
Chapter 5

Dynamics of Composite Functions

Outside a Small Set

5.1 Some known results

D. Sullivan [78] proved that the Fatou set of a rational function has no wandering

domain, thus solving an open problem in the papers of Fatou and Julia. On the

other hand this is not true for transcendental entire functions. I. N. Baker [7]

constructed an entire function f such that F (f) has wandering domains. Since

then several entire functions which have wandering domains with various different

properties had been constructed, see for instance [10], [38]. Also at the same

time there has been a move to classify those entire functions which do not have

wandering domains, see for instance [9], [40], [43]. In particular this is the case for

functions which have only a finite number of asymptotic or critical values. Such

functions are denoted as having finite type.

I. N. Baker and A. P. Singh [15] studied the dynamics of composite entire

functions g(z) = a+be(2πi/c) where a, b, and c are nonzero constants. They obtained

the following results.

Theorem 5.1.1 [15] Let p(z) be a non-constant entire function and let g(z) =

a + be(2πi/c) where a, b, c are nonzero constants. If h = g(p) has no wandering

domains then neither does p(g).

In particular for a polynomial p(z) it is known in [9] that ep(z) has no

wandering domains and consequently it follows immediately that p(ez) has no

wandering domains (also proved in [9]). As another application of the above

theorem, they showed that ee
z −ez has no wandering domains. Also ee

z −ez is not
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of finite type and so provided an example of entire function which is not of finite

type and having no wandering domains.

Theorem 5.1.2 [15] Let g be a transcendental entire function having at least one

fixed point. Then there exists an entire function f such that g(f) has a wandering

domain.

The proof of this theorem is based on the proof of theorems in [13], [11]

and so on the method of construction of wandering domain first introduced by A.

E. Eremenko and M. Lü Lyubich [38].

W. Bergweiler and Y. Wang [26] studied the dynamics of composite entire

functions without assuming any special forms of functions. The following are

results obtained in [26]:

Theorem 5.1.3 [26] Let f and g be nonlinear entire functions and z ∈ C. Then

z ∈ J(f ◦ g) if and only if g(z) ∈ J(g ◦ f).

It follows that if U0 is a component of F (f ◦ g), then g(U0) is contained

in a component V0 of F (g ◦ f). The result of M. Heins [46] already mentioned

implied that V0\g(U0) contains at most one point.

Theorem 5.1.4 [26] Let f and g be nonlinear entire functions. Let U0 be a compo-

nent of F (f ◦ g) and let V0 be a component of F (g ◦ f) that contains g(U0). Then

(i) U0 is wandering if and only if V0 is wandering.

(ii) If U0 is periodic, then so in V0. Moreover, V0 is of the same type according to

the classification of periodic components as U0.

In particular, f ◦ g has a wandering domain if and only if g ◦ f has a wandering

domain.

Several examples of entire functions which have no wandering domains

were then constructed by using Theorem 5.1.4.

W. Bergweiler and A. Hinkkanen [25] generalized the results in [15] by

considering dynamical connection of transcendental entire functions f and h sat-

isfying

g ◦ f = h ◦ g, (5.33)
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where g is a continuous and open function of the complex plane into itself. Then

we say that f and h are semiconjugated (by g) and call g as a semiconjugacy.

They obtained the following result.

Theorem 5.1.5 [25] If f and h are transcendental entire functions, if g is a non-

constant continuous function and if (5.33) holds, then

g(J(f)) ⊂ J(h). (5.34)

If, in addition, g(C) is an open set and, in particular, if g is an open mapping,

then C\g(C)contains at most one point.

The special case when g is entire is important and Theorem 5.1.5 is easy

to prove in this case. Theorem 5.1.5 is also easy to prove if we assume that g is

open or discrete. Even in the case when g is entire, however, it is not clear whether

we also have

g−1(J(f)) ⊂ J(f) (5.35)

and thus

g−1(J(f)) = J(f). (5.36)

If g is homeomorphism of C onto itself satisfying (5.33), then g is called a con-

jugacy. In this case (5.36) clearly holds. It is also known that (5.36) holds if

g(z) = ez (see [23]). In [26] it was shown that (5.36) holds if g is entire and if

there exists an entire function k such that f = k ◦ g and h = g ◦ k. Note that if f

and h have this special form, then (5.33) is always satisfied.

