
Chapter 3

Solutions of Functional Equation

f ◦ S = Sk ◦ f

3.1 Some known results

Let f be a C2 function on C. Newton’s method, Halley’s method and the

Schwarzian derivative of f are defined respectively as follows

Nf (z) = z − f(z)

f ′(z)

Hf (z) = z − f(z)

f ′(z)− f(z)f ′′(z)
2f ′(z)

S(z) = 2
f ′′′(z)

f ′(z)
− 3

(
f ′′(z)

f ′(z)

)2

.

Assume that f has a simple zero at ζ so that f ′(ζ) 6= 0. J. Palmore [69]

and [70] studied the role of Schwarzian derivatives of N and H in controlling the

order of convergence of N and H to ζ respectively. The main results in [69] and

[70] are as follows:

Theorem 3.1.1 [69] Let f be a differentiable function on C. Let N and S be the

Newton’s function and the Schwarzian derivative of f . If f has a simple zero ζ

such that f ′(ζ) 6= 0, then N ′′′(ζ) = S(ζ). If f ′′(ζ) = 0, then N has convergence to

ζ of order 3 or greater. If S(ζ) = 0, then N has convergence to ζ of order 4 or

greater.

Theorem 3.1.2 [70] Let f be a differentiable function on C. Let H and S be the

Halley’s function and the Schwarzian derivative of f . If f has a simple zero ζ

such that f ′(ζ) 6= 0, then H ′′′(ζ) = −2
(
S(ζ)

2

)
. H has convergence to ζ of order 4

or greater if and only if S(ζ) = 0
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P. Niamsup, J. Palmore and Y. Lenbury [67] studied the role of Schwarzian

derivatives of composition function between H and N , namely H ◦N and N ◦H,

in controlling the order of the simple root ζ of f . They obtained the following

results.

Theorem 3.1.3 Let f be a differentiable function on C. Let H,Nand S be the

Halley’s function, Newton’s function and Schwarzian derivative of f , respectively.

If f has a simple zero ζ such that f ′(ζ) 6= 0, then the values of the first five

derivatives of H ◦ N at ζ are zero, and (H ◦ N)(6)(ζ) = − (15
2

) (f ′′(ζ)
f ′(ζ)

)
· S(ζ).

Therefore, H ◦ N has order of convergence to ζ equal to 6 or greater. The order

of H ◦ N is controlled by the second derivative and by the Schwarzian derivative

of f evaluated at ζ.

Theorem 3.1.4 Let f be a differentiable function on C. Let H,Nand S be the

Halley’s function, Newton’s function and Schwarzian derivative of f , respectively.

If f has simple zero ζ such that f ′(ζ) 6= 0, then the values of the first five derivatives

of N ◦ H evaluated at ζ are zero, and (N ◦ H)(6)(ζ) = 10
(
f ′′(ζ)
f ′(ζ)

)
, (H ′′′(ζ))2 =

− (15
2

) (
f ′′(ζ)
f ′(ζ)

)3

· S(ζ). Therefore, N ◦H has order of convergence to ζ equal to 6

or greater and the order of convergence is controlled by the second derivative and

by the Schwarzian derivative of f evaluated at ζ.

A successive approximation S(z) of f(z) may be obtained by setting

f(z) = 0 and then write this equation as z = S(z). For example, if f(z) is a

quadratic polynomial with roots a and b such that 0 < |a| < |b| < 1, that is

f(z) = (z − a)(z − b), then S(z) = −ab
z−(a+b)

is a successive approximation of f(z)

having z = a as a global attractor. In general, Halley’s method, Newton’s method

and successive approximation are iterative methods which can be used to locate

roots of functions where the order of convergence of these methods are three, two

and one, respectively. P. Niamsup and J. Palmore ([65] and [66]) studied the roles

of Schwarzian derivative of Halley’s method, Newton’s method and the composite

between two methods in controlling the order of convergence of these methods.

The following relations between Halley’s method, Newton’s method and successive

approximation for f(z) = (z−a)(z− b), a, b ∈ C such that 0 < |a| < |b| were given
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in [65] and [68], where S(z) = −ab
z−(a+b)

. The following are some of these relations:

(1) H ◦ S = S3 ◦H,

(2) N ◦ S = S2 ◦N ,

(3) (H ◦N) ◦ S = S6 ◦ (H ◦N),

(4) H i(Sj(0)) = S(j+1)3i−1(0), i, j ≥ 0,

(5) N i(Sj(0)) = S(j+1)2i−1(0), i, j ≥ 0,

(6) (H ◦N)j(Sj(0)) = S(j+1)6i−1(0), i, j ≥ 0.

