Chapter 1

Introduction

Let X be aset and T': X — X a mapping. The solutions we seek are

represented by points invariant under T. These are the points satisfying
z="Tz. (1.1)

Such points are said to be fixed under T or fixed points of T. The set of all solutions
of (1.1) is called the fixed point set of T' and denoted by Fix(T). If the mapping
T does not have a fixed point we often say that T is fixed point free.

The presence or absence of a fixed point is an intrinsic property of T'. One
of the first and most celebrated results on this matter is the one proved by Brouwer
[7] in 1912.

Theorem 1.0.1. (Brouwer) If B stands for the closed unit ball of R®, then each
continuous mapping T : B — B has a fixed point.

An important generalization of Brouwer's theorem was discovered in 1930
by Schauder [50].

Theorem 1.0.2. (Schauder) Let X be a Banach space. If K is a nonempty compact

convez subsel of X, then each continuous mapping T : K — K has a fixed point.

The fixed point theorem, generally known as the Banach Contraction Prin-
ciple, appeared in explicit form in Banach’s thesis in 1922 where it was used to
establish the existence of a solution for an integral equation. Since then, because of
its simplicity and usefulness, it has become a very popular tool in solving existence
problems in many branches of mathematical analysis.

Theorem 1.0.3. (Banach [4]) Let (X,d) be a complete metric space and let T :
X — X be a contraction. Then T has a unique fived point xy. Moreover, for each
z € X, we have that

lim T"(x) = z.
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Fixed point theorems for single-valued mappings are useful in the existence
theory of differential equations, integral equations, partial differential equations,
random differential equations, and in other related areas. It has Very fruitful ap-
plications in eigenvalue problems as well as in boundary value problems, including
approximation theory, variational inequality, and complementarity problems.

Fixed point theory for a multivalued (set-valued) mapping was originally
initiated by von Neumann [45] in the study of game theory. In 1941, Kakutani
[23] proved a generalization of Brouwer’s theorem to multivalued mappings.

Theorem 1.0.4. If C is a nonempty bounded closed conver subset of R® and

T : C — FC(C) is an upper semicontinuous multivalued mapping, then T has a
Jfized point.

The multivalued analogue of Scauder’s fixed point theorem was given by
Bohnenblust and Karlin [5].

Theorem 1.0.5. IfK isa nonempty.compact convex subset of a Banach space and
T: K — FC(K) is an upper semicontinuous multivalued mapping, then T has a
fized point.

Nadier [43] gave the following as a multivalued analogue of Banach Con-
traction Principle,

Theorem 1.0.6. Let (X,d) be a complete metric space and T : X — FB(X) a
multivalued contraction mapping. Then T has a fized point in X.

The fixed point theory of multivalued nonexpansive mappings is however
much more complicated and difficult than the corresponding theory of single-
valued nonexpansive mappings. Let X be a Banach space and C a bounded
closed convex subset of X and T : C — K(C) a multivalued nonexpansive map-
ping. A very general problem is the following : Does T have a fixed point under
the suitable condition on X which assure the existence of fixed point for single-
valued mappings? The answer to this question is unknown, but some papers have
appeared showing geometrical properties on X which state fixed point results for
multivalued mappings. One breakthrough was achieved by T. C. Lim in 1974 by
using Edelstein’s method of asymptotic centers [186].

Theorem 1.0.7. (Lim [37]) Let C be a nonempty bounded closed convexr subset of
a uniformly conver Banach space X and T : C — K(C) a nonexpansive mapping.
Then T has a fized point.
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Lim’s original proof was later simplified independently by Lim himself
[38] and Goebel [18]. It was extended to & nonself mapping which satisfies the
inwardness condition independently by Downing and Kirk [15] and by Reich [48].

Theorem 1.0.8. ([15],[48]) Let C be a nonempty bounded closed conver subset of
e uniformly convex Banach space X and T : C — K(X) a nonezpansive mapping

satisfying the inwardness condition:
TxCle(z), z€C.
Then T hes a fized point.
The slightly more general formulation below is due to T. C. Lim [39].

Theorem 1.0.9. (Lim [39]) Let C be a nonempty bounded closed convez subset of
a uniformly convex Banach space X and T : C — K(X) a nonezpansive mapping
satisfying the weak inwardness condition:

Tz Clg(z), z€C.
Then T has a fized point.

Another important result for multivalued nonexpansive mappings was ob-
tained by W. A. Kirk and 8. Massa in 1990.

Theorem 1.0.10. (Kirk and Massa [31])) Let C be a nonempty bounded closed
convex subset of a Banach space X and T : C — KC(C) a nonezpansive map-
ping. Suppose that the asymptotic center in C of each bounded sequence of X is
nonempty and compact. Then T has a fized point.

Theorem 1.0.10 applies to all k—uniformly rotund (k—UR) Banach spaces
[53] but it does not apply to a nearly uniformly convex (NUC) Banach space [21]
as in such a space the asymptotic center of a bounded sequence is not necessarily
compact (cf. [35]). However, Dominguez and Lorenzo [14] recently obtained a
fixed point theorem for multivalued nonexpansive mappings in such spaces. |

In 2001, Xu [54] gave a different proof of Theorem 1.0.9. He also extended
the Kirk-Massa theorem to nonself mappings satisfying the inwardness condition.

Theorem 1.0.11. (Xu {54]) Let C be a nonempty bounded closed convez subset of
a Banach space X and T : C — KC(X) a nonezpansive nonself-mapping which
satisfies the inwardness condition. Suppose that the asymptotic center in C of each
bounded sequence of X is nonempty and compact. Then T has a fized point.
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The following theorem is due to Lami Dozo [36]. He obtained a fixed
point theorem for multivalued mappings in a Banach space which satisfies Opial’s
condition {47].

Theorem 1.0.12. (Lami Dozo [36]) Let X be a Banach space which satisfies Opial’s
condition. If C is a nonempty conver weakly compact subset of X and T : C —

K(C) is a nonezpansive mapping, then T has a fized point.

The purpose of this thesis is to study the existence of fixed points for
multivalued nonexpansive mappings in CAT(0) and modular function spaces. In
Chapter 2 we collect some basic concepts and results in metric and Banach spaces.
In Chapter 3 we give an analog of Lim’s theorem in CAT{(0) spaces and obtain
a common fixed point theorem for a pair of single-valued and multivalued non-
expansive mappings defined on a nonempty bounded closed convex subset of a
CAT(0) space. In Chapter 4 we introduce an ultrapower approach to proving
fixed point theorems for multivalued nonexpansive mappings in CAT(0) and Ba-
nach spaces. In Chapter 5 we obtain a fixed point theorem for multivalued nonex-
pasive mappings in modular function spaces and apply the result to obtain fixed
point theorems for multivalued nonexpansive mappings in the Banach spaces L,
and [;.



