HoN)oS=S58% (HoN),
(4) H(57(0)) = SUI¥74(0),4, 5 = 0,
(5) N(57(0)) = SUI2=1(0),4, j > 0,
(6) (H o NY/(59(0)) = SUTVI1(0),4,j = 0.
In [71] and [72], J. Palmore investigated a rational function of the following

form:
_a(z—b)F —b(z—a)
W) = = e

It was shown that when a and b are quadratic irrational numbers of the form

1 1
U+ v2 U —v2
and b =

w w

a =

where u, v and w are integers such that v > 0, v is not the square of an integer and
w # 0, then fy(2) is a rational function of integers u,v and w. This is important
when we study a computable orbit converging to a under the iteration of f;. It

was also shown that

£(0) = 571(0)
where k£ > 2 and ¢ > 1. That is, the order of convergence of f; to a is equal to k.
Note that f, is the usual Newton’s method for f and f3 is the Halley’s method
for f.

P. Niamsup and J. Palmore [66] studied the functional equation

foS=S8%of (3.8)
where k& > 2 where S(z) = #ﬂb) is a successive approximation of quadratic

polynomial P(z) with roots @ and b in C such that 0 < |a| < |b|, that is, P(z) =

(z —a)(z —b), and f is a rational function of degree k of the form

ozkzl€ -+ czk_lzk*1 +...+a1z2+ag

fk(Z) - bkz’“ + bk_lzk_l +...+ b12 + b() ’

(3.9)

where a;,0; € C (4,5 =0,1,2,...,k), (ao,by) # (0,0).
They began by showing that (3.8) has a rational solution.
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Theorem 3.1.5 The functional equation (3.8) has a rational solution, namely

a(z —b)* —b(z — a)*

&) =

From Theorem 3.1.5, they obtained the following result which is more

general than the result in [68].

Corollary 3.1.6 Fork > 2, we have f (57(—(ab/zx—(a+b)))) = SUTDE-L(—(ab/ z,—
(a+0b))) fori,j >0, where z is a fized point of fi.. In particular, for by =0, fi
has a fized point at oo and hence b,(:)(Sj(O)) = SUTDE=1(0) ford,j > 0.

For all rational solutions of (3.8) when k = 2, they obtained the following

result.

Theorem 3.1.7 Let fy be a rational solution of (3.8), then fy is of the following
form

(a) If ay # 0, then

falz) = 22 + (—2abby)z + (—ab + ab(a + b)bs)
P20 N bez? + (2 —2(a+b)by)z + (—abby — (a + b) + (a + b)?b,)

where by is any complex number. Moreover, if by = 0, then fo is the Newton’s
method for P and if by is a nonzero complex number, then we obtain fo(z) =
T5(N(2)) where Ty(2) = (2 — abby /baz + (1 + (a + b)bs)).

(b) If ay = 0 and a; # 0, then

z—(a+b/2)
(—(1/2ab))z% + ((a + b/ab))z — ((a® + ab + b*/2ab))’

foz) =

Note that fy(z) = (S7'o N o S)(z).

(c) If az = a1 = 0 and ag # 0, then there are no rational solutions for (3.8) of this
form.

Conversely, if T is any mapping such that T oS = SoT, then NoT and T o N
are solutions of (3.8).

For general positive integer k, they obtained the following main result.
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Theorem 3.1.8 Let fy. be a rational solution of (3.8) of the form (3.9).
(a) If ar, = 1, then

Je =Tk o for
a(z=b)F—b(z—a)* z—a
where fO,k:(Z> = %, Tk(Z) = ngﬁibﬂ’k) and bk e C.

(b) If ar = 0, and ax—1 # 0 then there is only one rational solution in this form
for (3.8) and we can explicitly find such a solution.
(¢) If a = ag—1 = 0, then there are no nonzero rational solutions for (3.8) of this
form.

Conversely, if T is any mapping such that T oS = S oT then fyoT and
T o fo are solutions of (3.8).

Remark 3.1.9 (1) When k = 3, fy3(2) is the Halley’s method for P.