In [71] and [72], J. Palmore investigated a rational function of the following

form:

fk(z) =
a(z − b)k − b(z − a)k

(z − b)k − (z − a)k
.

It was shown that when a and b are quadratic irrational numbers of the form

a =
u+ v

1
2

w
and b =

u− v 1
2

w

where u, v and w are integers such that v > 0, v is not the square of an integer and

w 6= 0, then fk(z) is a rational function of integers u, v and w. This is important

when we study a computable orbit converging to a under the iteration of fk. It

was also shown that

f
(i)
k (0) = Sk

i−1(0)

where k ≥ 2 and i ≥ 1. That is, the order of convergence of fk to a is equal to k.

Note that f2 is the usual Newton’s method for f and f3 is the Halley’s method

for f .

P. Niamsup and J. Palmore [66] studied the functional equation

f ◦ S = Sk ◦ f (3.8)

where k ≥ 2 where S(z) = −ab
z−(a+b)

is a successive approximation of quadratic

polynomial P (z) with roots a and b in C such that 0 < |a| < |b|, that is, P (z) =

(z − a)(z − b), and f is a rational function of degree k of the form

fk(z) =
akz

k + ak−1z
k−1 + . . .+ a1z + a0

bkzk + bk−1zk−1 + . . .+ b1z + b0

, (3.9)

where ai, bj ∈ C (i, j = 0, 1, 2, . . . , k), (a0, b0) 6= (0, 0).

They began by showing that (3.8) has a rational solution.
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Theorem 3.1.5 The functional equation (3.8) has a rational solution, namely

fk(z) =
a(z − b)k − b(z − a)k

(z − b)k − (z − a)k
.

From Theorem 3.1.5, they obtained the following result which is more

general than the result in [68].

Corollary 3.1.6 For k ≥ 2, we have f
(i)
k (Sj(−(ab/zk−(a+b)))) = S(j+1)ki−1(−(ab/zk−

(a + b))) for i, j ≥ 0, where zk is a fixed point of fk. In particular, for bk = 0, fk

has a fixed point at ∞ and hence b
(i)
k (Sj(0)) = S(j+1)ki−1(0) for i, j ≥ 0.

For all rational solutions of (3.8) when k = 2, they obtained the following

result.

Theorem 3.1.7 Let f2 be a rational solution of (3.8), then f2 is of the following

form

(a) If a2 6= 0, then

f2(z) =
z2 + (−2abb2)z + (−ab+ ab(a+ b)b2)

b2z2 + (2− 2(a+ b)b2)z + (−abb2 − (a+ b) + (a+ b)2b2)

where b2 is any complex number. Moreover, if b2 = 0, then f2 is the Newton’s

method for P and if b2 is a nonzero complex number, then we obtain f2(z) =

T2(N(z)) where T2(z) = (z − abb2/b2z + (1 + (a+ b)b2)).

(b) If a2 = 0 and a1 6= 0, then

f2(z) =
z − (a+ b/2)

(−(1/2ab))z2 + ((a+ b/ab))z − ((a2 + ab+ b2/2ab))
.

Note that f2(z) = (S−1 ◦N ◦ S)(z).

(c) If a2 = a1 = 0 and a0 6= 0, then there are no rational solutions for (3.8) of this

form.

Conversely, if T is any mapping such that T ◦ S = S ◦ T , then N ◦ T and T ◦N
are solutions of (3.8).

For general positive integer k, they obtained the following main result.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



43

Theorem 3.1.8 Let fk be a rational solution of (3.8) of the form (3.9).

(a) If ak = 1, then

fk = Tk ◦ f0,k

where f0,k(z) = a(z−b)k−b(z−a)k

(z−b)k−(z−a)k
, Tk(z) = z−abbk

bkz+(1−(a+b)bk)
and bk ∈ C.

(b) If ak = 0, and ak−1 6= 0 then there is only one rational solution in this form

for (3.8) and we can explicitly find such a solution.

(c) If ak = ak−1 = 0, then there are no nonzero rational solutions for (3.8) of this

form.

Conversely, if T is any mapping such that T ◦ S = S ◦ T then f0 ◦ T and

T ◦ f0 are solutions of (3.8).

Remark 3.1.9 (1) When k = 3, f0,3(z) is the Halley’s method for P .

(2) If P (z) is a polynomial of degree 3 or more with distinct roots, then any

successive approximation of P (z) would have degree 2 or more. From which it

follows that (3.8) does not hold (since degree of S is not equal to degree of Sk).

(3) From [71], [72] and Theorem 3.1.8, fk is a rational function with integer

coefficients if and only if zk ∈ Z, a = (s(u−√v)/w) and b = (s(u+
√
v)/w) where

u, v, w, s ∈ Z\{0}, u > 0, v > 0, v2 /∈ Z+.

