Chapter 5
Fixed Point Theorems for
Multivalued Mappings in Modular

Function Spaces

The purpose of this chapter is to study the existence of fixed points for multivalued
nonexpansive mappings in modular function spaces. We apply our main result to
obtain fixed point theorems for multivalued mappings in the Banach spaces I,
and I;.

5.1 Introduction

The theory of modular spaces was initiated by Nakano [44] in 1950 in connection
with the theory of order spaces and redefined and generalized by Musielak and
Orlicz [42] in 1959. Even though a metric is not defined, many problems in met-
ric fixed point theory can be reformulated and solved in modular spaces (see, for
instance, {12, 13, 24, 26]). In particular, some fixed point theorems for (single-
valued) nonexpansive mappings in modular function spaces are given in [26]. In
1969, Nadler [43] established the multivalued version of Banach’s contraction prin-
ciple in metric spaces. Since then the metric fixed point theory for multivalued
mappings has been rapidly developed and many of papers have appeared proving
the existence of fixed points for multivalued nonexpansive mappings in special
classes of Banach spaces. In this chapter, we study similar problems in the set-
ting of modular function spaces. Namely, we prove that every p—contraction
T': € — F,(C) has a fixed point where p is & convex function modular satisfying
the Ag—type condition and C is a nonempty p—bounded p—closed subset of L,.
By using this result, we can assert the existence of fixed points for multivalued
p—mnonexpansive mappings. Finally, we apply our main result to obtain fixed point
theorems in the Banach space L, (resp. {1} for multivalued mappings whose do-
mains are compact in the topology of the convergence locally in measure (resp.
weak™* topology).
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5.2 Preliminaries

We start by recalling some basic concepts about modular function spaces. For
more details and discussions the reader is referred to [33, 41].

Let (2 be a nonempty set and T be a nontrivial c—algebra of subsets of
§2. Let P be a d—ring of subsets of 2, such that ENA € P for any E € P and
A € L. Let us assume that there exists an increasing sequence of sets K, € P
such that 2 = | J K, (for instance, P can be the class of sets of finite measure in a
o—finite measure space). By £ we denote the linear space of all simple functions
with supports from P. By M we will denote the space of all measurable functions,
i.e., all functions f : £ — R such that there exists a sequence {g,} in &, |g,| < FiB
and g,(w) — f(w) for all w € Q.

Let us recall that a set function p : £ — [0, 0] is called a o—subadditive
measure if u(0) = 0, u(A) < u(B) for any A C B and p({JA,) < 3 u(4,) for
any sequence of sets {A4,} C . By 14 we denote the characteristic function of the
set A.

Definition 5.2.1. A functional p: £ x £ — [0, 00] is called a function modular if :
(P) p(0,E) =0 for any E € T,

(P2} p(f,E) < p(g, B) whenever |f(w)| < |g(w)| for any w € Q, f,g € £, and
EeZX,

(F3) p(f,.) : £ — [0,00] is a o—subadditive measure for every J€EE,
(Ps) ple, A) — 0 as a decreases to 0 for every A € P, where p(o, A) = p(aly, A),
(P5) if there exists o > 0 such that p(er, A) = 0, then p(3, A) = 0 for every 8 > 0,

(F) for any @ > 0, p(e,.) is order continuous on P, that is, pla, Ay — 0 if
{A.} C P and decreases to .

A g—subadditive measure p is said to be additive if p(f, AUB) = p(f, A+
p{f, B) whenever A, B € ¥ such that AN B =@ and f € M.
The definition of p is then extended to f € M by

p(f, E) = sup {p(g. B} : g € &, lg(w)| < |f(w)] for every w € Q}.