(2) If P(z) is a polynomial of degree 3 or more with distinct roots, then any
successive approximation of P(z) would have degree 2 or more. From which it
follows that (3.8) does not hold (since degree of S is not equal to degree of S*).
(3) From [71], [72] and Theorem 3.1.8, fr is a rational function with integer
coefficients if and only if z, € Z,a = (s(u—/v)/w) and b = (s(u++/v)/w) where
u,v,w,s € Z\{0},u > 0,v > 0,0v> ¢ Z*.

In this thesis, we propose to study meromorphic solutions of the functional
equation (3.8) and to study the Julia set of rational solutions of (3.8). Under some
certain conditions, we propose to give the explicit form of f .

Moreover, we study meromorphic solutions f of the following functional
equation

foR=R'of,

where k£ > 2 and R is a Mobius transformation which has only one fixed point,

say a € C (so a is a global attractor of R).

3.2 Main results

Let S be a Mobius transformation which has two fixed points, say a and b in C.

Without loss of generality we may assume that a is an attracting fixed point and b
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is a repelling fixed point of S. We are interested in finding meromorphic solutions

f on C of the following functional equation
foS=5of (3.10)

where k£ > 2.

In [66], the rational solutions f of (3.10) are solved directly from a linear
system of equations. In this thesis, we study the functional equation (3.10) more
analytically. We will show that for a given complex number « distinct from a and
b, there exists a unique solution of (3.10) which fixes «, a, and b. We also show

that the Julia sets of rational solutions of (3.10) are circles on the sphere.

Let S and f be as above. We have
Theorem 3.2.1 For anyi,j € N,
flo&l =g o fi. (3.11)
Proof. Fix i = 1 and let P(j) be f oS/ = S* o f. Then for j = 2,
(foS)oS=(S"of)oS
=S%0(fo9)
— §to (St )
= 8% f.
This implies P(2) holds. Assume that P(n) holds. Then
foS™ = (fosM)oS
— (5™ o f)os
=S"o(fo)
— Snk o (Sk 2 f)
_ S(n-i—l)k o f

which implies that P (n + 1) holds. Therefore f oS/ = S/ o f holds for all j € N.
Similarly for a fixed j € N, let Q(i) be fi o087 = S o fi.
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Then for ¢ = 2,

fPoS=fo(fos)
= fo(5% 0o f)
=(foS™)of
= (SU%0o f)o f
= 5o f2.
This implies that Q)(2) holds. Assume that )(n) holds. Then

FHD 6 89 = fo(fro8Y)
= fo (8" o f")
= (foS™*)o fm
= (5" o f) o f7

a | Sjk(n+1) Of(n+1)

which implies that Q(n+ 1) holds. Therefore f0S7 = S/ o fi holds for all i € N,
We conclude that fio 57 = S o fi for all 4,5 € N. This completes the proof.

Theorem 3.2.2 Let f be a solution of (3.10). If f(b) # a, then a and b are fized

points of f.

Proof. Firstly, we show that a,b are not poles of f. For if a was a pole of f, then
f(a) = oco. From (3.11) and for i = 1 we have

00 = f(a) = f 0 §7(a) = $7(f(a)) = 57*(c0).

This implies that a = 0o or b = oo which is a contradiction. Thus a and b are not
poles of f. From (3.11) if we take ¢ = 1, then for z ¢ f~* (b) U {a,b} we have, by
continuity of f,

F(57(2) = 5™ (£(2)).

Thus

Jj—+o0 j—+oo

= lim S*(f(2)) =a

j—+oo

ra) = f([ims'() = i £ (5 (2)
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which implies that a is a fixed point of f. From (3.11) if we take z = b, then

F(6) = S*(F(B)).
As we assume that f (b) # a we conclude that f (b) = b. This completes the proof.

Remark 3.2.3 Let [ be a solution of (3.10) such that f(b) # a. Then a,b are
super-attracting fived points of f.

Proof. Consider
foS(z)=5%0 f(2),

by differentiating both sides we obtain

F(8(2)S'(2) = S'(S* 0 f(2)) - S'(S* %0 f(2)) - ... - S'(f(2)) - f'().

