
Chapter 4

Boundedness of Fatou Components of

Composite Entire and Meromorphic

Functions

4.1 Some known results

If f is a polynomial of degree at least two, then the Fatou set F (f) contains the

component F∞ = {z : fn(z) → ∞} , which is unbounded and completely invari-

ant. If f is a transcendental entire function then, from Picard’s theorem and the

invariance of J(f) is unbounded, so that F (f) no longer contains a neighborhood

of ∞.

I. N. Baker [8] raised the question of whether every component of F (f)

must be bounded if f is of sufficiently small growth. The appropriate growth

condition would be of order less than 1
2
, since I. N. Baker [8] showed that for any

sufficiently large positive a , the function f(z) = z
−1
2 sinz

1
2 + z + a is of order 1

2

and has an unbounded component U of F (f) containing a segment [x0,∞) of the

positive real axis. In the positive direction to this problem, a few results have

been obtained.

I. N. Baker [8] proved the following result.

Theorem 4.1.1 [8] Let f ∈ E. Suppose that there exist sequences Rn, ρn →∞ and

c(n) > 1 such that

(i) M(Rn, f) = Rn+1,

(ii) Rn ≤ ρn ≤ R
c(n)
n ,

(iii) m∗(ρn, f) > R
c(n+1)
n+1 for all sufficiently large n.

Then all the components of the Fatou set F (f) are bounded.
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Note that m∗(r, f) = min{|f(z)| : |z| ≤ r}.
He also proved that every component of F (f) is bounded if

logM(r, f) = O{(logr)t} (4.18)

as r →∞ , where 1 < t < 3.

G. M. Stallard [76] improved the sufficient condition (4.18) to

log logM(r, f) = O

[
(log r)

1
2

(log logr)ε

]
(4.19)

for some ε > 0. Furthermore, every component of F (f) is bounded provided that

f is of order less than 1
2

and

logM(2r, f)

logM(r, f)
→ c as r →∞ (4.20)

where c ≥ 1 is a finite constant that depends on f . By a method which is

somewhat different from those of I. N. Baker or G. M. Stallard, J. M. Anderson

and A. Hinkkanen [2] obtained the same result under another regularity condition

on the growth of f instead of (4.20), namely, for some positive constant c,

φ′(x)

φ(x)
≥ 1 + c

x
(4.21)

for all sufficiently large x , where φ(x) = logM(ex, f).

X. H. Hua and C. C. Yang [49] proved the following results.

Theorem 4.1.2 [49] Suppose that f is a transcendental entire function of lower

order µ = µ(f) < 1/2. Assume that for any m > 1,

logM(rm, f) ≥ m2 logM(r, f)

holds for all sufficiently large r. Then any component of F (f) is bounded.

Now we will show that the condition ρ < 1/2 in the above theorem is

sharp.

Example 4.1.3 [8] Take a positive constant a such that

1

2
a(x+ 1 + a/2)−1/2 > e|z|−1/2
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hold for all x > a2, y2 < 4(x+ 1) and z = x+ iy. Let

f(z) = sin(z1/2)/z1/2 + z + a

and

D = {z = x+ iy : x > a2, y2 < 4(x+ 1)}.

Then the lower order µ(f) of f(z) is 1/2 and

logM(2r, f)/ logM(r, f)→ 21/2

as r →∞.
On the other hand, if z ∈ D, then |f(z)− (z + a)| < e|z|−1/2. Let z0 ∈ ∂D. It is

easy to verify that

|z + a− z0| > 1

2
a(x+ 1 + a/2)−1/2 > e|z|−1/2.

Thus f(D) ⊂ D, and so, D ⊂ F (f). Therefore F (f) contains an unbounded

component.

Theorem 4.1.4 [48] Suppose that f is a transcendental entire function with lower

order µ = µ(f) < 1/2. Then every pre-periodic component is bounded.

For example, take f(z) = cos
√
z + (3π/2)2. Then F (f) has an unbounded

component U which contains the origin. Note that f(0) = 0, |f ′(0)| < 1. Thus U

is an immediate attractive domain. Obviously, µ(f) = 1/2. Thus the restriction

on the lower order is sharp.

Y. Wang [80] gave a positive answer to Baker’s problem for all functions

of positive lower order. He showed that for an entire functions f , if ρ < 1
2

and

µ > 0, then every component of F (f) is bounded. Therefore only the case µ = 0

remains open.

J. H. Zheng [83] investigated this subject for the case of meromorphic

function and proved the following result.

Theorem 4.1.5 [83] Let f(z) be a transcendental meromorphic function. If we

have

lim sup
r→+∞

m(r, f)

r
= +∞,
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where m(r, f) = min{|f(z)| : |z| = r}, then the Fatou set, F (f), of f has no

unbounded preperiodic or periodic components

In particular, f has no Baker domains.