Definition 5.2.2. A set F is said to be p—null if p(e, E) = 0 for every a > 0. A
property p(w) is said to hold p—almost everywhere (p—a.e.) if the set {we:
p(w) does not hold} is p—null. For example, we will say frequently f, — f p—a.e.
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Note that a countable union of p—null sets is still p—null. In the sequel we
will identify sets A and B whose symmetric difference AAB is p—null, similarly
we will identify measurable functions which differ only on & p—null set.

In the above condition, we define the function p: M — [0, 00] by p(f )=
p(f, ). We know from [33] that p satisfies the following properties :

(i) o(f) = 0if and only if f =0 p—a.e.
(1) p(af) = p(f) for every scalar a with |af =1 and f € M.

(it) plaf -+ Bg) < p(f) + plg)ifa+B=1, a,f>0and f,g € M.
In addition, if the following property is satisfied

(iti)’ plaf +B9) < ap(f) + Bplg) if e+ B =1, a,8 >0 and f,g € M,
- we say that p is a convex modular.

A function modular p is called o—finite if there exists an increasing se-
quence of sets K, € P such that 0 < p(lg,) < oo and Q = |J K.

The modular p defines a corresponding modular space L,, which is given
by

Ly={feM:p(Af) — 0as X — 0}.

In general the modular p is not subadditive and therefore does not behave
as a norm or a distance. But one can associate to a modular an F—norm. Recall
that a functional || - || : X — [0, oc] defines an F~norm on a linear space X if and
only if

(1) |lz|t = 0 if and only if £ = 0,

(2) {jez| = ||z|| whenever |o] =1,

() Nz +yll < ll=ll + llwil,

(4) llanzn — azl| — 0 if @, = @ and ||z, — z|| — 0.

The modular space L, can be equipped with an F—norm defined by

I, =t fa>0:p (L) <a}.

a
We know from [33] that the linear space (L,, || - ||,) is a complete metric space.
If p is convex, the formula

||f||l=inf{a>0:p(£-) 51}
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defines a norm which is frequently called the Luxemburg norm. The formula.

| fllc = inf {%(1 +pkf)): k> 0}

defines a different norm which is called the Amemiya norm. Moreover, || - ||; and

|| - |lo are equivalent norms. We can also consider the space

E, = {f € M : p(af,-) is order continuous for alla > 0}.
Definition 5.2.3. A function modular p is said to satisfy the A;—condition if

SUP.>1 P(2fn, Di) — 0 as k — oo whenever {f,} C M, D, e &

decreases to 0 and sup p(fn, Dx) — 0 as k — 0.
n>1

It is known that the A;—condition is equivalent to E, = L.

Definition 5.2.4. A function modular p is said to satisfy the Ay—type condition if
there exists K > 0 such that for any f € L, we have p(2f) < Kp(f).

In general, the Ax—type condition and A,—condition are not equivalent,
even though it is obvious that the A;— type condition implies the A,—condition.

Definition 5.2.5. Let L, be a modular space.

(1) Thesequence {f,} C L, issaid to be p—convergent to f € L, if p(fu—f) — 0
as n — 00.

2} The sequence {f,} C L, is said to be p—a.e. convergent to f € L, if the set
P P
{we: folw) = f(w)} is p—null.

(3) Asubset C of L, is called p—closed if the p—limit of a p—convergent sequence
of C always belongs to C.

(4) A subset C of L, is called p—a.e. closed if the p—a.e. limit of a p—a.e.

convergent sequence of C always belongs to C.

5) A subset C of L, is called p—compact if every sequence in C has a p—convergent
(2 P
subsequence in C.

(6) A subset C of L, is called p—a.e. compact if every sequence in € has a

p—a.e. convergent subsequence in C.
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(7) A subset C of L, is called p—bounded if
diam,(C) = sup{p(f —g): f,g € C} < oo

We know by [33] that under the Ay—condition the norm convergence and
modular convergence are equivalent, which implies that the norm and modular
convergence are also the same when we deal with the A,—~type condition. In
the sequel we will assume that the modular function p is convex and satisfies the
As—type condition.