W. Bergweiler and A. Hinkkanen [25] also gave the concept of the set A(f)

where the iterates of function f tend to ∞ about as fast as possible:

A(f)={z ∈ C: there exists L ∈ N such that |fn(z)| > M(R, fn−L) for n > L}
is not empty for function f such that

lim
n→∞

log logM(R, fn)

n
=∞

for all large R > 0. They obtained the following result.
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Theorem 5.1.6 [25] Let f and h be transcendental entire functions and let g :

C → C be open and continuous such that g ◦ f = h ◦ g. If A(f) ⊂ J(f) then

g−1(J(h)) = J(f). In particular, this is the case if f has no wandering domains.

Consider the special case when f = h and g is entire. Then f ◦g = g◦f and

we say that f and g commute. Theorem 5.1.6 implied that g−1(J(f)) = J(f) which

means that J(f) is completely invariant under g. Now J(g) is known to be the

smallest closed completely invariant set with at least three points (see, for example

[20], p. 67 for the special case of rational functions). Therefore J(g) ⊂ J(f). They

have the following corollary.

Corollary 5.1.7 [25] Let f and g be commutative transcendental entire functions.

If f has no wandering domains or, more generally, if A(f) ⊂ J(f) then J(g) ⊂
J(f).

The conclusion that J(g) ⊂ J(f) if f has no wandering domains was

obtained by J. K. Langley [57] under an additional growth restriction on g. The

Corollary 5.1.7 implies that if neither f nor g has wandering domains, then J(f) =

J(g). It is conjectured that this remains valid in general, i.e. even if f and g are

allowed to have wandering domains. It is known to be true for rational functions

(see ([9] section 4), ([41] pp. 364–365) or ([50] p. 143)).

There are other results for commuting entire functions which have a gen-

eralization to the situation of a semiconjugacy. One such result is:

Theorem 5.1.8 [25] Let f and h be entire functions such that f is either transcen-

dental or polynomial of degree at least 2 and h is not the identity mapping. Then

they are only countably many entire functions g such that (5.33) holds.

Of course, if h is the identity function then (5.33) becomes g◦f = g, which

is satisfied by all constant functions g but not any non-constant function g unless

f(z) = wz + c for some root of unity w and some c ∈ C (see, for example [44]). If

f has this form, then there are uncountably many non-constant solutions g of the

equation g ◦ f = g.
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Theorem 5.1.8 generalizes the result of I. N. Baker in ([4], Theorem 1, p.

244) where it was proved that if f is a given entire function, either transcendental

or a polynomial of degree at least two, then there are only countably many entire

functions g commuting with f .

Theorem 5.1.9 [25] Let f and h be transcendental entire functions and let g : C→
C be open and continuous such that (5.33) holds. If f has no wandering domains,

then h has no wandering domains.

Theorem 5.1.9 generalizes the results in [26], where the conclusion was

obtained if g is entire and if f = k◦g and h = g◦k for some entire function k. This

was used in [26] to exhibit certain new classes of entire functions with no wandering

domains. If f = k◦g and h = g◦k as in [26], then , by symmetry, f has wandering

domains if and only if h has wandering domains. It is possible that f has wandering

domains while h does not. An example is f(z) = z + ez + 1 = 2πi, g(z) = ez and

h(z) = zez+1. In [25], W. Bergweiler and A. Hinkkanen also gave an example which

shows that the non-constant continuous function g need not be open or discrete in

order to satisfy (5.33), even if f = h so that f there can commute. This example

showed that for a given transcendental entire function f there can sometimes be

uncountably many non-constant, continuous, and non-constant entire functions g

commuting with f (then (5.33) also holds with f = h).

J. H. Zheng [85] studied the connections between the Fatou components

and the singularities of the inverse function of functions in class M satisfying the

equation h ◦ f = g ◦ h where h is meromorphic in C. Several examples of Baker

domains and wandering domains of transcendental entire functions which have

special properties were also given in [85].

In this thesis, we extend Theorem 5.1.3 and Theorem 5.1.4 to functions

meromorphic outside a small set which have certain properties such as those in

subclasses of class M defined in chapter 2. By using these results, we will give an

example of transcendental meromorphic function and function in class M which

do not have wandering domains or Baker domains.
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5.2 Lemmas

In this section, we give several lemmas which will be used in the proof of our main

results. Throughout this chapter, we denote f ◦ g by fg and E(f) by Ef .