For z = a,
f'(a)-S'(a) = [S'(a)]" f'(a)
and since S’(a) # 0, we conclude that f’(a) = 0. That is, a is a super-attracting
fixed point of f.
Similarly, for z = b,
f(0) - 8'(b) = [S" (D))" - f'(b)
and since S’(b) # 0, we conclude that f'(b) = 0. That is, b is a super-attracting

fixed point of f. This completes the proof.

Theorem 3.2.4 For a given complex number a distinct from a and b, there exists

a unique solution of (3.10) which fixes a,a and b.

Proof. Let f and g be solutions of (3.10) which fix a,b and «. From (3.11), take
t =1 we have

foS(a)=5"0o f(a) = 5"(a)

and

goSi(a)=5"%0g(a) = 57%(a).
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Since o # a,b and a is a global attractor of S, S/(a) — a as j — oo. This implies

that a is a limit point of {S7(a) : j € N}. As
{S7(a):jEN} S {2 €C: f(2) = g(2)},

we have, by the Identity Theorem (see [35]), f = g on C. Therefore, there is a
unique solution of (3.10) which fixes «, a and b where a is a complex number

distinct from a and b. This completes the proof.

Remark 3.2.5 Let f be a solution of (3.10) which fizes a,b and o where « is a
complex number distinct from a and b. For all Mébius transformation T'(z) which

fizes a, b, and T(f(a)) = « then

(—=ba + af(a) + ab — aa)z + (aba — abf ()
(f(a) — )z + (af(e) + ab—bf(a) —af(a))

We can show that T oS =SoT.

T(z) =

Theorem 3.2.6 Let [ be a solution of (3.10). Then foT and T o f are solutions
of (8.10) where T is any transformation which satisfies SoT =T o S.

Proof. Put g= foT and h =T o f. Then
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That is, g is a solution of (3.10). And

hoS=(Tof)oS
=To(foS)
=To(S*of)
= (ToS)o(S* o)
=(SoT)o(S* o)
=S50 (ToS)o(S*?0f)
=S0(SoT)o(S* 20 f)
=S%0To (5" %0 f)

_§to(To f)
= S*oh.
That is, h is a solution of (3.10). This completes the proof.
Theorem 3.2.7 Let f and g be solutions of (3.10) such that f fizes a,b and o (v #
a,b) and g fizes a,b and B (8 # a,b). Then g can be expressed in the form
g=Tof
where T is a Mébius transformation which fizes a,b and T(f(B)) = 5.
Proof. From Remark 3.2.5, SoT'=T 0 S. By Theorem 3.2.6, T o f is a solution

of (3.10). Since
Tof(a)=T(a)=a

To f(b)=T(b) =b
To f(B) =T(f(B)) =5,

this implies T'o f is a solution of (3.10) which fixes a,b and 8. By Theorem 3.2.4,

we obtain g =T o f.

Theorem 3.2.8 Let [ be a solution of (3.10) which fizes a,b. Then f is a rational

function.
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Proof. First, we consider S(z) = Az, |A| # 0, 1. Let g be a solution of (3.10) which

fixes 0,00 and S is defined as above. So

g(\z) = Meg(2). (3.12)

Set
g(z) = Z anz"
n=1

where a,, € C,Vn. We have
g(Az) = Zan)\”z"
n=1

and
MNeg(z) = Zan)\kz".
n=1

From (3.12), we obtain
Zan)\" "= Zan)\kz"
n=1 n=1
o0

D an (A= A2t =0

n=1

an(A* — \F) =0,Vn

For n # k,a, = 0, so that g(z) = axz". This implies that g is a rational function.
Now, we consider S which fixes a,b. Then .S is conjugate to a map z —
Az, |A| # 0,1 by the Mébius transformation that send z = a to 0 and z = b to oo,

namely
S315d
—z+b

Let f be a solution of (3.10) which fixes a,b. Then f is conjugate to g with the

M(z) =

same Mobius transformation. Therefore f is a rational function. This completes

the proof.