Definition 5.2.6. Let p be as above. We define a growth function w by

w(t)=sup{%5)-:f€Lp,0< p(f)<oo} forall 0 <t < .

The following properties of the growth function can be found in [13].
Lemma 5.2.7. Let p be as above. Then the growth function w has the following
properties :

(1) w(t) < oo, Vt € [0,c0).

(2) w: [0,00) — [0,00) is a convez, strictly increasing function. So, it is con-

tinuous.
(3) w(aB} < w(a)w(B);Va, B € [0,00).

(4) w )™} (B) < w(aB);Va, 8 € [0,00), where w! is the function inverse
of w.

The following lemma shows that the growth function can be used to give
an upper bound for the norm of a function.

Lemma 5.2.8. (Dominguez Benavides et al. {13}) Let p be as above. Then

ifll, < whenever f € L,\{0}.

1
w=1(1/p(f))
The following lemma is a technical lemma which will be need because of

lack of the triangular inequality.

Lemma 5.2.9. (Dominguez Benavides et al. [13]) Let p be as above, {f,} and {ga}

be two sequences in L,. Then

lim p(gn) = 0 = limsup p(fx + g.) = limsup p(f,)

n—=0o n—oo n—oo

and

Lim p(gn) = 0 = liminf p(fn + g) = liminf p(f).
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In the same way as the Hausdorff distance defined on the family of bounded
closed subsets of a metric space, we can define the analogue to the Hausdorff
distance for modular function spaces. We will call p—Hausdorff distance even
though it is not a metric.

Definition 5.2.10. Let C be a nonempty subset of L. We shall denote by F,(C) the
family of nonempty p—closed subsets of C and by K,(C) the family of nonempty
p—compact subsets of C. Let H,(-,-) be the p—Hausdorff distance on F,(L,), ie.,

H,(A, B) = max { sup dist,(f, B), sup dist,(9, A)}, A, B € F,(L,),

where dist,(f, B) = inf{p(f — ¢) : g € B} is the p—distance between f and B. A
multivalued mapping T : C' — F,(L,) is said to be a p—contraction if there exists
a constant k& € [0, 1) such that

H(Tf,Tq) <kp(f—9g), f,g€C. (5.15)

If (5.15) is valid when & = 1, then T is called p~nonexpansive. A function f € C'
is called a fixed point for a multivalued mapping T"if f € T'f.

5.3 Main results

We begin stating the Banach Contraction Principle for multivalued mappings in
modular function spaces.

Theorem 5.3.1. Let p be a convex function modular satisfying the Aq—type con-
dition, C' a nonempty p—bounded p—closed subset of LyyandT : C — F,(C) a

p—conlraction mapping, i.e., there exists a constant k € [0,1) such that

Hy(Tf,Tg) <kp(f—9), f,g€C. (5.16)
Then T has a fized point.

Proof. Let fy € C and a € (k,1). Since T'fp is nonempty, there exists f, € Tf,
such that p(fo — f1) > 0 (otherwise f; is a fixed point of T'). In view of (5.16), we
have

dist,(f1, Tf1) < Hy(Tfo, Tf1) < kp(fo — f1) < eap(fo — f1).

Since dist,(f1, T f1) = inf{p(f1—g) : g € T'f1}, it follows that there exists f, € T'f;
such that

p(hH — f2) < ap(fo — f1).
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Similarly, there exists f3 € Tf, such that

plf2 = fa) < ap(fi — fa).

Continuing in this way, there exists a sequence {f,} in C satisfying far1 €T,
and

plfn = frs1) < ap(fa-1 ~ fo)
< &®(0(faza — fa-1))
< ...
<a™ M p(fi - f2))
< a™{(p(fo—~ f1))

< a™diam,(C).

Let M = diam,(C), then
1 1

M p(Fn— Far))

By Lemma 5.2.7, we have
Q) () < Gt o)

1

w_l(P(fn—fn+1)) (L:J_l ) w—l -;?)