J. H. Zheng and S. Wang [86] gave, among other things, a sufficient con-

dition for non-existence of the unbounded Fatou components, which says that a

transcendental meromorphic function f(z) has no unbounded Fatou components

provided that for a d > 1 and for all sufficiently large r > 0 there exists an

r̃ ∈ [r, rd] such that

logm(r̃, f) ≥ d logM(r, f), (4.22)

then every component of F (f) is bounded. from this result, they considered the

case of the composition of finitely many entire functions and proved the non-

existence of unboubded Fatou components of fN ◦ fN−1 ◦ . . . ◦ f1(z) with order

0 < µ(fj) ≤ ρ(fj) <
1
2
(j = 1, 2, 3, . . . , N). Their results as follows:

Theorem 4.1.6 [86] Let fj(z)(j = 1, 2, . . . ,m;m ≥ 1) be transcendental entire

functions and such that for some number h > 1 and all the sufficiently large r ,

there exists an rj ∈ (r, rh) satisfying

m(rj, fj) > M(r, fj)
h, j = 1, 2, . . . ,m.

Set g(z) = fm ◦ fm−1 ◦ · · · ◦ f1(z).

Then F (g) has no unbounded components.

The condition of Theorem 4.1.6, can be achieved and from this they ob-

tained the following consequence.

Corollary 4.1.7 [86] Let fj(z)(j = 1, 2, . . . ,m;m ≥ 1) be transcendental entire

functions with finite order and such that for some α ∈ (0, 1) and d > 1 and all the

sufficiently large r, there exists an rj ∈ (r, rd) satisfying

m(rj, fj) > M(r, fj)
α, j = 1, 2, · · · ,m, (4.23)

and for some small ε > 0, there exists an r̃j ∈ (r, rd) such that

log M(r̃j, fj) > rε, j = 1, 2, · · · ,m.
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Set

g(z) = fm ◦ fm−1 ◦ · · · ◦ f1(z).

Then F (g) has no unbounded components.

Corollary 4.1.8 [86] Let fj(z)(j = 1, 2, . . . ,m;m ≥ 1) be transcendental entire

functions of growth order and lower order lying in (0, 1
2
).

Set g(z) = fm ◦ fm−1 ◦ · · · ◦ f1(z).

Then F (g) has no unbounded components.

In [32], C. Cao and Y. Wang extend the result in [86] by assuming instead one of

functions fj(z)(j = 1, 2, 3, . . . , N) considered has a positive lower order in terms

of the argument due to I. N. Baker [8]. They show that if f1, f2, . . . , fN are non-

constant holomorphic functions in the plane, each having order less than 1
2

and if

the lower order of fj > 0, for some j ∈ {1, 2, . . . , N}, then the Fatou set of the

function h = fN ◦ fN−1 ◦ · · · ◦ f1 has no unbounded components.

For more detail of boundedness of components of F (f) of transcendental

entire function f , we refer to I. N. Baker [8], G. M. Stallard [76], Y. Wang [80], J.

H. Zheng [81] and references cited therein.

J. H. Zheng [83] considered the case of meromorphic functions and gave a

sufficient condition for non-existence of unbounded pre-periodic and periodic Fatou

components. Therefore, it is an open problem for the case of wandering domains.

In this thesis, we attempt to discuss the boundedness of Fatou components of

composition of any finitely many transcendental meromorphic functions of order

less than 1
2

with finitely many poles and obtain a generalization of results of Zheng-

Wang [86] and Cao-Wang [32].

4.2 Lemmas

In order to prove our main Theorem, we need two lemmas and the basic knowledge

of the hyperbolic metric.
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Lemma 4.2.1 Let f be a meromorphic function of order less than 1
2

with finitely

many poles. There exist d > 1 and R > 0 such that for all r > R, there exists

r̃ ∈ (r, rd) satisfying

|f(z)| ≥ m(r̃, f) = M(r, f)

for all z ∈ {z : |z| = r̃}.

Lemma 4.2.1 follows directly from [3], satz 1. Actually, f(z) in Lemma

4.2.1 can be written into the form

f(z) = g(z) +R(z)

where g(z) is an entire function with order ρ(g) = ρ(f) < 1/2 and R(z) is a

rational function such that R(z) → 0 as z → ∞. It is well-known that Lemma

4.2.1 is true for g, and hence it is easy to see that Lemma 4.2.1 holds for f .

Lemma 4.2.2 Let f be a transcendental meromorphic function with only finitely

many poles, finite order ρ and positive lower order µ. Then for any d > 1 such

that dµ > ρ, we have

lim
r→∞

logM(rd, f)

logM(r, f)
=∞.

