Chapter 2

Basic Concepts

In this chapter we collect information that will be needed for an understanding
of the research work. Although details are included in some cases, many of the
fundamental principles of functional analysis are merely stated without proof.

2.1 Metric spaces

We begin with some basic definitions.

Definition 2.1.1. Let X be a set and d a function from X x X — [0, o0) such that
for all z,y,2 € X we have

(M1) d(z,y) = 0 if and only if z = g

(M2) d(z,y) = d(y, z); and

(M3) d(=,y) < d(z, 2) + d(z,y).

A function d satisfying the above condition is said to be a distance function
or a metric and the pair (X, d) a metric space. We sometimes write X for a metric
space (X, d).

Example 2.1.2. The real line R with d(z,y) = |z —y| is a metric space. The metric
d is called the usual metric for R.

Example 2.1.3. (The Hausdorff metric) Let (X, d) be 2 metric space and let FB(X)
denote the family of all nonempty bounded closed subsets of X. For A € FB(X)
and p > 0 define the p—neighborhood of A to be the set

Ny(A) = {z € X : dist(z, A) < p}.
where dist(z, A) = igfl d(z,a). Now for A, B € FB(X) set
D(A,B)=mf{p>0: AC N,(B) and B C N,(A)}.
Then (FB(X), D) is a metric space, and D is call the Hausdorff metric on FB(X).

Definition 2.1.4. A sequence {z,} in & metric space (X, d) is said to be a Cauchy
sequence if for each € > 0, there exists a positive integer N such that d(Tn, zm) < €
for all m,n > N.
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Definition 2.1.5. A sequence {z,} in (X, d) is said to converge to a point z € X if
for each £ > 0, there exists a natural number N such that d(z,,z) < ¢ whenever

n 2 N. In this case we write either lim z,, = z or z, — x.
—00

Definition 2.1.6. A metric space X is said to be complete if every Cauchy sequence
in X converges to a point in X.

Definition 2.1.7. Suppose (X,d) and (Y, p) are metric spaces. A mapping T :
X — Y is said to be an isometry if p(T'z, Ty) = d(z,y) for each z,y € X. If T is

surjective, then we say that X and Y are isometric.

The following is an important characterization of closed sets in a metric
space.

Theorem 2.1.8. A subset C of a metric space X is closed if and only if
{zz}CC and lim z, =z=>z€C.
n—0o
The following is a characterization of compactness that is quite useful.

Theorem 2.1.9. A subset K of a metric space X is compact if and only if any

sequence {z,} in K has a subsequence {T,, } which converges to a point in K.

Finally, we include with another important fact about compactness that
will be used repeatedly in what follows.

Theorem 2.1.10. Let X be a compact metric space, and let f : X — R be a

continuous mapping. Then there is a point xg € X such that

flzo) =inf{f(x): z € X}.

2.2 Banach spaces

Let X denote any nonempty set that contains with each of its elements x and each
real number o a unique element « - z, written as az, called a scalar multiple of .
(One could also include complex numbers o as well, but we restrict ourselves here
to the real case.) Also assume that for each two elements z,y € X there exists a
unique element z+y € X called the sum of z and y. The system (X, -, +) is called
a linear space (over R) if the following conditions are satisfied. Here z,y,z € X
and o, 3 € R.



(1) z+y=y+z;

2 z+@+2)=(z+y)+2
(3) alr+y) = az + ay;

(4) z+y =z + z implies y = z;
(5) (a¢+ B)z = az + Bz;

(6) (ef)z = a(Bz);

(M) 1z =2z

A finite subset {zy,...,2,} of a linear space X is said to be linearly inde-
pendent if for any a;...,0, € R with e4z1 + - -+ + 0%y, = 0 implies @y = --- =
a, = 0. If, in addition, every z € X is a linear combination of z,,...,z,, that
i8 £ = a1 + -+ + anZy for some oy ...,0, € R, then we say that X has the
dimension n.

A function || - || from a {real) linear space X into R is called a norm if it
satisfies the following properties for all z,7 € X and a € R:

(1) |lz|l = 0 and ||z|| = 0 if and only if = = 0;
(2) Hozll = lajli=;
(3) llz+yll < llll + |-
From this norm we can define a metric, induced by the norm || - ||, by
d(z,y) = llz -yll, zyeX.

