Chapter 3
Lim’s Theorems for Multivalued

Mappings in CAT(0) Spaces

Let X be a complete CAT(0) space. We prove that, if C is a nonempty bounded
closed convex subset of X and T': C — K(X) a nonexpansive mapping satisfying
the weakly inward condition, i.e., there exists p € C such that ap® (1 — )Tz C
Io(z) Vz € C, Vo € [0,1], then T has a fixed point. In Banach spaces, this is a
result of Lim [39]. The related result for unbounded R—trees is given.

3.1 Introduction

In 1980 and 2001, Lim [39] and respectively Xu [54] had proved differently the same
result concerning the existence of a fixed point for a nonself nonexpansive compact
valued mapping defining on a bounded closed convex subset of 2 uniformly convex
space and satisfying the weak inward condition. While Lim used the method of
asymptotic radius, Xu used his characterization of uniform convexity. Recently
in 2003, Bae [3] considered a closed valued mapping defined on a closed subset of
a complete metric space. It was shown that if the mapping is weakly contractive
and is metrically inward, then it has a fixed point.

Having all these results, we are interested in extending the Lim-Xu’s result
to a special kind of metric spaces, namely, CAT(0) spaces. Our proofs follow the
ideas of the proofs in Lim [39], Bae (3], and Xu [54].

In Section 3.2, we give some basic notions and in Section 3.3 and Section
3.4 we prove our results.

3.2 Preliminaries

Given a metric space X, one way to describe a metric space ultrapower X of X is
to first embed X as a closed subset of a Banach space Y (see, e.g., {46]), then let
Y denote a Banach space ultrapower of Y relative to some nontrivial ultrafilter
U. Then take
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X = {:’t’:=[{:cn}]ei7::rneXforeachn}.

One can then let d denote the metric on X inherited from the ultrapower norm
Il in ¥. If X is complete, then so is X since X is a closed subset of the Banach
space Y.In particular, the metric d on X is given by

d(z,9) = im ||2n = yull = lim d(n, yn),
with {u,} € {{z.}] if and only if limy ||z,, — u,| = 0.

We present now a brief discussion on CAT(0) spaces (see Bridson and
Haefliger [6] and Burago et al. [9] for more details}). Although CAT(«) spaces are
defined for all real numbers «, we restrict ourselves to the case that x = 0.

A metric space is a CAT(0) space (the term is due to M. Gromov - see,
e.g., [6], p- 159) if it is geodesically connected, and if every geodesic triangle in X
is at least as ‘thin’ as its comparison triangle in the Euclidean plane. For a precise
definition and a detailed discussion of the properties of such spaces will be stated
below. It is well-known that any complete, simply connected Riemannian manifold
having non-positive sectional curvature is a CAT(0) space. Other examples include
the classical hyperbolic spaces, Euclidean buildings (see [8]), the complex Hilbert
ball with a hyperbolic metric (see [20]; also inequality (4.3) of [49] and subsequent
comments).

Let (X, d) be a metric space. A geodesic path joining x € X toy € X is
a map c from a closed interval [0,{] C R to X such that ¢(0) = z, ¢(l) = y and
d(c(t), c(t')) = [t—t/| for all t,¢’ € [0,1]. Obviously, ¢ is an isometry and d(z,y) = [.
The image of c is called a geodesic segment joining = and y and, when unique,
denoted [z,y]. A metric space is said to be a geodesic space if any two of its points
are joined by a geodesic segment. If there is exactly one geodesic segment joining

z to y for all z,y € X, we say that (X, d) is uniquely geodesic.

A geodesic triangle A(zy, 2, x3) in a geodesic space (X, d) consists of three
points in X (the vertices of A) and a geodesic segment between each pair of vertices
{the edges of A). A comparison triangle for a geodesic triangle A(x1,zg,z3)
in (X,d) is a triangle A(zy, 7o, %3) := A(Z1, %a, Z3) in R? such that d(z;, z;) =
d(z;, z;) for 4,5 € {1,2,3}.

