Chapter 4
Nonexpansive Set-valued Mappings in

Metric and Banach Spaces

We extend recent homotopy results of Sims, Xu, and Yuan for set-valued
maps to a CAT(0) setting. We also introduce an ultrapower approach to proving
fixed point theorems for nonexpansive set-valued mappings, both in this setting
and in Banach spaces. This method provides an efficient way of recovering all of

the classical Banach space results.

4.1 Introduction and Preliminaries

In {52], Sims, Xu and Yuan obtain homotopic invariance theorems for nonexpansive
set-valued mappings in Banach spaces having Opial’s property. They base their
results on the fact that if T is a set-valued nonexpansive mapping having nonempty
compact values, then the demiclosedness principle for I — T is valid in such spaces.
(If C is a nonempty closed convex subset of a Banach space X and if T maps points
of C to nonempty closed subsets of X, then T is said to be demiclosed on C' if the
graph of T is closed in the product topology of (X,0) x (X, ||-li) where o and |||
denote the weak and strong topologies, respectively). One objective of this paper
is to show that the results of [52] extend to CAT(0) spaces despite the fact that no
weak topology is present. The results we obtain set-valued analogs of single-valued
results found in {29)].

We also introduce a new approach to the classical fixed point theorems for
nonexpansive mappings in Banach spaces by reformulating the arguments in an

ultrapower context. This approach seems to illuminate many underlying ideas,

Let {z,} be a bounded sequence in a complete CAT(0) space X and for
z € X set

r(z, {z,}) = limsup d(z,z,) .

The asymptotic radius r ({z.}) of {2} is given by

r({z,}) = inf {r (z, {z.}) 1z € X}.
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The asymptotic center A ({z,}) of {z,} is the set

A{z.}) ={z e X :r (z, {za}) =r ({z})}. _

It is known that every bounded sequence in a Banach space has a regular
subsequence (see, e.g., [19], p. 166). The proof is metric in nature and carries over
to the CAT(0) setting without change. We know from [11} that in a CAT(0) space,
A({z,}) consists of exactly one point. We will also need the following important
fact about asymptotic centers.

Proposition 4.1.1. If K is a closed convez subset of X and if {z,} is a bounded

sequence in K, then the asymptotic center of {z,} is in K.

Proof. Let x € X be the asymptotic center of (z,). It is known that the nearest
point projection P : X — K exists and is nonexpansive ([6], p. 177). If z ¢ K
then 7 (z, {zn}) < v (P(z),{zn}), and we would have a contradiction. O

4.2 A fixed point theorem

A nonexpansive set-valued mapping T' : € — FB(X) induces a nonexpansive
set-valued mapping T defined on C as follows:

T(F) = {ﬁ € X : 3 a representative {un} of @ with u, € Tz, for each n} .

To see that T is nonexpansive (and hence well-defined), let £,§ € G, with
£ = [{zn}] and § = {{yx}] . Then

5} (f(f;),f(g)) < lim D (T2, Ty)
< limd (25, 4n)
=d(%,7).
The following fact (see, e.g., [25], Proposition 1) will be needed.
If S C C is compact, then §=25. (4.13)

Next we have a result that is analogous to Proposition 7 of [32] for Banach
spaces satisfying the Opial property. The proof is an adaptation of the one given
in [32)].
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Proposition 4.2.1. x is the asymptotic center of a reqular sequence (z,) C X if and
only if & is the unique point of X which is nearest to & := [{zn}] in the ultrapower

o~

X.

Proof. (=) Suppose z is the asymptotic center of {z»}, and suppose dy, (3, %) <
dy (2, #) for some y € X. Choose a subsequence {un} of {z,} such that

lim d (y,u,) = liminfd (y, z,) .
i n—+00
Using the fact that {z,} is regular we have
Jim d(y,un) < limd (y,z,)
=d(y,%)
<d(#,3)

< limsupd(z,z,)

n=—0e0

=T ({z})

= limsupd (z, u,) .
= O

Thus lim d(y, un) < limsupd(z,u,), and y = z by uniqueness of the asymptotic
n—oo n—00
center.

(%) Suppose & is the unique point of X which is nearest to 7 := [{ze},
and suppose y is the asymptotic center of {z,}. Then by the implication (=) gis
the unique point of X which is nearest to #, whence & = y; thus z = y. (]

With the above observation, we are in a position to prove the fixed point
theorem we will need in the next section. This result also extend Theorem 3.3.3
of the previous chapter.

Theorem 4.2.2. Let K be a closed convex subset of a complete CAT(0) space X,
and let T : K — K (X) be a nonexpansive mapping. Suppose dist (zn, Tzy) — 0
for some bounded sequence {z,} C K. Then T has a fized point.