In this thesis, we propose to study meromorphic solutions of the functional

equation (3.8) and to study the Julia set of rational solutions of (3.8). Under some

certain conditions, we propose to give the explicit form of f .

Moreover, we study meromorphic solutions f of the following functional

equation

f ◦R = Rk ◦ f,

where k ≥ 2 and R is a Möbius transformation which has only one fixed point,

say a ∈ C (so a is a global attractor of R).

3.2 Main results

Let S be a Möbius transformation which has two fixed points, say a and b in C.

Without loss of generality we may assume that a is an attracting fixed point and b
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is a repelling fixed point of S. We are interested in finding meromorphic solutions

f on C of the following functional equation

f ◦ S = Sk ◦ f (3.10)

where k ≥ 2.

In [66], the rational solutions f of (3.10) are solved directly from a linear

system of equations. In this thesis, we study the functional equation (3.10) more

analytically. We will show that for a given complex number α distinct from a and

b, there exists a unique solution of (3.10) which fixes α, a, and b. We also show

that the Julia sets of rational solutions of (3.10) are circles on the sphere.

Let S and f be as above. We have

Theorem 3.2.1 For any i, j ∈ N ,

f i ◦ Sj = Sjk
i ◦ f i. (3.11)

Proof. Fix i = 1 and let P (j) be f ◦ Sj = Sjk ◦ f. Then for j = 2,

(f ◦ S) ◦ S = (Sk ◦ f) ◦ S
= Sk ◦ (f ◦ S)

= Sk ◦ (Sk ◦ f)

= S2k ◦ f.

This implies P (2) holds. Assume that P (n) holds. Then

f ◦ Sn+1 = (f ◦ Sn) ◦ S
= (Snk ◦ f) ◦ S
= Snk ◦ (f ◦ S)

= Snk ◦ (Sk ◦ f)

= S(n+1)k ◦ f

which implies that P (n+ 1) holds. Therefore f ◦Sj = Sjk ◦ f holds for all j ∈ N.
Similarly for a fixed j ∈ N, let Q(i) be f i ◦ Sj = Sjk

i ◦ f i.
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Then for i = 2,

f 2 ◦ Sj = f ◦ (f ◦ Sj)
= f ◦ (Sjk ◦ f)

= (f ◦ Sjk) ◦ f
= (S(jk)k ◦ f) ◦ f
= Sjk

2 ◦ f 2.

This implies that Q(2) holds. Assume that Q(n) holds. Then

f (n+1) ◦ Sj = f ◦ (fn ◦ Sj)
= f ◦ (Sjk

n ◦ fn)

= (f ◦ Sjkn) ◦ fn

= (Sjk
(n+1) ◦ f) ◦ fn

= Sjk
(n+1) ◦ f (n+1)

which implies that Q(n+1) holds. Therefore f i ◦Sj = Sjk
i ◦f i holds for all i ∈ N.

We conclude that f i ◦ Sj = Sjk
i ◦ f i for all i, j ∈ N. This completes the proof.

Theorem 3.2.2 Let f be a solution of (3.10). If f(b) 6= a, then a and b are fixed

points of f .

Proof. Firstly, we show that a, b are not poles of f. For if a was a pole of f , then

f(a) =∞. From (3.11) and for i = 1 we have

∞ = f(a) = f ◦ Sj(a) = Sjk(f(a)) = Sjk(∞).

This implies that a =∞ or b =∞ which is a contradiction. Thus a and b are not

poles of f . From (3.11) if we take i = 1, then for z /∈ f−1 (b) ∪ {a, b} we have, by

continuity of f ,

f
(
Sj (z)

)
= Sjk (f (z)) .

Thus

f (a) = f

(
lim

j→+∞
Sj (z)

)
= lim

j→+∞
f
(
Sj (z)

)

= lim
j→+∞

Sjk (f (z)) = a
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which implies that a is a fixed point of f . From (3.11) if we take z = b, then

f(b) = Sjk(f(b)).

As we assume that f (b) 6= a we conclude that f (b) = b. This completes the proof.

Remark 3.2.3 Let f be a solution of (3.10) such that f (b) 6= a. Then a, b are

super-attracting fixed points of f .

Proof. Consider

f ◦ S(z) = Sk ◦ f(z),

by differentiating both sides we obtain

f ′(S(z))S ′(z) = S ′(Sk−1 ◦ f(z)) · S ′(Sk−2 ◦ f(z)) · . . . · S ′(f(z)) · f ′(z).