By Lemma 5.2.8, we obtain

It follows that

1

TR (w_f(l) ) — ol
o M

Since w™! is strictly increasing, we have .- < 1. This implies that {f,} is
W

a. Cauchy sequence in (L, || - ||,). Since (L,, || ) is & complete metric space,

there exists f € L, such that {f,} is || - ||,—convergent to f. Since under the

Az—type condition, norm convergence and modular convergence are identical,
{fn} is p—convergent to f and f € C because C is p~—closed. Since f,, € T'f,_1,
we have

disty(fus TS) S HAT fuet, TS) < kol fas = f) — . (5.17)

We observe that, for each n, there exists g, € Tf such that

P(fa— gn) < dist,(fn, TF) + % (5.18)
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Thus, (5.17) and (5.18) imply that nlim P(fn— g2) = 0. By Lemma 5.2.9,

limsupp(gn - f) = limsupp(gn - fn + fn - f) = limsupp(f:fj- = f) =0.

n—od n—oo n—oo

Since T'f is p—closed, we can conclude that f € T'f. O

The following results will be very useful in the proof of our main theorem.

Theorem 5.3.2. (Khamsi [24]) Let {f,} C L, be p—a.e. convergent to 0. Assume
there exists k > 1 such that

sup p(kfqn) == M < oo.
n>1
Let g € E,, then we have

liminf p(f + g) = liminf p(f,) + o(g).

The following lemma guarantees that every nonempty p—compact subset
of L, attains a nearest point.

Lemma 5.3.3. Let p be a convez function modular satisfying the Ag— type condition,
f € L,, and K a nonempty p—compact subset of L,. Then there ezists gy € K
such that

p(f — 90) = dist,(f, K).

Proof. Let m = dist,(f, K). For each n € N, there exists g, € K such that
1 1
L S — gn < —
MRS p(f — gn) Sm+ m

By the p—compactness of K, we can assume, by passing through a subsequence,
that g, -2 go € K. By Lemma 5.2.9, we obtain
m = limsup p(gn — f) = limsup p(gn ~ go + g0 — f)
n—00 n—oo

= limsup p(go — f)

TL—+ 00

= p(g0 ~ f).

|
We can now state our main theorem.

Theorem 5.3.4. Let p be a conver function modular satisfying the Ag—type con-
dition, C' a nonemply p—a.e. compact p—bounded conver subset of L, and T :
C — K,(C) a p—nonezpansive mapping. Then T has a fired point.
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Proof. Fix fyo € C. For each n € N, the p—contraction T}, : C — F,(C) is defined
by 1 1
To(f) = Sfo+ (1 - —Tf, feC.

By Theorem 5.3.1, we can conclude that 7T}, has a fixed point, say fa. It is easy to
see that

dist,(fr Tfn) < i—dimnp(c) 0.

Because of p—a.e. compactness of C, we can assume, by passing through a sub-
sequence, that f, =" f for some f € C'. By Lemma 5.3.3, for each n € N, there
exists go € T f,, and h,, € Tf such that

p(fn - gn) < diStP(fmTfn)
and
plgn — hn) = diSt'p(gm T < Hp(Tfm Tfy< p(fn — h).

Because of p—compactness of T'f, we can assume, by passing through a subse-
quence, that h, -2+ h € Tf. Since p satisfies the Ay—type condition, there exists
K > 0 such that p(2(f, — f)) < Kp(f. — f) for all n € N.

This implies that

supp(2fa ~ ) S K sup p(fa — f) < co.
By Theorem 5.3.2 and Lemma 5.2.9, we obtain

liminf p(f — f) + p(f — h) = liminf p(fo ~ £ + f — k)

= lim inf p(f, — h)
o0

= llﬂg}fp(fn —Gntgn— hn + hy, — h)

= lim inf p(g, — k)
n—oo

< lim inf p(f, — 7).