A linear space X equipped with the norm || - || is called a normed linear space. A
normed linear space (X, || - {|) which is complete is called a Banach space.

A subset C of a Banach space X is said to be convex if ax + (1 —a)y € C
for each z,y € C and a € [0,1].

If A c X, the set

conv(A) = N{C C X : C is closed, convex and C D A}

is called the closed convex hull of A. It is not difficult to see that conv(A) is closed

and convex.
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"The modulus of convexity of a Banach space X is the function 6 : [0, 2] —
[0,1] defined by

a@ﬁﬂﬂ{1~ ]=mn51mws1mx—wzw}.

z+y
2

The characteristic (or coefficient) of convexity of a Banach space X is the number
€0 = £o(X) = sup{e > 0: 4(¢) = 0}.

Definition 2.2.1. A Banach space X with modulus of convexity § is said to be
uniformly convex if 6(¢) > 0 for each & € (0, 2], or equivalently, if £o(X) = 0.

Definition 2.2.2. A Banach space X is said to be strictly convex if
1
l5+ll <1,
whenever ¢ and y are different points of the unit sphere of X.

Proposition 2.2.3. If C is a nonempty closed convezr subset of a strictly convex
space X and if T : C — C is nonezpansive, then the set Fiz(T) is closed and

COTver.

A function f : X — R is said to be linear if f(ax +y) = af(z) + f(y) for
all z,y € X and & € R. In addition, if there is M > 0 such that |f(z)| < M]|z|
for all x € X, we say that f is a bounded linear functional. It is not difficult to see
that the class of all bounded linear functionals of X, denoted by X*, is a Banach
space equipped with the norm defined by

71} = sup{|f(z)| : = € Bx} = sup{{f(z)| : = € Sx}

where Bx = {z € X : |jz|| < 1} is the unit ball of X and Sx = {z € X : {jz|| = 1}
is the unit sphere of X.

The most well-known theorem in Banach space theory is the Hahn-Banach
theorem: for each z € X there exists f € X* such that J|f|| =1 and f (z) = ||I=]l.

The topology induced by a norm is too strong in the sense that it has
many open sets. Indeed, in order that each bounded sequence in X has a norm
convergent subsequence, it is necessary and sufficient that X be finite dimensional.
This fact leads us to consider other weaker topologies on normed spaces which are
related to the linear structure of the spaces to search for subsequential extraction
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principles. So it is worthwhile to define the weaker topology for a Banach space
X. We say that a net (z,) in X converges weakly to z, denoted by

w—limxz, = x,
5]

if limy f{za) = f(z) for all f € X*. A subset K of X is weakly closed if it is
closed in the weak topology, that is, if it contains the weak limit of each of its
weakly convergent nets. The weakly open sets are now taken as those sets whose
complements are weakly closed. The resulting topology on X is called the weak
topology on X. Sets which are compact in this topology are said to be weakly
compact.

It is important to know that the weak topology on a Banach space is a
Hausdorff topology, and that weak limits are unique. This is because the fune-
tionals in X* separate points in X, that is, given any two points = # y € X there
exists an f € X* such that f(x) 75 f(y). This is an another consequence of the
Hahn-Banach Theorem.

For z € X and f € X* define i(z)(f) = f(z). It is easily seen that i(x) €
X** and that, in fact, the mapping 7 : X — X** is an isometric isomorphism,
called the canonical embedding of X into X**. If i(X) = X**, then X is said to
be reflexive.

Analogously we can also consider the weak convergence in X*, Moreover,
there is an other important mode of convergence: if (z7,) is a sequence in the dual
space X* and z* € X*, then we say that z}, converges x-weakly to z*, denoted
by o 5 z*, if z5(z) — z*(z) for all z € X. By the definition, we see that norm
convergence implies weak convergence and, in turn, implies weak* convergence in
the dual space.

We now collect for later using some well-known properties of the weak and
weak* topology.

Proposition 2.2.4. A conver subset C of a Banach space is weakly closed if and

only if it is closed.
The above leads to the following.

Proposition 2.2.5. If a subset C of a Banach space is weakly compact, then cono(C)

is also weakly compact.

Neither of the above facts holds for the weak* topology. However, the
following holds for both topologies.
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Proposition 2.2.6. If C C X is weakly compact for weak* compact if X is a dual
space), then C is bounded.

The following fact holds only for the weak* topology (except, of course, in

reflexive spaces).