Proposition 3.2.9 Let f be a solution of (3.10) which fizes a and b. For any com-

plex number o distinct from a and b, if f(a) = « then f is conjugate to a map

_ k—
(Z22)" 2k
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Proof. Assume that f is a solution of (3.10) which fixes a and b. Given « # a, b.
From Theorem 3.2.8, f is conjugate to a map g where g(z) = Kz, 3K # 0 by the

Mobius transformation that send z = a to 0 and z = b to oo, namely

—z+a
—z+b

M(z) =
Since f(a) = a, we have

M'gM(a) = a.

That is, M(a) is a fixed point of g. But g has fixed points at 0,00 and (k — 1)

1
roots of L Then

M L)

@ = (%)
—a+a (1 =
—a+b \K

—a+a kil_l

—a-+b K

Wb —a—i—b)kl'
—a+a

This implies that f is conjugate to a map (%ig)k_l 2¥. This completes the proof.

Theorem 3.2.10 Let S(z) = Az, |A\| # 0 and let f be a meromorphic solution of
(3.10). Then f is of the following form
() IF A = 1,
(a.1) and if X is not an m*-root of 1,
(a.1.1) and if f(0) =0, then f(z) = apz*, a; # 0.
(a.1.2) and if f(0) = oo, then there are no solutions for (3.10).
(a.2) and if \ is an m'-root of 1,
(a.2.1) and if f(0) =0,
(a.2.1.1) and if m < k then f(z) = a;2',a; # 0 or f(2) = > p>0 At gpm 2" TP,
where t is the remainder of k divided by m.
(a.2.1.2) and if m = k then f(z) = arz",ar # 0 or f(2) =37 o) apm2™.
(a.2.1.3) and if m > k then f(2) = apz®, a, # 0 or f(2) = D p>0 Aot pm 27 TP
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(a.2.2) and if f(0) =00 (f(2) = D s ;an2" i € ZT),
(a.2.2.1) and if m < k then f(2) = > o, aripmz ™, where j is the
smallest integer p so that t +pm > —1i and t is the remainder of k divided by m.

(a.2.2.2) and if m =k then f(2) =)

p>j Gpm2’", where j is the smallest
integer p so that pm > —i.
(2.2.2.3) and if m > k then f(z) = > o, At pm 2™ TP™ where j is the
smallest integer p so that k + pm > —i.
(b) I Al # 1,
(b.1) and if £(0) =0, then f(2) = arz", ax # 0.
(b.2) and if f(0) = oo, then there are no solutions for (3.10).

Proof. Since S(z) = Az, |A] # 0 and f is a meromorphic solution of (3.10), we

have
fA2) = N f(2). (3.13)

We discuss two situations.
Case a |A| = 1. We discuss the following two subcases.
Subcase a.l A is not an m'*-root of 1. We discuss the following two sub-subcases.

Sub-subcase a.1.1 f(0) = 0. We can write f(2) in the form

f(z) = Z 2"
n=1

where a,, € C,Vn € N. By substitution f(z) into (3.13), we obtain
Zan)\” "= Zan)\kz"
n=1 n=1

D a, (A" = A2t =0
n=1

an(A" = M\¥) =0,vn € N.

Then for each n € N, a, = 0 or \» — \¥ = 0. Since \" # \¥,Vn # k, we have

f(z) = ap2® ap # 0.
Sub-subcase a.1.2 f(0) = co. We can write f(z) in the form

[e.9]

f(z) = Z anzn7

n=—1i



D2

where i € Z" and a,, € C,Vn > —i. By substitution f(z) into (3.13), we obtain

o0 o0

Z a,\"z" = Z ap\ez"

an (A" — \F) = 0,Vn > —i.
Then for each n > —i, a,, = 0 or \» — A\¥ = 0. Since \"* # \¥,¥n # k. Therefore
f(z) = ap2* ar # 0. But f(0) = oo, this leads to a contradiction. Therefore,
there are no solutions for (3.10).

Subcase a.2 X is an m!-root of 1. We discuss the following two sub-subcases.