Lemma 4.2.2 follows immediately from the proof of Corollary 2 of J. H.

Zheng [86].

In what follows, let us recall some properties on the hyperbolic metric, see

[1], [19], etc. An open set W in C is called hyperbolic if C\W contains at least two

points. Let U be a hyperbolic domain in C. λU(z) is the density of the hyperbolic

on U and ρU(z1, z2) stands for the hyperbolic distance between z1 and z2 in U , i.e.

ρU(z1, z2) = inf
γ∈U

∫

γ

λU(z)|dz|,

where γ is a Jordan curve connecting z1 and z2 in U . If U is simply-connected

and d(z, ∂U) is a Euclidean distance between z ∈ U and ∂U , then for any z ∈ U ,

1

2d(z, ∂U)
≤ λU(z) ≤ 2

d(z, ∂U)
. (4.24)
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Let f : U → V be an analytic function, where U and V are hyperbolic domains.

By the principle of hyperbolic metric, we have

ρV (f(z1), f(z2)) ≤ ρU(z1, z2), (4.25)

for z1, z2 ∈ U .

4.3 Main theorem

In this section, we mainly prove the following result.

Theorem 4.3.1 Let fj(z)(j = 1, 2, 3, . . . ,m) be transcendental meromorphic func-

tions of order less than 1
2

with at most finitely many poles and at least one of them

has positive lower order. Let g(z) = fm ◦ fm−1 ◦ . . . ◦ f1(z). Then either g(z) has

no unbounded Fatou components or at least one unbounded Fatou component is

multiply connected.

Proof Suppose that F (g) has an unbounded component U and every unbounded

component of F (g) is simply-connected. Then in view of Theorem 4.1.5 under

our assumption, U is wandering and every Un is unbounded. Therefore U has an

unbounded component Γ of its boundary and so Un ⊂ C\Γ and C\Γ is certainly

simply connected. Take a point z0 ∈ U. Then there exists a sufficiently large

R0 > |z0| so that each fj(z) has no poles in {z : |z| > R0}.
We first prove the following result: there exists h > 1 such that for all

sufficiently large r and for an arbitrary curve γ which intersects {z : |z| < r} and

{z : |z| > rh}, we have

g(γ) ∩ {z : |z| < R} 6= ∅ and g(γ) ∩ {z : |z| > Rh} 6= ∅ (4.26)

where R = Mm(r, g), M1(r, g) = M(r, f1), . . . , Mm(r, g) = M(Mm−1(r, g), fm).

Assume that fk(z) has positive lower order for k ∈ {1, 2, . . . ,m}. By

Lemma 4.2.1, for each j, we have t > 0 such that for any r > t, there exists

r̃j ∈ (r, rd) such that

|fj(z)| ≥M(r, fj), on Γj := {z : |z| = r̃j}, j = 1, 2, 3, . . . ,m (4.27)
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where each fj(z) has no poles in {z : |z| > t} and M(r, fj) is increasing for r > t.

Assume that γ is a curve under our consideration for h = d2k, where d is as in

Lemma 4.2.2 for fk, namely,

γ ∩ {z : |z| < r} 6= ∅ and γ ∩ {z : |z| > rh} 6= ∅.

From Lemma 4.2.1, there exists r̃1 ∈ (rd
2k−1

, rd
2k

) such that

|f1(z)| > M(rd
2k−1

, f1) > M(r, f1)d
2k−2

on Γ1 := {z : |z| = r̃1}.
Let R1 = M(r, f1). Then

f1(γ) ∩ {z : |z| > Rd2k−2

1 } 6= ∅

and from the maximum modulus principle, we have

f1(γ) ∩ {z : |z| < R1} 6= ∅.

Then there exists R̃1 ∈ (Rd2k−3

1 , Rd2k−2

1 ) such that

|f2(z)| ≥M(Rd2k−3

1 , f2) > M(R1, f2)d
2k−4

on Γ2 := {z : |z| = R̃1}.
Let R2 = M(R1, f2). Then

f2 ◦ f1(γ) ∩ {z : |z| < R2} 6= ∅

and

f2 ◦ f1(γ) ∩ {z : |z| > Rd2k−4

2 } 6= ∅.

Then there exists R̃2 ∈ (Rd2k−5

2 , Rd2k−4

2 ) such that

|f3(z)| ≥M(Rd2k−5

2 , f3) > M(R2, f3)d
2k−6

on Γ3 := {z : |z| = R̃2}.
Inductively, we set Rk−2 = M(Rk−3, fk−2). Then

fk−2 ◦ fk−3 ◦ · · · ◦ f1(γ) ∩ {z : |z| > Rd4

k−2} 6= ∅
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and

fk−2 ◦ fk−3 ◦ · · · ◦ f1(γ) ∩ {z : |z| < Rk−2} 6= ∅.