Proof. By passing to a subsequence we may suppose {zn} is regular. Let z be
the asymptotic center of {z,}. By Proposition 4.2.1 i is the unique point of X
which is nearest to Z := [{z,}]. By Proposition 4.1.1, £ € K and also z € K.
Since z € T (Z), Z must lie in a p-neighborhood of T (%) for p = D (T (%),T (:r:)) .
Since f(a:) is compact, dist(Z, T(a:)) = d(%,u) for some 4 € T (). But since
T()c X, if4 # % we have the contradiction

d(#4) > d(F4) > D (f(se),f(:;c)) = p.
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Therefore & = 4 € T (). However T () = Tz, so by (4.13) this in turn implies
rzeTzx. O

Remark 4.2.3. Convexity of K is needed the the preceding argument only to assure
that the asymptotic center of (z,) lies in K. The theorem actually holds under
the weaker assumption that K is closed and contains the asymptotic centers of all

of its regular sequences.

4.3 Homotopic invariance
The following is an analog of Theorem 3.1 of [52].

Theorem 4.3.1. Let C' be a nonempty closed convex subset of a complete CAT(0)
space X, with int(C) #£ 0, let {Tt}ogtgl be a family of A-contractions from C to
K (X) which is equi-continuous in t € [0, 1) over C. Assume that some T, has a
fized point in C, and assume every T} is fived point free on 8C. Then T, has a fized
point in C for each t € [0,1].

Proof. Let V = {t € [0,1] : T has a fixed point in C'}. Then V is nonempty by
assumption. We show that V is both open and closed in [0,1] and therefore
conclude that V' = {0,1]. The proof that V is open in [0,1] is identical to the
one given in the proof of Lemma 3.1 of [52]. To show that V is closed, assume
{tn} C V is such that ¢, — #;. Then for each n there exists z, € C such that
Zn € Tp, () . We note that the sequence {z,} is bounded (the proof is similar to
the one given in Theorem 3.1 of [52]). By equi-continuity of 73, we have

dist (2, Tty (%)) < D Ty (20) , Ty, () — 0.
By Theorem 4.2.2, T}, has a fixed point in C, so ty € V. O

We now turn to an analog of Theorem 4.1 of [52].

Theorem 4.3.2. Let C' be a nonempty bounded closed convez subset of a complete
CAT(0) space X. Suppose T,G : C — K (X) are two set-valued nonezpansive
mappings and suppose there exists a homotopy H : [0,1] x C — K (X) such that
(1) H(0,-)=T() and H(1,-) = G () ;

(2) for each t € (0,1}, H(t,") is a set-valued nonerpansive mapping from C to
K(X);
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(3) H (t,x) is equi-continuous in t € [0,1] over C,
(4) for each sequence {t,} in [0, 1] with
;gf,d“’t {(z,H (ta,z}) >0,
lim ¢, = o smplies inf.ec dist (z, H (5, 7)) > 0.
n—00
Then T has a fized point in C if and only if G has a fired point in C.

Proof. Assume T has a fixed point in C, and let
V= {te[0,1]: there exists x € C such that x € H ({,z)}.

We can show that V is closed as in the proof of Theorem 4.3.1. Suppose V is
not open. Then there exists ¢y € V and a sequence {t,} < [0,1]\V such that
limy, o0 tn, = tp. Since t, & V, dist{z, H (£,,z)) >0foralln € Nand z € C. We
claim that

igg-diSt (z,H (tn,x)) >0 forallmn e N.

Otherwise, there exists a sequence {z,,} < C such that

lim dist (2, H (tn, zn)) =0,

m—oo
and by Theorem 4.2.2 H (t,,-) has a fixed point. But this contradicts £, ¢ V, so
we have the claim. Condition (4) now implies

;lélg dist (z, H {to,x)} > 0,

which in turn implies ¢, ¢ V' and this is a contradiction. Therefore V is open in
[0,1}, and hence V = [0,1], from which the conclusion follows. 0

The other results of [52], including the alternative principles, carry over

the present setting as well.

Remark 4.3.3. In view of Remark 4.2.3, in both Theorems 4.3.1 and 4.3.2 the
assumption of convexity can be replaced by the assumption that C contains the

asymptotic center of each of its regular sequences.

4.4 An ultrapower approach in Banach spaces

As we shall see, the ultrapower approach used in proving Theorem 4.2.2 also
provides a very efficient method for proving the classical Banach space fixed point

theorems for nonexpansive set-valued mappings.
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Recall that a Banach space is said to have the Opial’s property ([47]) if
given whenever (z,,) converges weakly to = € X,

limsup ||z, — z|| < limsup ||z, — y|| for each ¥y € X with y # z.
i—00 n—oo

As in the CAT(0) case, a nonexpansive set-valued mapping T : C —
FB(X) induces a nonexpansive set-valued mapping T defined on C as follows:

T(F) = {ﬁ eX:3a representative (u,) of % with u, € Tz, for each n} .