Sub-subcase a.2.1 f(0) = 0. We can write f(z) in the form

f(z)= Z anz"

where a,, € C,Vn € N.
If m < k, there exist s, t € Z, 0 <t < m such that £k = sm + t. We can reduce
(3.13) into the form

fA2) = X f(2). (3.14)
By substitution f(z) into (3.14), we obtain
Zan)\” "= Zan)\tz”
n=1 n=1
Zan(/\“ - A" =0

(A" — A') = 0,¥n € N.
Then for eachn € N, a, =0 or A" = X' =0. If a,, = 0,Vn # t, f(2) = a;2", a; # 0
and if A" — X' =0, \»~* =1 which implied that n =t +pm, p € Z* U {0}. Thus

f(z) = szo at+pmzt+pm~

If m = k, by substitution f(z) into (3.13), we obtain
Zan)\” "= Zan)\kz"
n=1 n=1

Zan()\” —Mm =0
n=1

an(A" = \¥) =0,vn € N.
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Then for eachn € N, a,, = 0or \"=\F = 0. Ifa, =0, Vn # k, f(2) = ap2*, ar #0
and if \» — A\* = 0, A * = 1 which implies that n = pm, p € Z*. Therefore
f(2) = 32021 apm2™™.

If m > k, by substitution f(z) into (3.13), we obtain
Zan)\” & Zan)\kz"
J==ly n=1
D ay (N = A2t =0
n=1

an(A" = X\¥) =0,vn € N.

Then for eachn € N, a,, = 0or A=\ = 0. Ifa, =0, Vn # k, f(2) = ap2*, ar # 0
and if A" — A\ = 0, A * = 1 which implies that n = k + pm, p € Z* U {0}.
Therefore f(z) = Y72 Ghipmz* P

Sub-subcase a.2.2 f(0) = co. We can write f(z) in the form

fz) = Z anz"

n=—1i

where 1 € Z" and a, € C, Vn > —i.
If m < k, there exist s, t € Z, 0 <t < m such that £k = sm + t. We can reduce
(3.13) into the form

fA2) = X f(2). (3.15)
By substitution f(z) into (3.15), we obtain
Z ap A" 2" = Z ap\ 2"
Z an(A" = A)2" =0

an(\" — N =0,Yn > —i.

Then for each n > —i, a, = 0or \* = X' = 0. If a, = 0,Vn # t, f(2) = a;2',
a; # 0. But f(0) = oo, this leads to a contradiction. Thus, this situation cannot
occur. And if A" — ' = 0, A" = 1 which implies that n = ¢t + pm, p € Z. Thus
f(2) = 2 ez Qrrpmz ™. Since ayqpm = 0, Vp < j where j is the smallest integer

such that ¢ +pm > —i, we have f(2) =3 -, rpm2 ™.
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If m = k, by substitution f(z) into (3.13), we obtain

i apA\'2" = i a\F 2"

n—=-—1 n=-—1u
(e o]

D an(Xt = A" =0

an(A" —A") = 0,Vn > —i.
Then for each n > —i, a, = 0 or \* =\ = 0. Ifa, =0, Vn # k, f(z) =
apz*, ap # 0. But f(0) = oo, this leads to a contradiction. Thus, this situation
cannot occur. And if A — A\¥ = 0, \»* = 1 which implies that n = pm, p € Z.
Thus f(z) = >_ c7 apmz?™. Since a,, = 0, Vp < j where j is the smallest integer

such that pm > —i, we have f(z) = > o apmz™.

p=j
If m > k, by substitution f(z) into (3.13), we obtain

i ap A2 = i ap\F2"

n—=-—1 n=-—1u
[e.9]

D an(X = A" =0

an(\" = X)) =0,Vn > —i.

Then for each n > —i, a, = 0 or A =\ = 0. Ifa, =0, Vn # k, f(z) =
apz*, ap # 0. But f(0) = oo, this leads to a contradiction. Thus, this situation
cannot occur. And if \» — \¥ = 0, \»* = 1 which implies that n = k+pm, p € Z.
Thus f(z) =>_ 7 At pm 2™ TP™. Since ayipm = 0, Vp < j where j is the smallest
integer such that k 4 pm > —i, we have f(z) = 3 - aripm2* ™.
Case b |\| # 1. We discuss the following two subcases.