For z = a,

f ′(a) · S ′(a) = [S ′(a)]k · f ′(a)

and since S ′(a) 6= 0, we conclude that f ′(a) = 0. That is, a is a super-attracting

fixed point of f .

Similarly, for z = b,

f ′(b) · S ′(b) = [S ′(b)]k · f ′(b)

and since S ′(b) 6= 0, we conclude that f ′(b) = 0. That is, b is a super-attracting

fixed point of f . This completes the proof.

Theorem 3.2.4 For a given complex number α distinct from a and b, there exists

a unique solution of (3.10) which fixes α, a and b.

Proof. Let f and g be solutions of (3.10) which fix a, b and α. From (3.11), take

i = 1 we have

f ◦ Sj(α) = Sjk ◦ f(α) = Sjk(α)

and

g ◦ Sj(α) = Sjk ◦ g(α) = Sjk(α).
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Since α 6= a, b and a is a global attractor of S, Sj(α)→ a as j →∞. This implies

that a is a limit point of {Sj(α) : j ∈ N}. As

{Sj(α) : j ∈ N} ⊆ {z ∈ C : f(z) = g(z)},

we have, by the Identity Theorem (see [35]), f ≡ g on C. Therefore, there is a

unique solution of (3.10) which fixes α, a and b where α is a complex number

distinct from a and b. This completes the proof.

Remark 3.2.5 Let f be a solution of (3.10) which fixes a, b and α where α is a

complex number distinct from a and b. For all Möbius transformation T (z) which

fixes a, b, and T (f(α)) = α then

T (z) =
(−bα + αf(α) + ab− aα)z + (abα− abf(α))

(f(α)− α)z + (αf(α) + ab− bf(α)− af(α))
.

We can show that T ◦ S = S ◦ T .

Theorem 3.2.6 Let f be a solution of (3.10). Then f ◦ T and T ◦ f are solutions

of (3.10) where T is any transformation which satisfies S ◦ T = T ◦ S.

Proof. Put g = f ◦ T and h = T ◦ f . Then

g ◦ S = (f ◦ T ) ◦ S
= f ◦ (T ◦ S)

= f ◦ (S ◦ T )

= (f ◦ S) ◦ T
= (Sk ◦ f) ◦ T
= Sk ◦ (f ◦ T )

= Sk ◦ g.
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That is, g is a solution of (3.10). And

h ◦ S = (T ◦ f) ◦ S
= T ◦ (f ◦ S)

= T ◦ (Sk ◦ f)

= (T ◦ S) ◦ (Sk−1 ◦ f)

= (S ◦ T ) ◦ (Sk−1 ◦ f)

= S ◦ (T ◦ S) ◦ (Sk−2 ◦ f)

= S ◦ (S ◦ T ) ◦ (Sk−2 ◦ f)

= S2 ◦ T ◦ (Sk−2 ◦ f)

...

= Sk ◦ (T ◦ f)

= Sk ◦ h.

That is, h is a solution of (3.10). This completes the proof.

Theorem 3.2.7 Let f and g be solutions of (3.10) such that f fixes a, b and α (α 6=
a, b) and g fixes a, b and β (β 6= a, b). Then g can be expressed in the form

g = T ◦ f

where T is a Möbius transformation which fixes a, b and T (f(β)) = β.

Proof. From Remark 3.2.5, S ◦ T = T ◦ S. By Theorem 3.2.6, T ◦ f is a solution

of (3.10). Since

T ◦ f(a) = T (a) = a

T ◦ f(b) = T (b) = b

T ◦ f(β) = T (f(β)) = β,

this implies T ◦ f is a solution of (3.10) which fixes a, b and β. By Theorem 3.2.4,

we obtain g = T ◦ f.

Theorem 3.2.8 Let f be a solution of (3.10) which fixes a, b. Then f is a rational

function.
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Proof. First, we consider S(z) = λz, |λ| 6= 0, 1. Let g be a solution of (3.10) which

fixes 0,∞ and S is defined as above. So

g(λz) = λkg(z). (3.12)

Set

g(z) =
∞∑
n=1

anz
n

where an ∈ C,∀n. We have

g(λz) =
∞∑
n=1

anλ
nzn

and

λkg(z) =
∞∑
n=1

anλ
kzn.

From (3.12), we obtain

∞∑
n=1

anλ
nzn =

∞∑
n=1

anλ
kzn

∞∑
n=1

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n

For n 6= k, an = 0, so that g(z) = akz
k. This implies that g is a rational function.

Now, we consider S which fixes a, b. Then S is conjugate to a map z 7→
λz, |λ| 6= 0, 1 by the Möbius transformation that send z = a to 0 and z = b to ∞,

namely

M(z) =
−z + a

−z + b
.