Proposition 2.2.7. (Alaoglu’s Theorem) The unit ball Bx- (hence any ball) in a

dual space X* is always compact in the weak* topology.

The following says that in the weak topology compactness is equivalent to
sequential compactness. This fact holds also for the weak® topology on X* if X is
separable, because in this case the weak™ topology is metrizable, but it does not
holds in general for the weak* topology.

Proposition 2.2.8. (Eberlein-Smulian Theorem) For any weakly closed subset A of

a Banach space the following are equivalent.
(1) Each sequence (x,) in A has a subsequence which converges weakly to a point
of A. '
(2) Each net (z4) in A has a subnet which converges weakly to a point of A.

(3) A is weakly compact.
The following lists are the several properties which characterize reflexivity.
Proposition 2.2.9. For a Banach space X the following are equivalent.
(1) X is reflexive.
(2) X* is reflexive.
(3) Bx is weakly compact in X.
(4) Any bounded sequence in X has a weakly convergent subsequence.

(5) For any f € X* there erists © € Bx such that f(z) = | f|.

(6) For any bounded closed conver subset C of X and any f € X* there exists
x € C such that f{z) = sup{fly): y € C}.

(7) If (CR) is any descending sequence of nonempty bounded closed conver sub-
sets of X, then N2, C, # 0.

We conclude this section by noting that Property (7) above offers a quick
way, which we will not prove here, to confirm the following fact.

Theorem 2.2.10. If X is o uniformly conver Banach space, then X is reflezive.
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2.3 Multivalued mappings

Let X be a Banach space and C a nonempty subset of X. We shall denote by #(C)
the family of nonempty closed subsets of C, by FB(C) the family of nonempty
bounded closed subsets of C, by FC(C) the family of nonempty closed convex
subsets of C, by K(C) the family of nonempty compact subsets of C, and by
KC(C) the family of nonempty compact convex subsets of C. Let D(-,-) be the
Hausdorff distance on F(X), i.e.,

D(A,B}=inf{p>0:AC N,(B) and B C N, (4)}

= max {sup dist(a, B), sup dist(b, A)}
beB

acA
where dist(a, B) = inf{|la — b|| : & € B} is the distance from the point a to the.
subset B.

Definition 2.3.1. A multivalued mapping 7" : C' — F(X) is said to be a contraction
if there exists a constant & € [0,1) such that

D(Tz,Ty) < kllz —yl, =, yeC. (2.2)

In this case T' is said to be k—contractive. If (2.2) is valid when k = 1, then T
is called nonexpansive. A point z is a fixed point for a multivalued mapping T if
r e Tz

The following method and results deal with the concept of asymptotic
centers. For a bounded sequence {z,} in a Banach space X and C a bounded
subset of X we associate the number

7(C,{za}) = inf{limsup [z, — z|| : z € C}

n—od

and the set,
A(C,{z.}) = {z € C : limsup ||z, — z| = ~(C, {z. })}.

7(C,{za}) and A(C, {z.}) are called, respectively, the asymptotic radius
and the asymptotic center of {,} relative to C.

If X is reflexive and C is closed and convex, then A(C, {z,}) is always a
nonempty closed convex subset of C for any bounded sequence {z.} in X. To see
this observe that for each € > 0 the set

C. ={z € C:limsup|z, — z| <r(C, {zn}) + ¢}
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is nonempty by definition of #(C, {z,}) and straightforward argument shows that
each of the set C; is closed and convex. Hence

A(C: {In}) = Ng>oC,

and the letter set is nonempty by weak compactness of C.
Clearly, A(C, {z,}) is a nonempty weakly compact convex set as C is {cf.

(19]).

Definition 2.3.2. A bounded sequence {z,} is said to be regular relative to a
bounded subset C' of a Banach space X if v(C, {z.}) = r(C, {z,,,}) for all subse-
quences {x,,} of {z,}; further, {z,} is said to be asymptotically uniform relative
to E if A(C, {za}) = A(C, {zn}) for all subsequences {z.,} of {x,}.

Lemma 2.3.3. ([18], {38]) Let {z.} be a bounded sequence in a Banach space X
and C a bounded subset of X. Then

(i) there always exists a subsequence of {z,} which is regular relative to C;

(ii) if C is seperable, then {x,} contains o subsequence which is asymptotically

uniform relative to C.