Lemma 5.2.1 Let f , g ∈M. If z0 is a periodic point of fg, then g(z0) is a periodic

point of gf .

Proof Let z0 be a periodic point of period n of fg, namely (fg)n (z0) = z0.

Then z0 /∈ E ((fg)n) =

(⋃n−1
j=0

(
(fg)j

)−1

(Eg)

)⋃(⋃n−1
j=0

(
(gf)j g

)−1

(Ef )

)
.

Thus, g (fg)n (z0) is defined and equal to g (z0) . Since g (fg)n (z0) = (gf)n (g (z0)),

it follows that g (z0) is a periodic point of gf . This completes the proof.

Recall that the singularities of the inverse function of function f in class

M, denoted by sing (f−1), is the union of the set of critical values of f , denoted by

CV (f), and the set of asymptotic values of f , denoted by AV (f) together with

all limit points of CV (f) ∪ AV (f). We denote the set of limit points of a set E

by E
′
.

Lemma 5.2.2 Let f , g ∈M. Assume the following conditions hold

(i) ∞ ∈ Ef ∩ Eg.
(ii) If for some z0 ∈ Efg and for some path γ(t), 0 ≤ t < 1, we have

γ ∩ Efg = ∅ and γ → z0 as t→ 1, then g(γ)
′ ∩ (Ef \ {∞}) = ∅.

Then we have

CV (fg) ⊂ CV (f) ∪ f (CV (g)) ,

AV (fg) ⊂ AV (f) ∪ f (AV (g)) ,

and

sing(fg)−1 ⊂ sing(f−1) ∪ f(sing(g−1)).

Proof Let α be a critical value of fg. Then there exists z0 such that (fg)′ (z0) =

f ′ (g (z0)) g′ (z0) = 0 and (fg) (z0) = α. Thus, z0 /∈ Eg∪g−1 (Ef ). If f ′ (g (z0)) = 0,

then g (z0) is a critical point for f and we have (fg) (z0) ∈ CV (f). If g′ (z0) = 0,

then z0 is a critical point of g and so g (z0) ∈ CV (g). Thus, (fg) (z0) ∈ f (CV (g)).
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Therefore, CV (fg) ⊂ CV (f) ∪ f (CV (g)). Now let α be an asymptotic value of

fg. Then there exists z0 ∈ Efg and a path γ(t), 0 ≤ t < 1 such that γ ∩ Efg = ∅
and γ → z0 as t→ 1 and (fg)(z)→ α along γ.

Case 1: z0 is finite.

Subcase 1.1: g(z)→ z0 along γ.

In this subcase, α is an asymptotic value of f .

Subcase 1.2: g(z) 6→ z0 along γ and g(z) is eventually bounded along γ

(namely, there exists δ > 0 such that |g(z)| is bounded on {z ∈ γ : |z − z0| < δ}).
In this subcase, there exist a sequence {zn} on γ and a finite point w0

such that limn→+∞ zn = z0 and limn→+∞ g(zn) = w0. By (ii), w0 /∈ Ef and it

follows that f(w0) = limn→+∞ f(g(zn)) = α. By (ii) and the fact that poles of

f cannot accumulate at a finite point outside Ef , we can find a neighborhood

Uw0 of w0 such that Uw0 ∩ (Ef ∪ Pf ) = ∅, where Pf is the set of poles of f (if

there exists a sequence wn of points in Ef such that limn→+∞wn = w0, then

w0 ∈ Ef = Ef . This is impossible by (ii)). Thus, f is analytic in Uw0 . Let ρ > 0

be a fixed sufficiently small positive real number. Then for some ε > 0, we have

|f(w) − α| > ε for w ∈ {w : |w − w0| = ρ}. Next, as α is an asymptotic value of

f ◦ g, |f(g(z)) − α| < ε for all z ∈ {z : |z − z0| < δ} on γ, for some δ > 0. In

particular, if |zn − z0| are sufficiently small, then |f(g(z)) − α| < ε for all z such

that |z − z0| < |zn − z0| and |g(zn) − w0| < ρ. Thus, |g(z) − w0| < ρ for all z

which is arbitrarily closed to z0 and hence w0 is an asymptotic value of g. This

gives α ∈ f(AV (g)).