Then there exists R̃k−2 ∈ (Rd3

k−2, R
d4

k−2) such that

|fk−1(z)| ≥M(Rd3

k−2, fk−1) > M(Rk−2, fk−1)d
2

on Γk−1 := {z : |z| = R̃k−2}.
Set Rk−1 = M(Rk−2, fk−1). Then

fk−1 ◦ fk−2 ◦ · · · ◦ f1(γ) ∩ {z : |z| > Rd2

k−1} 6= ∅

and

fk−1 ◦ fk−2 ◦ · · · ◦ f1(γ) ∩ {z : |z| < Rk−1} 6= ∅.

Then there exists R̃k−1 ∈ (Rd
k−1, R

d2

k−1) such that

|fk(z)| ≥M(Rd
k−1, fk) > M(Rk−1, fk)

d2m

on Γk := {z : |z| = R̃k−1}, where the last inequality follows from Lemma 4.2.2.

Set Rk = M(Rk−1, fk). Then

fk ◦ fk−1 ◦ · · · ◦ f1(γ) ∩ {z : |z| > Rd2m

k } 6= ∅

and

fk ◦ fk−1 ◦ · · · ◦ f1(γ) ∩ {z : |z| < Rk} 6= ∅.

Then there exists R̃k ∈ (Rd2m−1

k , Rd2m

k ) such that

|fk+1(z)| ≥M(Rd2m−1

k , fk+1) > M(Rk, fk+1)d
2m−2

on Γk+1 := {z : |z| = R̃k}.
Inductively, we set Rm−1 = M(Rm−2, fm−1). Then we have

fm−1 ◦ fm−2 ◦ · · · ◦ f1(γ) ∩ {z : |z| > Rd2k+2

m−1 } 6= ∅

and

fm−1 ◦ fm−2 ◦ · · · ◦ f1(γ) ∩ {z : |z| < Rm−1} 6= ∅.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



69

Then there exists R̃m−1 ∈ (Rd2k+1

m−1 , R
d2k+2

m−1 ) such that

|fm(z)| ≥M(Rd2k+1

m−1 , fm) > M(Rm−1, fm)d
2k

= Mm(r, g)h,

on Γm := {z : |z| = R̃m−1}.
Moreover, there exists a point zm1 ∈ γ such that

|fm−1 ◦ fm−2 ◦ · · · ◦ f1(zm1)| = R̃m−1.

Thus, |g(zm1)| > Mm(r, g)h > M(R0, g)h > |g(z0)|h.
By setting Rm1 = Mm(r, g), we obtain

g(γ) ∩ {z : |z| = Rh
m1} 6= ∅

and

g(γ) ∩ {z : |z| = Rm1} 6= ∅.

Repeating the previous process above inductively, there is a point zmn ∈ γ such

that

|gn(zmn)| ≥M(Rmn, g)h ≥M(R0, g)h > |gn(z0)|h, (4.28)

where Rmn = Mm(Rn−1, g).

Since gn(U) ⊆ Un ⊂ C\Γ and U is unbounded, we have Un is an unbounded

component of F (g). For an arbitrary point a ∈ J(g), we obtain, by (4.24), that

λUn(z) ≥ λC\Γ(z) ≥ 1

2d(z,Γ)
≥ 1

2|z − a| ≥
1

2(|z|+ |a|) . (4.29)

It follows that

ρUn(gn(z0), gn(zmn)) ≥
∫ |gn(zmn)|

|gn(z0)|

dr

2(r + |a|)

=
1

2
log
|gn(zmn)|+ |a|
|gn(z0)|+ |a| . (4.30)

Set A = max{λU(z0, z) : z ∈ γ}. Clearly A ∈ (0,+∞). From (4.25), noting

zmn ∈ γ ⊂ U , we have

ρUn(gn(z0), gn(zmn)) ≤ ρU(z0, zmn) ≤ A. (4.31)

Therefore, by combining (4.28), (4.30) and (4.31) we obtain

|gn(z0)|h < M(R0, g
n)h < |gn(zmn)|+ |a| ≤ (|gn(z0)|+ |a|)e2A. (4.32)
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This is impossible, since a and e2A are constants, h > 1 and |gn(z0)| → +∞ as

n→ +∞. Therefore, F (g) has no unbounded Fatou components. This completes

the proof.

Corollary 4.3.2 Let fj(z)(j = 1, 2, 3, ...,m) be transcendental entire functions with

order less than 1
2

and at least one of them has positive lower order.

Let g(z) = fm ◦ fm−1 ◦ . . . ◦ f1(z).

Then g(z) has no unbounded Fatou components.

Remark 4.3.3 A different proof of Corollary 4.3.2 may be found in [32].
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