(X,d) is said to be a CAT(0) space if all geodesic triangles satisfy the
CAT(0) comparison axiom:
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For every geodesic triangle A in X and its comparison triangle 2 in R2,

if z,y € A and Z,§ are their comparison points in A respectively, then
d(z,y) < d(Z,7).
Let X be a CAT(0) space, and let C be a nonempty closed convex subset
of X. The following facts will be needed:
(i) (X,d) is uniquely geodesic.
(ii) (X,d) is a CAT(0) space.
(iii) (X, d) satisfies the (CN) inequality:

1 1 1
d(mayﬂ)z S §d($’ y1)2 =5 Ed(l‘, y2)2 \\ Zd(yl’ y2)2

for all z,31,¥2 € X and yp the midpoint of the segment [y, 12].
Note that the converse is also true. In fact, a geodesic metric space is a CAT(0)
space if and only if it satisfies (CN)-inequality (cf. [30]).

(iv) Let p,z,y be points in X, let & € (0, 1), and m; and m, denote, respectively,
the points of [p, z] and [p, y] satisfying
d(p: ml) = led(p, 33) and d(pa m2) 7 ﬂ!d(p, y)

Then
d(m]_, mg) < ad(m, y).

(v) For every z € X, there exists a unique point p(z) € C such that
d(z,p(z)) = dist{z,C).

With the same C and p(z), if z ¢ C,y € C, and y # p(z), then
Loz, y) > %, where Z,(z,y) is the Alexandrov angle between the geodesic
segments [z, z] and [2,y) for all z,y,z € X (see [6, p. 176]).

Let (X, d) be a metric space and C a nonempty subset of X. A closed
valued mapping T : C — 2¥\@ is said to be metrically inward ([3]) if for each
z € C,

Tz C MIo(z)

where MIc(z) is the metrically inward set of C at z defined by

MlIg(z) = {2 € X : 2 =z or there exists y € C such that y #£ z
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and d(z,z) = d(z,y) + d(y, 2)}.

In case X is a Banach space, the inward set of ' at z is defined by
Ic(z)={z+Ay-z):yeC,A>1}.

In general, Ic(z) C MIc(z) for each z € C, and the equality may not be true.

We use the notation (1 — a)u® av,a € (0,1], to denote the points of the
segment [u,v] with distance ad(u,v) from u. For ¢ C X and a fixed element
PEC, (1-a)p®aC:={(1-a)p®av : v € C}. C is said to be convex if for
each pair of points z,y € C, we have [z,3] C C. We also adopt all the notion and
definitions of Section 2.3, but with the norm || - | replaced by the distance d.

For a nonempty subset C of a CAT(0) space X, it is easy to see that the
(metrically} inward set MIc(z) becomes

MIo(z) = (U {z:(z,2]NC # 0}) U{.’E} = Io(z).

Definition 3.2.1. A multivalued mapping 7 : C — F(X) is said to be inward on
C' if for some p € C,

ap® (1 —a)Tz C Ig(x) Yz € C,Va € [0,1],
and weakly inward on E if
ap® (1~ )Tz C Io(z) Yz €C,Va € [0,1], (3.3)

where A denotes the closure of a subset A of X.

When C' is convex, it is easy to see that

Io(@) = (Utle,dl: (.5 n C £ 0}) e,

Note that in a normed space setting, the inward (resp. weakly inward)
condition is equivalent to saying that Tz C Ic(z) (resp. Tz C Ic(x) ) since in
this case, Ic(z) is convex. This is also true in R—trees. For a precise definition of
an R—tree we refer the readers to Espinola and Kirk {17].
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3.3 Lim’s theorems

The following simple result is needed.

Proposition 3.3.1. Let C be a nonempty closed conver subset of a complete CAT(0)
space X, z € X, and p(x) the unigue nearest point of x in C. Then

d(z, p(z)) < d(z,y) Yy € Ic(p(z)) \ {p(z)}.