It follows that p(f — h) = 0 and then we have f = h € Tf. J

Consider the space L,((2, 1) for a o—finite measure y with the usual norm.
Let C be a bounded closed convex subset of L, for 1 <p< coand T: C — K (C)
a multivalued nonexpansive mapping. Because of uniform convexity of L,, it is
known that T' has a fixed point. For p = 1, T can fail to have a fixed point even
in the singlevalued case for a weakly compact convex set C' (see [2]). However,
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since Ly is a modular space where p(f) = Jo |flde = || f] for all f € L;, Theorem
5.3.4 implies the existence of a fixed point when we define mappings on a p—a.e.
compact p—bounded convex subset of L;. Thus we can state :

Corollary 5.3.5. Let (52, u) be as above, C < Ly(Q, 1) a nonemply bounded convex
set which is compact for the topology of the convergence locally in measure, and
T :C — K(C) a nonezpansive mapping. Then T has a fized point.

Proof. Under the above hypothesis, p—a.e. compact sets and compact sets in
the topology of the convergence locally in measure are identical (see [12]). Conse-
quently, Theorem 5.3.4 can be applied to obtain a fixed point for T. ]

In the case of the space {; we also can obtain a bounded closed convex
set C' and a nonexpansive mapping T : C' — C which is fixed point free. Indeed,
consider the following easy and well known example:

Let -
C'={{:cn}ellz0$3:n <1and Zm,,:l}.

n=1

Define a nonexpansive mapping T': C — C by
T(z) = (0,21, 23, %3,...) where z = {z,}.

Then T is a fixed point free. However, if we consider L, = l; where p(z) =
lzll, Vz € l;. Then p—a.e. convergence and weak* convergence are identical on
bounded subsets of {; (see [13]). This fact leads us to obtain the following corollary:

Corollary 5.3.6. Let C be a nonempty weak* compact conver subset of I, and
T':C — K(C) a nonerpansive mapping. Then T has a fized point.

Proof. By the above argument, we know that p—a.e. compact bounded sets and
weak™ compact sets are identical. Then we can apply Theorem 5.3.4 to assert the
existence of a fixed point of T a

In fact Corollary 5.3.5 and 5.3.6 are consequences of a general result: As-
sume that X is a linear normed space and 7 is a Hausdorff topology on X. We
say that X satisfies the strict 7-Opial property if

limsup ||z, — z|| < limsup ||z, ~ y||
n—oQ Te—r 0

for each sequence {z,} in X which converges to z for the topology T and each
y # z. Following the same argument as in [37] it is easy to prove the following
theorem:
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Theorem " 5.3.7. Let X be a Banach space, C a conver bounded sequentially 7-
compact subset of X, and T : C — K(C) a nonezpansive mapping. If X satisfies
the strict 7-Opial property, then T has a fized point.

When X is a modular function space equipped with either Luxemburg or
Amemiya norm, we can consider the topology 7 of convergence g-a.e. In this case,
Theorem 5.3.7 yields to the following:

Theorem 5.3.8. Let p be a convez additive o—finite function modular satisfying
the Ag—type condition. Assume that Ly ts equipped either with Luzemburg or
Amemiya norm. Let C be a nonempty p—a.e. compact p—bounded conver subset

of Ly, and T : C — K(C) a nonezpansive mapping. Then T' has a fized point.

Proof. From [22] (Theorem 4.1 and 4.3), X satisfies the uniform Opial property
with respect to the topology of p-a.e. convergence. Since p-a.e. compact sets and
p-a.e. sequentially compact sets are identical for this topology (see [12]), we can
deduce the result from Theorem 5.3.7 |

Remark 5.3.9. In the case of the space L(£2) we have

olf) = fn \Flde = 1l = 151

and we can deduce Corollary 5.3.5 and 5.3.6 from Theorem 5.3.8.