Let f be a solution of (3.10) which fixes a, b. Then f is conjugate to g with the

same Möbius transformation. Therefore f is a rational function. This completes

the proof.

Proposition 3.2.9 Let f be a solution of (3.10) which fixes a and b. For any com-

plex number α distinct from a and b, if f(α) = α then f is conjugate to a map
(−z+b
−z+a

)k−1
zk.
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Proof. Assume that f is a solution of (3.10) which fixes a and b. Given α 6= a, b.

From Theorem 3.2.8, f is conjugate to a map g where g(z) = Kzk, ∃K 6= 0 by the

Möbius transformation that send z = a to 0 and z = b to ∞, namely

M(z) =
−z + a

−z + b
.

Since f(α) = α, we have

M−1gM(α) = α.

g(M(α)) = M(α).

That is, M(α) is a fixed point of g. But g has fixed points at 0,∞ and (k − 1)th

roots of 1
K
. Then

M(α) =

(
1

K

) 1
k−1

−α + a

−α + b
=

(
1

K

) 1
k−1

(−α + a

−α + b

)k−1

=
1

K

K =

(−α + b

−α + a

)k−1

.

This implies that f is conjugate to a map
(−z+b
−z+a

)k−1
zk. This completes the proof.

Theorem 3.2.10 Let S(z) = λz, |λ| 6= 0 and let f be a meromorphic solution of

(3.10). Then f is of the following form

(a) If |λ| = 1,

(a.1) and if λ is not an mth-root of 1,

(a.1.1) and if f(0) = 0, then f(z) = akz
k, ak 6= 0.

(a.1.2) and if f(0) =∞, then there are no solutions for (3.10).

(a.2) and if λ is an mth-root of 1,

(a.2.1) and if f(0) = 0,

(a.2.1.1) and if m < k then f(z) = atz
t, at 6= 0 or f(z) =

∑
p≥0 at+pmz

t+pm,

where t is the remainder of k divided by m.

(a.2.1.2) and if m = k then f(z) = akz
k, ak 6= 0 or f(z) =

∑
p≥1 apmz

pm.

(a.2.1.3) and if m > k then f(z) = akz
k, ak 6= 0 or f(z) =

∑
p≥0 ak+pmz

k+pm.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



51

(a.2.2) and if f(0) =∞ (f(z) =
∑

n≥−i anz
n, i ∈ Z+),

(a.2.2.1) and if m < k then f(z) =
∑

p≥j at+pmz
t+pm, where j is the

smallest integer p so that t+ pm ≥ −i and t is the remainder of k divided by m.

(a.2.2.2) and if m = k then f(z) =
∑

p≥j apmz
pm, where j is the smallest

integer p so that pm ≥ −i.
(a.2.2.3) and if m > k then f(z) =

∑
p≥j ak+pmz

k+pm, where j is the

smallest integer p so that k + pm ≥ −i.
(b) If |λ| 6= 1,

(b.1) and if f(0) = 0, then f(z) = akz
k, ak 6= 0.

(b.2) and if f(0) =∞, then there are no solutions for (3.10).

Proof. Since S(z) = λz, |λ| 6= 0 and f is a meromorphic solution of (3.10), we

have

f(λz) = λkf(z). (3.13)

We discuss two situations.

Case a |λ| = 1. We discuss the following two subcases.

Subcase a.1 λ is not an mth-root of 1. We discuss the following two sub-subcases.

Sub-subcase a.1.1 f(0) = 0. We can write f(z) in the form

f(z) =
∞∑
n=1

anz
n

where an ∈ C,∀n ∈ N. By substitution f(z) into (3.13), we obtain

∞∑
n=1

anλ
nzn =

∞∑
n=1

anλ
kzn

∞∑
n=1

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n ∈ N.

Then for each n ∈ N, an = 0 or λn − λk = 0. Since λn 6= λk, ∀n 6= k, we have

f(z) = akz
k, ak 6= 0.

Sub-subcase a.1.2 f(0) =∞. We can write f(z) in the form

f(z) =
∞∑

n=−i
anz

n,
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where i ∈ Z+ and an ∈ C,∀n ≥ −i. By substitution f(z) into (3.13), we obtain
∞∑

n=−i
anλ

nzn =
∞∑

n=−i
anλ

kzn

∞∑
n=−i

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n ≥ −i.
Then for each n ≥ −i, an = 0 or λn − λk = 0. Since λn 6= λk, ∀n 6= k. Therefore

f(z) = akz
k, ak 6= 0. But f(0) = ∞, this leads to a contradiction. Therefore,

there are no solutions for (3.10).

Subcase a.2 λ is an mth-root of 1. We discuss the following two sub-subcases.