Subcase 1.3: g(z) is not eventually bounded along γ.

In this subcase, there exists a sequence {zn} on γ such that limn→+∞ zn =

z0 and limn→+∞ g(zn) =∞. If there are infinitely many points znk of the sequence

zn such that g(znk) = ∞, then we modify the path γ slightly so as to avoid the

poles of g while preserving all other conditions. Thus, eventually along {zn}, g
is defined and unbounded; that is, there exists a sequence {αn} on γ such that

limn→+∞ αn = z0, g(αn) 6= ∞ and limn→+∞ g(αn) = ∞. If g(z) → ∞, along γ,

then α ∈ AV (f) since ∞ ∈ Ef . Otherwise, there is a sequence βn on γ such

that limn→+∞ g(βn) = w0 for some finite w0. By (ii), w0 /∈ Ef and it follows that
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f(w0) = limn→+∞ f(g(βn)) = α. By the same argument as in Subcase 1.2, we

can find a neighborhood Uw0 of w0 such that f is analytic in Uw0 . Let ρ > 0

be a fixed sufficiently small positive real number. Then for some ε > 0, we have

|f(w) − α| > ε for w ∈ {w : |w − w0| = ρ}. Next, as α is an asymptotic value

of f ◦ g, |f(g(z)) − α| < ε for all z ∈ {z : |z − z0| < δ} on γ, for some constant

δ. In particular, if βn are sufficiently close to z0 on γ, then |f(g(z)) − α| < ε

for all z beyond βn on γ and |g(βn) − w0| < ρ. Thus, |g(z) − w0| < ρ for all

z sufficiently close to z0 on γ. Thus g must be bounded on γ which contradicts

to the assumption that g(z) is not eventually bounded along γ. Therefore, this

subcase cannot occur at all.

Case 2: z0 =∞.

Subcase 2.1: g(z)→∞ along γ.

In this subcase, α is an asymptotic value of f .

Subcase 2.2: g(z) 6→ ∞ along γ.

In this subcase, there exists a sequence {zn} on γ and a finite point w0

such that limn→+∞ zn = ∞ and limn→+∞ g(zn) = w0. By (ii), w0 /∈ Ef and it

follows that f(w0) = limn→+∞ f(g(zn)) = α. The same argument as in Subcase

1.2 gives α ∈ f(AV (g)).

From Case 1 and Case 2, we conclude that AV (fg) ⊂ AV (f)∪ f(AV (g)).

This completes the proof.

Remark 5.2.3 If f and g are transcendental entire functions, then all assumptions

in Lemma 5.2.2 hold.

5.3 Main results

We are now ready to state and prove our main results.

Theorem 5.3.1 Let f , g ∈M. Assume that∞ ∈ Ef∩Eg and every point in J (fg)

and J (gf) is a limit point of periodic points of fg and gf , respectively. Then the

following statements hold

(i) If z ∈ J(fg)\Eg, then g(z) ∈ J(gf).
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(ii) If g(z) ∈ J(gf)\Ef , then z ∈ J(fg).

Proof Let z ∈ J(fg)\Eg. By assumption, there exist periodic points zk of fg,

say (fg)nk(zk) = zk where zk 6= z such that zk → z as k → +∞. By Lemma

5.2.1, g (zk) are periodic points of gf and g(zk) 6= g(z) for all but finitely many

k (otherwise, the set {w : g(w) − g(z) = 0} has a limit point and hence g is a

constant). As z, zk /∈ Eg we have g (zk) → g (z) as k → +∞ and hence g (z) is

a limit point of periodic points of gf . It follows that g (z) ∈ J(gf). Similarly,

by interchanging the role of f and g, if w ∈ J(gf)\Ef , then f (w) ∈ J (fg).

Conversely, assume that g (z) ∈ J (gf) \ Ef , then f (g (z)) ∈ J (fg) and by the

complete invariance property of the Julia set we obtain z ∈ J(fg). This completes

the proof.

From Theorem 5.3.1, we have

Corollary 5.3.2 If U is a component of F (fg), then g(U) is contained in a com-

ponent V of F (gf).