Proof. Let y € Ic(p(z))\ {p(z)}, there is a sequence {yn} in Ie(p(z)) and y, — .
For all large n we can find 2, € (p(z),¥.] N C. Since z, € C and z, # p(x),
Zp(x)(®,2n) 2 § (see [6, p. 176]). Thus in the comparison triangle A(p(z), z, ya),
the angle at p(z) is also greater than or equal to £ (see [6, p. 161]). By the law
of cosines

d(z, p(z)) + d(ym, p(2))? < d(z, ya)%.

Taking n — oo we obtain
d(z,p(z)) < d(z,y).

One of powerful tools for fixed point theory is the following result.

Theorem 3.3.2. (Caristi [10]) Assume (M,d) is a complete metric space and
g: M — M is a mapping. If there exists a lower semicontinuous function 1 : _
M — [0,00) such that

d(z, 9(z)) < Y(z) — Y(g(x)) for any z € M,
then g has a fized point.
We can now state our main theorem.

Theorem 3.3.3. Let C be a nonempty bounded closed convex subset of a complete
CAT(0) space X and T : C — K(X) a nonezpansive mapping. Assume T is
weakly inward on C. Then T has a fized point.

By combining the idea of the proofs in [39], [3], and [54], we thus first
establish the following lemma which is an analogue of a result of Lim in [40].
However, in applying the lemma, we choose to use the ultrapower technique which

seems to be alternative.
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Lemma 3.3.4. Let C be a nonempty closed subset of a complete CAT(0) space X
and T : C — F(X) k—contractive for some k € [0,1). Assume T satisfies, for all
zel N

Tz C Io(x). (3.4)

Then T has a fized point.

Proof. Let M = {(z,2) : z € Tz, z € C} be the graph of T. Give a metric p
on M by p((z, 2), (1, v)) = max {d(z, u), d(z,v)} . It is easily seen that (M, p) is a
complete metric space. Choose £ > 0so that e + (k+2e)(14+¢) < 1.
Now define ¥ : M — [0,00) by ¥(z,z) = 5'51;'3-1. Then % is continuous on
M. Suppose that T has no fixed points, i.e., dist(z,Tz} > 0 for all z € C. Let
(z,2) € M. By (3.4), we can find 2’ € Ic(x) satisfying d(z,2') < edist(z, Tz).
Now choose u € (z, 2’} N C and write u = (1 — 8}z & 62 for some 0 < § < 1. Note
that the number § varies as a function of z. However, for any such 4, we always
have .
Se+(1-8)+(k+2)0(1+¢) < 1. (3.5)

Since T is k—contractive and d(z,u) > 0, we can find v € T'u satisfying

d(z,v) < D(Tz,Tu)+ ed(z,u)
< (k+ e)d(z,u).

Now we define a mapping ¢ : M — M by g(z, 2) = (u,v) ¥Y(z,2) € M.
We claim that g satisfies

p((z,2),9(z, 2)) < ¥(z,2) — Plg(z,2)) V(z,2) € M. (3.6)

Caristi’s theorem then implies that g has a fixed point, which contradicts to the
strict inequality (3.6) and the proof is complete.
So it remains to prove (3.6).

In fact, it is enough to show that

(&, 2), (0, v)) < = (d(z,2) - d(w,v)).

But d(z,v) < d(z,u), it only needs to prove that d(z,u) < 2 (d(z, z) — d(u,v)).
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It follows that
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fl

d(z, u) éd(z, 2")

8(d(, 2) + d(z, 2))
8{d(z, z) + edist(z, T'z))
0(d(z, 2) + ed(z, z))

0(1 + e)d(z, 2).

A IA A

A

d{z,u) < 8(1 + €)d(z, 2). (3.7)

d(z,v) < (k+e)d(z,v)
< (k+)5(1 +¢)d(z, 2).