Sub-subcase a.2.1 f(0) = 0. We can write f(z) in the form

f(z) =
∞∑
n=1

anz
n

where an ∈ C,∀n ∈ N.
If m < k, there exist s, t ∈ Z, 0 ≤ t < m such that k = sm + t. We can reduce

(3.13) into the form

f(λz) = λtf(z). (3.14)

By substitution f(z) into (3.14), we obtain
∞∑
n=1

anλ
nzn =

∞∑
n=1

anλ
tzn

∞∑
n=1

an(λn − λt)zn = 0

an(λn − λt) = 0,∀n ∈ N.
Then for each n ∈ N, an = 0 or λn− λt = 0. If an = 0,∀n 6= t, f(z) = atz

t, at 6= 0

and if λn − λt = 0, λn−t = 1 which implied that n = t+ pm, p ∈ Z+ ∪ {0}. Thus

f(z) =
∑

p≥0 at+pmz
t+pm.

If m = k, by substitution f(z) into (3.13), we obtain
∞∑
n=1

anλ
nzn =

∞∑
n=1

anλ
kzn

∞∑
n=1

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n ∈ N.
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Then for each n ∈ N, an = 0 or λn−λk = 0. If an = 0, ∀n 6= k, f(z) = akz
k, ak 6= 0

and if λn − λk = 0, λn−k = 1 which implies that n = pm, p ∈ Z+. Therefore

f(z) =
∑∞

p≥1 apmz
pm.

If m > k, by substitution f(z) into (3.13), we obtain

∞∑
n=1

anλ
nzn =

∞∑
n=1

anλ
kzn

∞∑
n=1

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n ∈ N.

Then for each n ∈ N, an = 0 or λn−λk = 0. If an = 0, ∀n 6= k, f(z) = akz
k, ak 6= 0

and if λn − λk = 0, λn−k = 1 which implies that n = k + pm, p ∈ Z+ ∪ {0}.
Therefore f(z) =

∑∞
p≥0 ak+pmz

k+pm.

Sub-subcase a.2.2 f(0) =∞. We can write f(z) in the form

f(z) =
∞∑

n=−i
anz

n

where i ∈ Z+ and an ∈ C, ∀n ≥ −i.
If m < k, there exist s, t ∈ Z, 0 ≤ t < m such that k = sm + t. We can reduce

(3.13) into the form

f(λz) = λtf(z). (3.15)

By substitution f(z) into (3.15), we obtain

∞∑
n=−i

anλ
nzn =

∞∑
n=−i

anλ
tzn

∞∑
n=−i

an(λn − λt)zn = 0

an(λn − λt) = 0,∀n ≥ −i.

Then for each n ≥ −i, an = 0 or λn − λt = 0. If an = 0,∀n 6= t, f(z) = atz
t,

at 6= 0. But f(0) = ∞, this leads to a contradiction. Thus, this situation cannot

occur. And if λn − λt = 0, λn−t = 1 which implies that n = t + pm, p ∈ Z. Thus

f(z) =
∑

p∈Z at+pmz
t+pm. Since at+pm = 0, ∀p < j where j is the smallest integer

such that t+ pm ≥ −i, we have f(z) =
∑

p≥j at+pmz
t+pm.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



54

If m = k, by substitution f(z) into (3.13), we obtain

∞∑
n=−i

anλ
nzn =

∞∑
n=−i

anλ
kzn

∞∑
n=−i

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n ≥ −i.
Then for each n ≥ −i, an = 0 or λn − λk = 0. If an = 0, ∀n 6= k, f(z) =

akz
k, ak 6= 0. But f(0) = ∞, this leads to a contradiction. Thus, this situation

cannot occur. And if λn − λk = 0, λn−k = 1 which implies that n = pm, p ∈ Z.

Thus f(z) =
∑

p∈Z apmz
pm. Since apm = 0, ∀p < j where j is the smallest integer

such that pm ≥ −i, we have f(z) =
∑

p≥j apmz
pm.

If m > k, by substitution f(z) into (3.13), we obtain

∞∑
n=−i

anλ
nzn =

∞∑
n=−i

anλ
kzn

∞∑
n=−i

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n ≥ −i.
Then for each n ≥ −i, an = 0 or λn − λk = 0. If an = 0, ∀n 6= k, f(z) =

akz
k, ak 6= 0. But f(0) = ∞, this leads to a contradiction. Thus, this situation

cannot occur. And if λn−λk = 0, λn−k = 1 which implies that n = k+pm, p ∈ Z.

Thus f(z) =
∑

p∈Z ak+pmz
k+pm. Since ak+pm = 0, ∀p < j where j is the smallest

integer such that k + pm ≥ −i, we have f(z) =
∑

p≥j ak+pmz
k+pm.