Proof Let U be a component of F (fg). Then U ∩ J(fg) = ∅. We claim that

g(U) ∩ J(gf) = ∅. Suppose that g(U) ∩ (J(gf)\Ef ) 6= ∅. Then there exists

z0 ∈ U such that g(z0) ∈ (J(gf)\Ef ). By Theorem 5.3.1 (ii) we have z0 ∈ J(fg)

which is impossible. Now if g(U) ∩ Ef 6= ∅, then there exists z0 ∈ U such that

g(z0) ∈ Ef . Thus, z0 ∈ g−1(Ef ) ⊂ Efg ⊂ J(fg) which is impossible. Therefore,

g(U) ∩ J(gf) = ∅ and hence g(U) is contained in a component V of F (gf). This

completes the proof.

Theorem 5.3.3 Let f , g ∈M. Assume that∞ ∈ Ef∩Eg and every point in J (fg)

J (gf) is a limit point of periodic points of fg and gf , respectively. Let U be a

component of F (fg) and let V be the component of F (gf) which contains g (U).

Then

(i) U is a wandering domain if and only if V is a wandering domain.

(ii) If U is periodic, then so is V . Moreover, V is of the same type according to

the classification of periodic components as U unless U is a Siegel disc or Herman

ring where in this case V is either a Siegel disc or Herman ring.
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Proof For each n ∈ N, let Un be the component of F (fg) which contains (fg)n (U)

and let Vn be the component of F (gf) which contains (gf)n (V ). As U ∩ Eg = ∅
we see that g ((fg)n (U)) = (gf)n (g (U)) which gives g (Un) ⊂ Vn. By a similar

argument used in the proof of Corollary 5.3.2, we may show that f (Vn) ⊂ Un+1.

As a result, if Um = Un, then Vm = Vn and if Vm = Vn, then Um+1 = Un+1. This

gives the statement (i) of the theorem. Moreover, if Un = U , then Vn = V , namely

if U is periodic, then so is V . Assume that Un = U and for some sequence {nj}
we have (fg)nj |U → φ as j → +∞ where φ /∈ Efg. Let V ∗ be a domain in V

such that a branch g−1
V : V ∗ → U∗ ⊂ U of the inverse function of g is defined.

Then (gf)n|V ∗ = g (fg)n g−1
V

∣∣
V ∗ and hence (gf)n (V ∗) → ψ = gφg−1

V . If U is a

Siegel disc or Herman ring, then φ is a non-constant limit function of {(fg)n} on

U , hence ψ is also a nonconstant limit function of {(fg)n} on V and hence V is

either a Siegel disc or Herman ring. If U is an attracting domain, then φ is a

constant limit function lying in F (fg), hence ψ is also a constant limit function

lying in F (gf) and V must be an attracting domain. Similarly, if U is a parabolic

domain, then so is V . By the same arguments, if V is an attracting or parabolic

domain, then so is U1; and if V is a Siegel disc or Herman ring, then U1 is either

a Siegel disc or Herman ring. It follows that if U is a Baker domain, then so is V .

This completes the proof.

5.4 Example

We now give an example of transcendental meromorphic function and function in

class M which do not have wandering domains or Baker domains.

Example 5.4.1 Let f (z) = eiz + z and g (z) = tan z. Then g has finite order and

has no critical values; hence, by Lemma 2.7.6 and Lemma 2.7.8, g has only finitely

many asymptotic values. In fact, AV (g) = {−i, i}. For f we may easily show that

CV (f) =
{
i+
(
π
2

+ 2kπ
)

: k ∈ Z} and f has no finite asymptotic values. We may

show that g (CV (f)) = {− cot i}, hence, by Lemma 5.2.2, AV (gf) ⊂ {−i, i} and

CV (gf) ⊂ {− cot i}. Since Egf = Ef ∪ f−1 (Eg) = {∞}, gf is a transcendental

meromorphic function on C and gf ∈ K ∩MS ⊂ MSR. By Theorem 2.8.1, gf
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has no wandering domains or Baker domains. We conclude from Theorem 5.3.3

that fg = ei tan z + tan z has no wandering domains or Baker domains. Note that

CV (fg) =
{
i+ π

2
+ 2kπ : k ∈ Z}, hence fg /∈MS or not even of bounded type.

Remark 5.4.2 Theorem 5.3.3 generalizes Theorem 5.1.4 obtained in [26] and in

fact we may find other examples of transcendental entire or meromorphic functions

which have no wandering domains or Baker domains.
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