Subcase b.1 f(0) = 0. We can write f(z) in the form

[e.9]

F@I=) "

n=1

where a, € C, ¥n € N. By substitution f(z) into (3.13), we obtain
Zan)\” "= Zan)\kz"
n=1 n=1
Zan()\” — M =0
n=1

an(A" = \¥) =0,vn € N.
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Then for each n € N, a,, = 0 or A" — A\* = 0. Since || # 1, we have that for all
n # k, \" # \¥. This implies a,, = 0, Vn # k. Therefore f(z) = apz*, a;, # 0.
Subcase b.2 f(0) = co. We can write f(z) in the form

f(z)= Z a,z",

where i € Z" and a,, € C,Vn > —i. By substitution f(z) into (3.13), we obtain

o0 o

Z apA\"'z" = Z ap\ez"
i an(A" = A2 =0

(A" = \¥) =0,Vn > —i.

Then for each n > —i, a, = 0 or A" — A\* = 0. Since |A| # 1, we have that for
all n # k, \™ # A\*. This implies a,, = 0, Vn # k. Therefore f(2) = ap2*, ar # 0.
But f(0) = oo, this leads to a contradiction. Therefore, there are no solutions for

(3.10). This completes the proof.

Remark 3.2.11 Let S(z) = Az and let f be a meromorphic solution of (3.10). Then
(a) if |]N| = 1 but X is not an m'™- root of 1 and |\| # 1, then 0 and oo are
super-attracting fized points of f and f(2) = apz* a, # 0, that is, there are no
meromorphic solutions f with deg f # k;

(b) if [\ =1 and X is an m™- root of 1, then f need not fix co. For exzample, let
S(z) = —z and k = 3, then f(z) =
which f(oo) = 0.

257 s the meromorphic solution of (3.10)

Remark 3.2.12 Consider (3.9), we obtain the following results:

(a) Ifap =1, so f(a) = a, f(b) = b, and f(oc0) = i, b € C. If My is a Mébius
transformation that My(a) = a, My(b) = b and Mk(é) = 00, then by Theorem
(3.2.4) My o fr is a unique solution of (3.10) that fizes a,b and oco. This implies
(a) of Theorem (3.1.8).

(b) If a, = 0,a5_1 # 1, so f(a) = a, f(b) = b, and f(occ) = 0. If My, is a Mdbius
transformation that My(a) = a, Mi(b) = b and M(0) = oo, then by Theorem
(8.2.4) My o fr is a unique solution of (3.10) such that fizes a,b and oo. This
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implies (b) of Theorem (3.1.8).
(c) If ar, = a1 = 0, from Theorem (3.2.8) f is conjugate to a map z — Kz*, K #
0 by the Mdobius transformation M(z) = C (Z:‘;) ,C #0. Then f is of the form

z

_ bKC*(z — )" —aO(z — b)*
flz) = KCF(z—a)f —C(z—0b)k

Therefore (3.10) has no solutions. This implied (c) of Theorem (3.1.8).

Example 3.2.13 For k = 2, Newton’s method N is the rational solution of (3.10)
which fizes a,b and co. Let f be a solution of (3.10) which fixes a,b and o (o #
a,b).

Then f = ToN where T is a Mébius transformation which fizes a,b and T(f(«)) =

Q.

Theorem 3.2.14 The Julia set of the rational solutions of (3.10) are circles on the

sphere.