Case b |λ| 6= 1. We discuss the following two subcases.

Subcase b.1 f(0) = 0. We can write f(z) in the form

f(z) =
∞∑
n=1

anz
n

where an ∈ C, ∀n ∈ N. By substitution f(z) into (3.13), we obtain

∞∑
n=1

anλ
nzn =

∞∑
n=1

anλ
kzn

∞∑
n=1

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n ∈ N.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



55

Then for each n ∈ N, an = 0 or λn − λk = 0. Since |λ| 6= 1, we have that for all

n 6= k, λn 6= λk. This implies an = 0, ∀n 6= k. Therefore f(z) = akz
k, ak 6= 0.

Subcase b.2 f(0) =∞. We can write f(z) in the form

f(z) =
∞∑

n=−i
anz

n,

where i ∈ Z+ and an ∈ C,∀n ≥ −i. By substitution f(z) into (3.13), we obtain

∞∑
n=−i

anλ
nzn =

∞∑
n=−i

anλ
kzn

∞∑
n=−i

an(λn − λk)zn = 0

an(λn − λk) = 0,∀n ≥ −i.

Then for each n ≥ −i, an = 0 or λn − λk = 0. Since |λ| 6= 1, we have that for

all n 6= k, λn 6= λk. This implies an = 0, ∀n 6= k. Therefore f(z) = akz
k, ak 6= 0.

But f(0) =∞, this leads to a contradiction. Therefore, there are no solutions for

(3.10). This completes the proof.

Remark 3.2.11 Let S(z) = λz and let f be a meromorphic solution of (3.10).Then

(a) if |λ| = 1 but λ is not an mth- root of 1 and |λ| 6= 1, then 0 and ∞ are

super-attracting fixed points of f and f(z) = akz
k, ak 6= 0, that is, there are no

meromorphic solutions f with deg f 6= k;

(b) if |λ| = 1 and λ is an mth- root of 1, then f need not fix ∞. For example, let

S(z) = −z and k = 3, then f(z) = z
z2+1

is the meromorphic solution of (3.10)

which f(∞) = 0.

Remark 3.2.12 Consider (3.9), we obtain the following results:

(a) If ak = 1, so f(a) = a, f(b) = b, and f(∞) = 1
bk

, bk ∈ C. If Mk is a Möbius

transformation that Mk(a) = a,Mk(b) = b and Mk(
1
bk

) = ∞, then by Theorem

(3.2.4) Mk ◦ fk is a unique solution of (3.10) that fixes a, b and ∞. This implies

(a) of Theorem (3.1.8).

(b) If ak = 0, ak−1 6= 1, so f(a) = a, f(b) = b, and f(∞) = 0. If Mk is a Möbius

transformation that Mk(a) = a,Mk(b) = b and Mk(0) = ∞, then by Theorem

(3.2.4) Mk ◦ fk is a unique solution of (3.10) such that fixes a, b and ∞. This
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implies (b) of Theorem (3.1.8).

(c) If ak = ak−1 = 0, from Theorem (3.2.8) f is conjugate to a map z 7→ Kzk, K 6=
0 by the Möbius transformation M(z) = C

(
z−a
z−b
)
, C 6= 0. Then f is of the form

f(z) =
bKCk(z − a)k − aC(z − b)k
KCk(z − a)k − C(z − b)k .

Therefore (3.10) has no solutions. This implied (c) of Theorem (3.1.8).

Example 3.2.13 For k = 2, Newton’s method N is the rational solution of (3.10)

which fixes a, b and ∞. Let f be a solution of (3.10) which fixes a, b and α (α 6=
a, b).

Then f = T ◦N where T is a Möbius transformation which fixes a, b and T (f(α)) =

α.

Theorem 3.2.14 The Julia set of the rational solutions of (3.10) are circles on the

sphere.

Proof. In [66], we know that

fk(z) =
a(z − b)k − b(z − a)k

(z − b)k − (z − a)k

is the rational solution of (3.10). Let f be a rational solution of (3.10) which fixes

a, b and α (α 6= a, b). Theorem 3.2.7 shows that f = Tk ◦ fk where Tk is a Möbius

transformation which fixes a, b and Tk(fk(α)) = α. For k ≥ 2, the function fk

is conjugate to a map w 7→ wk and Tk is conjugate to a map w 7→ Kwk where

|K| < 1 by the Möbius transformation that send w = 0 to a and w = ∞ to b,

namely

M(w) =
bw − a
w − 1

.

The inverse M−1, of M is given by

M−1(z) =
−z + a

−z + b
.