Nowwelety=(1-4d)z @ cfz, then

d(u,v)

A IA A A

A

Thus

d{u,y) + d(y, 2) + d(z,v)

dd(2,2') + (1 — 8)d(z, 2) + (k + £)6(1 + €)d(z, 2)
dedist(z, Tz) + (1 — 6) + (k + €)6(1 + £))d(z, 2)
bed(z, z) + ((1 — 8) + (k +)6(1 + €))d(z, z)

(be + (1 = 8) + (k + €)6(1 + £))d(z, 2).

d(u,v) < {6 + (1 — &) + (k + )5(1 +¢€))d(z, z) (3.8)
(3.7}, (3.8), and (3.5) imply that

ed(z,u) + d(u,v) <

<

Therefore d(z, u} < 1(d(z,z) — d(u,v)) as desired.

e6(1 +e)d(x, 2} + (e + (1 — 8) + (k +&)6(1 + €))d(z, 2)
(0 + (1 =6) + (k + 2e)8(1 + €))d(z, 2)
d(z, 2).

We are now ready to present the proof of Theorem 3.3.3.

Proof of Theorem 3.3.3. For each integer n > 1, the contraction T, : C — K (X)

is defined by

1 1
Th{z) := -P® (1— E)Tm, rz e,
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where p € C is the existing point satisfying the weakly inward condition (3.3).
Weak inwardness of T implies that such T}, satisfies the condition{3.4) in Lemma
3.3.4 and in turn it guarantees that T;, has a fixed point x, € C. Clearly,

1

di n: 1Tq) <
ist(zp, T'Tn) —

diam(C) — 0.
Let X be a metric space ultrapower of X and
C={i=H{z,} iz, =2 €C}.

Then C is a nonempty closed convex subset of X. Since T is compact-valued, we
can take y, € Tz, such that

A(Tn, Ya) = dist(zp, Txy),n > 1.

Let # = [{z,}] and § = [{y,}], then & = #. Since C is a closed convex subset of
a complete CAT(0) space X, % has-a unique nearest point o € C, i.e., cf(ﬁ':,ﬂ) =
dist(z, C). As Tw is compact, we can find v, € Tv satisfying

A(Yn, vy) = dist(y,, Tv) < D(Tz,, Tv).
It follows from the nonexpansiveness of T that
d(ymvn) < d(mna'v)-

Let # = {{v,}], then

d(§,9) < d(&,9).
Since = 7, we have

d(z,7) < d(Z,9). (3.9)
Because of the compactness of T, there exists w € Tw such that w = libr{n . It
follows that ¥ = 1. This fact and (3.9) imply

d(z,w) < d(z,9). (3.10)
Since w € Is(v) as w € Ig(v), (3.10), and Proposition 3.3.1 then imply that
W = 9. So v = w € Tv which then completes the proof. O

As an immediate consequence of Theorem 3.3.3, we obtain

Corollary 3.3.5. Let C be a nonempty bounded closed convez subset of a complete
CAT(0) space X and T : C — K(C) a nonezpansive mapping. Then T has a fived

point.
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As we have observed at the end of Definition 3.2.1, we can restate Theorem
3.3.3 for R—trees as follow:

Corollary 3.3.6. Let X be a complete R—tree, C' a nonempty bounded closed convex
subset of X, and T : C — K(X) a nonezpansive mapping. Assume that Tz C
Ie(z), Yz € C. Then T has a fized point.

Finally, as a consequence of Theorem 4.3 of [17] and the idea given in
the proof of Theorem 3.3.3, we can relax the boundedness condition and the
compactness of the values of a multivalued self mapping T for R—trees:

Corollary 3.3.7. Let (X, d) be a complete R—tree, and suppose C is a closed con-
vex subset of X which does not contain o geodesic ray, and T : C — FC(C) a
nonezpansive mapping. Then T has a fired point.

Proof. By [6, p. 176], for each = € C, there exists a unique point p(z) € T'z such
that .
d(z, p(x)) = dist(z, Tz).

So we have defined a mapping p : C — C. The nonexpansiveness of T' and the
convexity of Tz imply that p is a nonexpansive mapping. By [17, Theorem 4.3],
there exists z € C such that z = p(2) € T'z which then completes the proof. 0O

3.4 A common fixed point theorem

We consider in this section a common fixed point of nonexpansive mappings. Let
t:C— Cand T :C — 2*¥\(. ¢ and T are said to be commuting if ty € Ttz Vy €
TzNC,Vz € C. If C is a nonempty bounded closed convex subset of X and t is

nonexpansive, we know that Fix(t) is a nonempty bounded closed convex subset
of C (see [30, Theorem 12]).