The following simple idea, which is extracted from the proof of Theorem
4.2.2, is the basis for all of our Banach space results. Recall that a set C is said to
be (uniquely) proximinal if each point z € X has a (unique) nearest point in C.

Lemma 4.4.1. Let K be a subset of a Banach space X, suppose T : K — 2X\( is
nonezpansive, and suppose there exists xo € K such that xo € T'zy. Suppose C is
a subset of K for whichT : C — K(C), and suppose C is uniquely proziminal in
K. Then T has a fized point in C. Indeed, the point of C which is nearest to zy is
a fized point of T.

Proof. If 7y € C' we are finished. Otherwise let z be the unique point of C nearest
to 2o. We assert that o € T'z. Since zy € T'zy, o must lie in a p-neighborhood of Tz
for p = D (T'zg, Tx) . Therefore, since T'z is compact, dist (29, Tx) = ||20 — ul < p
for some u € T'z. But since Tz C C, if u # =,

Jl£o = w|| > llzo — z|| = D (Tx, Tzo) = ps
and we have a contradiction. Therefore z = v € T'z. (1|

The preceding lemma, quickly yields the following result. Notice that
boundedness of C is not needed. This observation may be known, but we are

not aware of an explicit citation.

Theorem 4.4.2. Let X be a uniformly convez Banach space, and let C be a closed
convez subset of X. If T : C' — K (C) is a nonezpansive mapping that satisfies

dist (2, Tz,) — O asn — oo (4.14)

Jor some bounded sequence {z,} in C, then T has o fixed point.
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Proof. Let = [{z,}] € C. As we have observed, T : ' — 20\@ is nonexpansive.
Also (4.14) implies # € T(a:) Since uniform convexity is a super property, X is
uniformly convex and then £ has a unique nearest point ¢ € ¢ Since T : ¢ —
K (C), Lemma 4.4.1 implies there exists & & € such that & € T (&) . However by
(4.13) T (¢) = T'z, and this in turn implies that z € Tz. O

If X has the Opial’s property, the assumption that T:C — K (C) can be
weakened to T': C'— K (X). For this we will make use of the following fact.

Proposition 4.4.3. (Kirk and Sims [32]) Lef X be a Banach space that has the
Opial property. Then x € X is the weak limit of a regular sequence {z,} C X
if and only if & is the unique point of X which is nearest to % = ({zn}] in the
ultrapower X.

Theorem 4.4.4. Let X be a Banach space that has the Opial’s property, and let
C be a weakly compact subset of X. If T : C — K (X) is a nonezpansive mapping
that satisfies

dist (zn,, T'z,) — O Qs 1 — 0o

for some bounded sequence {z.} in C, then T has a fized poin.

Proof. By passing to & subsequence if necessary we may suppose that {z,} is
regular and converges weakly, say to z € C. By Proposition 4.4.3 # is the unique
point of X which is nearest to . The proof is now identical to the proof of Theorem
4.2.2 upon replacing d with ||-{|,, . [

As a corollary of the preceding results we have the classical results of both
Lim and Lami Dozo.

Theorem 4.4.5. ([37}, [36]) Suppose X is either a uniformly convez Banach space,
or a reflexive Banach space that has the Opial’s property. Let C be a bounded closed
conver subset of X, and suppose T : C — K (C) is nonegpansive. Then T has a
fized point.

Proof. Fix z € C, and for each n > 1, consider the contraction mapping T, : C —
K (C) defined by

Ta{z) = —z+(1—%)T:c, zeC.
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Then by Nadler’s theorem [43], for each n > 1 there exists x, € C such that
zy € T, (z,,) . Moreover

i
dist (z,,,Tz,) < Edia.m (C)—0asn— oo.

0

In order to extend Lim’s theorem to nonself mappings. The following two
facts will be needed.

Lemma 4.4.6. ([15, Corollary 2]} Suppose C is a closed convex subset of a Banach
space X and suppose T : C — K (X) is a weakly inward contraction on C. Then
T has a fized point in C.

Lemma 4.4.7. Let X be a uniformly convex Banach space, let C' be a closed convez
subset of X, and suppose 9 € X. Let © be the unique point of C' which is nearest

to xo. Then z is the unique point of I (x) which is nearest to xy.