This implies that f is conjugate to the map Kzk
2

where |K| < 1. So we obtain

that J(f) is a circle on the sphere. This completes the proof.

We now consider the case when the Möbius transformation has exactly

one fixed point in the complex plane. Let R be a Möbius transformation which
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has only one fixed point, say a ∈ C (so a is the global attractor of R). We are

interested in finding meromorphic solutions f on C of the following functional

equation

f ◦R = Rk ◦ f (3.16)

where k ≥ 2 and R is defined as above.

Remark 3.2.15 We can show that

f i ◦Rj = Rjki ◦ f i for i, j ∈ N. (3.17)

Theorem 3.2.16 Let f be a solution of (3.16). Then a is a fixed point of f .

Proof. First, we show that a is not a pole of f . For if a is a pole of f , then

f(a) =∞. From (3.17) and for i = 1, we have

∞ = f(a) = f ◦Ri(a) = Rjk(f(a)) = Rjk(∞).

Since a is an attracting fixed point of R, Rjk(∞) → a as j → ∞. This implies

that a =∞ which is a contradiction. Thus a is not a pole of f .

Take i = 1 and z = a in (3.17) we obtain

f(a) = Rjk(f(a)).

This implies that f(a) is a fixed point of Rjk(z).

Taking j →∞,

f(a) = lim
j→∞

Rjk(f(a)) = a,

since a is a global attracting fixed point of R. Therefore a is a fixed point of f .

Theorem 3.2.17 For a given complex number α distinct from a. There exists a

unique solution of (3.16) which fixes α and a.

Proof. Let f and g be solutions of (3.16) which fixes α and a. From (3.17), take

i = 1 we obtain

f ◦Rj(α) = Rjk ◦ f(α) = Rjk(α)
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and

g ◦Rj(α) = Rjk ◦ g(α) = Rjk(α).

Since α 6= a and a is a global attractor of R, Rj(α)→ a as j →∞. This implies

that a is a limit point of {Rj(α) : j ∈ N}. As

{Rj(α) : j ∈ N} ⊆ {z ∈ C : f(z) = g(z)},

we have, by the identity Theorem (see [35]), f ≡ g on C. Therefore, there is a

unique solution of (3.16) which fixes a and α where α is a complex number distinct

from a. This completes the proof.

Theorem 3.2.18 Let f be a solution of (3.16). If T is any Möbius transformation

such that T ◦R = R ◦ T , then f ◦ T and T ◦ f are solutions of (3.16).

Proof. Put g = f ◦ T and h = T ◦ f . Then

g ◦R = (f ◦ T ) ◦R
= f ◦ (T ◦R)

= f ◦ (R ◦ T )

= (f ◦R) ◦ T
= (Rk ◦ f) ◦ T
= Rk ◦ (f ◦ T )

= Rk ◦ g.

That is, g is a solution of (3.10). And

h ◦R = (T ◦ f) ◦R
= T ◦ (f ◦R)

= T ◦ (Rk ◦ f)

= (T ◦R) ◦ (Rk−1 ◦ f)

= (R ◦ T ) ◦ (Rk−1 ◦ f)

= R ◦ (T ◦R) ◦ (Rk−2 ◦ f)
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h ◦R = R ◦ (R ◦ T ) ◦ (Rk−2 ◦ f)

= R2 ◦ T ◦ (Rk−2 ◦ f)

...

= Rk ◦ (T ◦ f)

= Rk ◦ h.

That is, h is a solution of (3.10). This completes the proof.

Theorem 3.2.19 Let f be a solution of (3.16). Then f is conjugate to a map

kz + P (e
−2πi
c

z) +Q(e
2πi
c
z)

where P and Q are meromorphic functions.

Proof. Without loss of generality we may assume that R(z) = z + c, c 6= 0.

Assume that g is a solution of (3.16). Then g(z + c) = g(z) + kc. Note that

g(z + c) = g(z) + kc if and only if g(z) = kc + H(z) where H(z) = g(z) − kc.

So H(z) = H(z + c) , that is, H is periodic. Since rational functions cannot

have a period, this implies that H(z) = P (e
−2πi
c

z) + Q(e
2πi
c
z) where P and Q are

meromorphic functions.

Now, we consider S which fixes a. Then S is conjugate to a map z 7→
z + c, c 6= 0 by the Möbius transformation that send z = a to ∞, namely

M(z) =
1

−z + a
.

Let f be a solution of (3.16). Then f is conjugate to g with the same Möbius

transformation. This completes the proof.

Example 3.2.20 f(z) = 2z + e−z + ez is a solution of the functional equation

f ◦R = R2 ◦ f where R(z) = z + 2πi.
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