Lemma 2.3.4. If C' is a nonempty bounded closed conver subset of a uniformly
convex Banach space X, then for any bounded sequence {z,} in X, the asymptotic
center A(C, {z,}) consists of exactly one point.

Definition 2.3.5. Let C be a nonempty closed subset of a Banach space X. The
inward set of C at z € C is given by

Io(z)={z+My—-z):A>1,yeC}.
In case C is a nonempty closed convex subset of a Banach space X, we have
Ic(z)={s+Aly—z): 2 >0,y € C}.

A multivalued mapping T : C — 2*\f is said to be inward (resp. weakly inward)
on C if
Tz C Ic(z) (resp. Tz C Ig(z)) forall z € C.

2.4 Ultrapower techniques

Ultrapowers of a Banach space are proved to be useful in many branches of math-
ematics. Many results can be seen more easily when treated in this setting. We
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recall some basic facts about the ultrapowers. Let F be a filter on N, that is
F 2N satisfying:

(1) f Ae¢ Fand AC BCN, then B € F.
(2) If A, Be F,then ANB ¢ F.

A filter i on N is called an ultrafilter if it is maximal with respect to the
ordering of filters on N given by set-inclusion. That is, if 4 C F and F is a filter
on N, then F =Y. An ultrafilter is called trivial if it is of the form {4 : A C N,
np € A} for some fixed ny € N, otherwise, it is called nontrivial.

Let {z,} be a sequence in a Hausdorff topological space X and U an
ultrafilter on N. The sequence {z,} is said to converge to z with respect to U,
denoted by

lilrln Ty = T,
if for each neighborhood U of z, {(n € N: z, € U} € U.

Limits along &/ are unique and if {:ru} is a bounded sequence in R, then

liminf z,, < limz,, < limsup z,,.
R0 U R0

Moreover, if E is a closed subset of X and {z,} C E, then limy z,, belongs to E

whenever it exists.

We will use the fact that

(1) U is an ultrafilter if and only if for any subset A C N, either A € I or
N\Ael.

(2) If X is compact, then the limy z., of a sequence {z,} in X always exists and

is unique.

(3) Suppose {z,} converges to r in the topology of the space X. Then {zn}
converges to z with respect to any ultrafilter 4.

(4) Let X be a linear topological vector space. Suppose that {z.} and {y,} are
sequences in X such that limy, z,, and limy y, exist. Then

liﬁ,n(xn +yn) = lial;n ZTn + lig{n Yn

and

limar, = alimz
Y] n u n

for any scalar o € R.
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Let (X, |||} be a Banach space and I a nontrivial ultrafilter on N. Consider

the Banach space
lo(X) ={z={z,} c X : SUp [| | < oo}.
The subset defined by
Ny ={z = {2:} € lo(X) : lim |1z, || = 0}

is a closed linear subspace of l,(X).

The Banach space ultrapower of X (over ) is defined to be the quotient
space
Xy = lo(X) /Ny

equipped with the quotient norm. When it is not necessary to mention the ultra-
filter, we write X instead of Xu. The equivalence class of an element z = {z:} €
lo{X) is denoted by & = [{,}]. It follows from (2) above and the definition of
the quotient norm that

12l = I [{za }]Il = lim [iz,.
The mapping 7: X — X defined by
J(z) = [{z,z,2,.}] = [{z,}), wherez,=2z forallneN

is an isometric embedding of X into X. Using the map 7, one may identify X
with 7(X) seen as a subspace of X. When it is clear we will omit mention of the
map J and simply regard X as a subspace of X.

If C is a subset of a Banach space X, we associate to it subset € of X
defined by
C = {{z.}]: 7, € C for each n € N}.

For each z € X, we let & = [{z,}] where x,, = = for each n € N, and let X and C
denote the respective canonical isometric copy of X and C in X.

The following properties hold:
(1) If C is convex, then C and C are convex.
(2) If C is closed, then C and C are closed.

(3) If C is compact, then C and C are compact. Moreover, C = C.
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(4) If C is bounded, then € and C are bounded. Moreover, diam(C) = diam(C) =
diam(C).

Theorem 2.4.1. Let X be a Banach space and U a nontrivial ;ltmﬁlter on N.

Then the following statements are equivalent :
(1) X is strictly convex.
(2) X is uniformly convex.
(3) X is uniformly convez.

References for more detailed treatment and proofs of all the result here
stated are [1], {27] and [51].