Proof. In [66], we know that

a(z=b)F —b(z—a)”
fil(2) = (z=b)k — (2 —a)k

is the rational solution of (3.10). Let f be a rational solution of (3.10) which fixes
a,b and « (a # a,b). Theorem 3.2.7 shows that f = T} o f where T} is a M&bius
transformation which fixes a,b and Ty(fx(o)) = a. For k > 2, the function fj
is conjugate to a map w — w* and T}, is conjugate to a map w — Kw* where

|K| < 1 by the Mébius transformation that send w = 0 to a and w = oo to b,

namely
L
M(w) = —=.
w—1
The inverse M1, of M is given by
—2+4a
M7 (z) = :
() =—"13

This implies that f is conjugate to the map Kz** where |K| < 1. So we obtain
that J(f) is a circle on the sphere. This completes the proof.
We now consider the case when the Mobius transformation has exactly

one fixed point in the complex plane. Let R be a Mobius transformation which
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has only one fixed point, say a € C (so a is the global attractor of R). We are
interested in finding meromorphic solutions f on C of the following functional
equation

foR=RFof (3.16)

where £ > 2 and R is defined as above.

Remark 3.2.15 We can show that
floR = R* o ft fori, j €N. (3.17)
Theorem 3.2.16 Let f be a solution of (3.16). Then a is a fized point of f.

Proof. First, we show that a is not a pole of f. For if a is a pole of f, then

f(a) = co. From (3.17) and for ¢ = 1, we have

5 = f(a) = f o R'(a) = R*(f(a)) = R¥(c0).

Since @ is an attracting fixed point of R, R/*(c0) — a as j — oo. This implies
that @ = oo which is a contradiction. Thus a is not a pole of f.

Take i = 1 and z = a in (3.17) we obtain

fla) = R*(f(a)).

This implies that f(a) is a fixed point of R/*(z).
Taking 7 — oo,
f(a) = lim R*(f(a)) = a

J—00

since a is a global attracting fixed point of R. Therefore a is a fixed point of f.

Theorem 3.2.17 For a given complex number o distinct from a. There exists a

unique solution of (3.16) which fizes o and a.

Proof. Let f and g be solutions of (3.16) which fixes o and a. From (3.17), take
i = 1 we obtain

foR(a)=R"o f(a) = R*(a)
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and

go Ri(a) = R o g(a) = R*(a).

Since a # a and a is a global attractor of R, R/(a)) — a as j — oo. This implies

that a is a limit point of {R’/(a) : j € N}. As
{R(a): jeN}C{z€C: [f(2) =g(2)},

we have, by the identity Theorem (see [35]), f = g on C. Therefore, there is a
unique solution of (3.16) which fixes a and a where « is a complex number distinct

from a. This completes the proof.

Theorem 3.2.18 Let f be a solution of (3.16). If T is any Mdbius transformation
such that To R=RoT, then foT and T o f are solutions of (3.16).

Proof. Put g = foT and h =T o f. Then

That is, g is a solution of (3.10). And

hoR=(Tof)oR
—To(foR)
=To(R"o f)
=(ToR)o(R"'of)
=(RoT)o (R*1'of)
=Ro(ToR)o(R"?0f)
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hOR:Ro(RoT)o(Rkﬂof)
:RQOTO(Rk_2Of)

— RFo(To )
=RFoh.

That is, h is a solution of (3.10). This completes the proof.

Theorem 3.2.19 Let f be a solution of (3.16). Then f is conjugate to a map

—27i 2mi

ko4 Pe™2%) + Q™)
where P and ) are meromorphic functions.

Proof. Without loss of generality we may assume that R(z) = z + ¢,c # 0.
Assume that g is a solution of (3.16). Then g(z + ¢) = g(z) + kc. Note that
g(z +¢) = g(z) + kc if and only if g(z) = kc+ H(z) where H(z) = g(2) — k.
So H(z) = H(z +c¢) , that is, H is periodic. Since rational functions cannot

—27i

have a period, this implies that H(z) = P(e ¢ ) + Q(et %) where P and Q are

meromorphic functions.
Now, we consider S which fixes a. Then S is conjugate to a map z —
z+ ¢, ¢ # 0 by the Mobius transformation that send z = a to co, namely

1

M(z) = Ty

Let f be a solution of (3.16). Then f is conjugate to g with the same Mobius

transformation. This completes the proof.

Example 3.2.20 f(z) = 2z + e % 4 €* is a solution of the functional equation
foR=R?o f where R(z) = z + 2mi.