Proof. Suppose not, and let y be the unique point of I (z) which is nearest to
To. Then, since C' C I (z) and y € I (z)\C, it must be the case that

Iy = zoll < llz — =zl -

By the continuity of ||-|| there exists z € I¢ () \C such that ||z — zlf < [lz — || .
This implies z = (1 — &) z + ow for some w € C and « > 1. Hence

1 1
_ < 2|2 — _ —
=20l < 2 2= g0l + (1= 2 ) o= a0l < o =l
a contradiction. 0

The following theorem was first proved for inward mappings independently
by Downing and Kirk [15] and by Reich [48]. The slightly more general formulation
below is due to T. C. Lim [39] and H. K. Xu {54]. Our proof is much shorter than
the proofs of Lim and Xu (although it depends on deeper facts).

Theorem 4.4.8. Let C be a bounded closed convex subset of a uniformly convex

Banach space X, and suppose T : C — K (X) is nonezpansive and weakly inward
on C. Then T has a fixed point.

Proof. As in the proof of Theorem 4.4.5, approximate T with the contraction
mappings Tr. Each of the mapping T, is also weakly inward and by Lemma 4.4.6
has a fixed point z,. Since the sequence {z,} satisfies dist (Zn, Tz,) — 0. Let
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& = [{za}], and let & be the unique point of ¢ which is nearest 7. Since T is
nonexpansive there exists a point § € T (&) such that I — Z|l,, < ||& — Zj|,,, and
since T is weakly inward on C, § € Ic._(é_) Lemma 4.4.7 implies § = #. Thus
# € T (&) and the conclusion follows. O

Finally, we remark that it is possible to use this approach to prove the
following theorem of Kirk and Massa ([31]; also see [28]). We omit the details
because the ultrapower proof is not appreciably shorter than the one given in [31]
(which also uses nonstandard techniques). Indeed, this result has recently been
extended to spaces X for which e5(X) < 1, where £5(X) denotes the characteristic
of noncompact convexity for the separation measure of noncompactness (see [14]).

Theorem 4.4.9. Suppose C is a nonempty bounded closed convez subset of a
Banach space X, and suppose T : C — KC(C) is nonexpansive. Suppose also
that the asymptotic center in C of each bounded sequence in X is nonemply and
compact. Then T has a fized point. .

Remark 4.4.10. It might be worth noting that Lemma 4.4.1 holds for mappings
taking only closed values if it is assumed that the space is uniformly convex.

Lemma 4.4.11. Let K be a subset of a uniformly conver Banach space X, suppose
T : K — 2X\0 is nonezpansive, and suppose there exists Ty € K such that
To € Tzo. Suppose C is a closed convex subset of K for which T : € — F(C).
Then the point of C which is nearest to zo s a fized point of T.

Proof. If x5 € C we are finished. Otherwise let z be unique the point of C
nearest to zo. We assert that z € T'z. Suppose not. Since z, € Txzg, 2o must
lie in a p-neighborhood of Tz for p = D (T'zo, Tx). If dist (2, Tx) > ||zo — ||
we have a contradiction as in the proof of Lemma 4.4.1. On the other hand,

if dist (xo,Tz) = ||z — x|, then there exists a sequence {u,} C Tz such that

T4 Uy,
2

convexity of X yields ||z — u,|| — 0 as n — ooc. Since Tz is closed, r € Tz. O

lzo — wnfl — [lzo — z{| as n — 0. Since ||z — > |lzo — z||, the uniform

Remark 4.4.12. In Theorems 3.1 and 4.1 of {52} the domain of the mappings is
assumed to be weakly compact and convex. However weak compactness suffices —
the convexity assumption may be dropped. To see this one could either use Theo-
rem 4.4.4 in lieu of the demiclosedness principle in the proofs of those theorems, or
observe that convexity is not needed in the proof of the demiclosedness principle
itself (Lemma 2.1 of [52]).
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4.5 Weak convergence in CAT(0) spaces

We conclude with a question. A comparison of Propositions 4.2.1 and 4.4.3 clearly
suggests that the following would be & reasonable way to define weak convergence
in a CAT(0) space, especially since it does indeed coincide with weak convergence
in a Hilbert space.

Definition 4.5.1. A sequence [net] {z,} in Xis said to converge weaklytoz € X
if z is the unique asymptotic center of {u,} for every subsequence [subnet] {u,}
of {z,}.

This notion of convergence was first introduced in metric spaces by T. C.
Lim [38], who called it A-convergence. (T. Kuczumow [34] introduced a similar
notion of convergence in Banach spaces which he called ‘almost convergence’.}

'This raises a very fundamental question: For what CAT(0) spaces, aside
from Hilbert space, does the notion convergence in Definition 4.5.1 actually cor-
respond to convergence relative to some topology? Specifically, when is there a
topology 7 on X such that a net {z,} converges to z in the sense of Definition
4.5.1 if and only if {z,} is 7-convergent to z?