Theorem 3.4.1. Let C be a nonempty bounded closed convex subset of a complete
CAT(0) space X, and let t : C — C and T : C — KC(C) be nonexpansive.
Assume that for some p € Fix(t),

ap® (1 — a)Tz convex Vz € C,Va € [0,1]. (3.11)

Ift and T are commuting, then there exists a point z € C' such that tz = z € Tz.
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Proof. Let A = Fix(t). Since ty € Ttz = Tz foreach z € A and y € Tz, T'z is
invariant under ¢ for each x € A, and again by [30, Theorem 12}, TzNA#£0.

Let X be an ultrapower of X and let p € A satisfying (3.11). As before
we define for each n > 1 the contraction T}, : A - KC(C) by

1 1
To(z) .= -T-L-pGB (1-— H)TI’ T € A

Convexity of A implies Ty,(z) N A # 0. Lemma 3.4.2 below shows that 7, has a
fixed point x, € A. Let y, be the unique point in 7'z, such that d(zn, yn) =
dist(2n, Tzn). Let Z = [{2.}] and § = [{ym}], then & = § since dist(z,, T'z,) — 0
as n — oo. Now,

" (T, tYn) = d(tTn, tn) < d(Zn, yn) = dist(zy, TTy,).

Since yp, € T'z,, we have ty, € Ttz, = Tz, and thus the uniqueness of 7, implies
that ty, = yn. So yp, € Tz, N A. Singe A is a closed convex subset of the complete
CAT(0) space X, there exists a unique point 2 € A such that

d(#, 7) = dist(Z, A).
For each n there exists a unique point z, € Tz such that
A(Yn, 2,) = dist(y,, T'2).

As before we see that z, € T2 N A. By the compactness of Tz N A, we can find
w € TzN A such that lig{n Zn = w. Let Z = [{z,}], then Z = 1,
Observe that

A(Yn, 22) = dist(y,, T2) < D(Tz,, T2) < d(zy, 2).

Therefore J(Q, H< J(;E, z). Since § = % and Z =,
d(Z, ) < d(z, 2) = dist(, A).
The uniqueness of z implies that 1 = 2. Therefore tz = z = w € Tz. O
It remains to prove our Lemma.

Lemma 3.4.2. Let A be as above and T : A — FC(C) be k—contractive for some
ke [0,1). Assume that T satisfies, for all z € A,

TeNA#D0Q.

Then T has « fized point.
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Proof. The proof is similar to the proof of Lemma 3.3.4. Let M — {(z,2): z €
TzNA, © € A} and define a metric pon M by p((z, 2), (%,v)) = max {d(z,u),d(z,v)}.
Again (M, p) is a complete metric space. Choose € > 0 so that €+ & < 1.
Define 9 : M — [0,00) by v¥(z,2) = ﬂ‘:'—zl. Suppose that z # 2 for all
(z,2) € M. Since Tz is a closed convex subset of X , there exists a unique point
v € Tz such that
d(z,v) = dist(z, Tz).

Bearing in mind that A = Fix(¢), thus by the commuting assumption and the
uniqueness of v, we have v € T2 N A.

Now we define a mapping g: M — M by g(z, 2) = (2,v) for each (z,2) €
M.
We claim that g satisfies

Pz, 2), 9(z, 2)) < ¥(z,2) — P(g(z,2)) V(z,z) € M. (3-12)

Again by applying the Caristi’s theorem we obtain a contradiction. Thus T has a
fixed point.

So it remains to prove (3.12).
The fact that d(z,v) = dist(z, T'2) < D(T'z, Tz) < kd{z, z), we have

ed(z,2) +d(2,v) < ed(z,z) + kd(z, 2)
(e + k)d(z, 2)
< d{z,z2).

I

Therefore p((z, 2), (2,v)) < 1 (d(z, 2) — d(z,v)), and (3.12) is verified. 0



