TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLE	xii
LIST OF FIGURE	xiii
ABBREVIATIONS	
CHAPTER I INTRODUCTION	
1.1 Statement and significance of the problem	1
1.2 Objectives	2
CHAPTER II REVIEW OF LITERATURE	
2.1 Capillary electrophoresis as an appropriate equipment for analysis	3
and about the three insecticides	
2.2 Relevant research	7
2.3 Theory of capillary electrophoresis	9
2.4. Instrument of capillary electrophoresis	39
CHAPTER III MATERIALS AND METHODS	
3.1 Chemical used in this study	48
3.2 Instruments used in this study	48
3.3 Method	
3.3.1. Preparation of strawberry samples	50
3.3.2. Extraction of sample	51
3.3.3. Clean up of sample	52
3.3.4. Preparation of standard solutions	52
3.3.5. Optimization of experimental parameters for CE	53
3.3.6. Validation of the method	53

ix

TABLE OF CONTENTS

		Page
CH	APTER IV RESULTS AND DISCUSSION	
	4.1 Carbofuran, parathion-methyl and cypermethrin in strawberries	55
were	e determined by the proposed CE method	
	4.2 Validation of the CE method	
	4.2.1. Precision	59
	4.2.2. Recovery	60
	4.2.3. Limit of Detection (LOD) and Limit of Quantitation	62
	(LOQ)	
	4.2.4 Linearity	63
	4.3 Determination of insecticide residues in strawberries by CE and	65
com	parison with HPLC and GC	
CH	APTER V CONCLUSION AND RECOMMENDATION	74
REI	FERENCE	76
API	PENDIX	
	Apendix A Mode of capillary electrophoresis	79
	Apendix B Theory of HPLC	94
	Apendix C Theory of GC	98
	Apendix D HPLC Chromatogram of sample	107
	Apendix E GC-FPD Chromatogram of sample	108
	Apendix F GC-ECD Chromatogram of sample	109
	Apendix G Insecticide group	110
VIT	A rights reserv	e ¹¹²

Х

LIST OF TABLE

Table		Page
2.1	Physical and Chemical Properties of Carbofuran, Parathion- Methyl and	6
	Cypermethrin	
2.2	Aggregation number (AN) and cmc of selected surfactants	38
3.1	Linear gradient program	49
4.1	Comparison of conditions used for CE analysis of carbofuran by	56
	Present study and Dechdamrongwut	
4.2	Comparison of conditions used for CE analysis of parathion	57
	methyl by Present study and Dechdamrongwut	
4.3	Precision for carbofuran	59
4.4	Precision for parathion-methyl	59
4.5	Precision for cypermethrin	60
4.6	Recovery assay of carbofuran	61
4.7	Recovery assay of parathion methyl	61
4.8	Recovery assay of cypermethrin	61
4.9	Limit of detection and quantitation for carbofuran and Parathion	62
	methyl analysis by CE	
4.10	The regression analysis of carbofuran calibration curve	64
4.11	The regression analysis of parathion-methyl calibration curve	64
4.12	The regression analysis of cypermethrin calibration curve	65
4.13	Comparative determination of carbofuran residues in strawberries	66
	by CE and HPLC	
4.14	Amount of carbofuran residues (mg/kg) detected from strawberry	67
	fruits at difference harvesting time (day) after spraying with	
	carbofuran	
4.15	Comparative determination of parathion methyl residues in	69
	strawberries by CE and GC-FPD	

xi

LIST OF TABLE

Page

70

71

- 4.16 Amount of parathion methyl residues (mg/kg) detected from strawberry fruits at difference harvesting time (day) after spraying with parathion methyl
- 4.17 Comparative determination of cypermethrin residues in strawberries by CE and GC-ECD

Table

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

xii

LIST OF FIGURE

Figure		Page	
2.1	Respresentation of migration of neutral, anionic, and cationic	12	
	solutes in a capillary		
2.2	Drawing of an electropherogram showing the order of migration		
2.3	Respresentation of electroosmotic flow in a capillary	14	
2.4	Electroosmotic and pumped flow profiles		
2.5	Ohm's law plot. The voltage indicated by the dashed line is the	18	
	maximum voltage that shouls be used		
2.6	Effect of buffer, at constant ionic strength	19	
2.7	Drawing of capillaries with a tangential steel plate and conductive	22	
	sheath of silver paint to modify electroosmotic flow		
2.8	Drawing of the inside of a capillary representing reversal of	24	
	electroosmotic flow		
2.9	Electropherograms showing the effect of electroosmotic flow on	26	
	resolution and separation time		
2.10	Electropherograms illustrating the effect of pH on mobilities	31	
2.11	Electropherograms showing the effect of addition of an organic	32	
	solvent to the buffer on resolution and migration times		
2.12	Illustration of the components the MECC	35	
2.13	Micellar solubilization	37	
2.14	Diagram of capillary electrophoresis system	41	
2.15	Techniques for increasing the pathlength of the capillary	46	
2.16	Drawing of apiece of a fused silica capillary with a section of the	46	
	polymide coating removed with serves as the cell in a UV/vis or		
	fluorescence detector		
4.1	Electropherogram of carbofuran standard at the optimum condition	55	

xiii

LIST OF FIGURE

Figure		Page
4.2	Electropherogram of parathion methyl standard at the optimum	57
	condition	
4.3	Electropherogram of cypermethrin standard at the optimum	58
	condition	
4.4	Linearity plot of peak area against concentrations of carbofuran	63
	0.2, 0.5, 1, 2, 3 μg/mL	
4.5	Linearity plot of peak area against concentrations of parathion-	64
	methyl 0.5, 1, 2, 3,4 μg/mL	
4.6	Linearity plot of peak area against concentrations of cypermethrin	65
	0.5, 1, 2, 3,4 μg/mL	
4.7	Correlation of the data obtained from using HPLC and CE for	68
	analysis of carbofuran	
4.8	Correlation of the data obtained from using GC-FPD and CE for	71
	analysis of parathion methyl	
4.9	Correlation of the data obtained from using GC-ECD and CE for	73
	analysis of cypermethrin	
A1	Gel eletrophoresis	79
A2	Separation by capillary zone electriphoresis with normal	81
	electroosmotic flow and polarity	
A3	Principle of isoelectric focusing	86
A4	Electical Double Layer	89
A5	Electroosmotic flow in capillaries packed with silica gel	92
B1	Diagram of high performance liquid chromatography	94
C1	Diagram of gas chromatography	98
C2	Split and splitless injector	99

xiv

LIST OF FIGURE

Table		Page
C3	Cross section of a Fused Silica Open Tubular Column	100
C4	Schematic of a gas chromatographic Electron Capture Detectors	101
C5	Schematic of a gas chromatographic flame photometric detector	102
C6	Schematic of a gas chromatographic atomic emission detector	103
C7	Schematic of a gas chromatographic flame-ionization detectors	104
C8	Schematic of a gas chromatographic photoionization detector	105
C9	Schematic of a bridge circuit for TCD detection	106
D1	Chromatogram of carbofuran in sample	107
E1	Chromatogram of parathion methyl in sample	108
F1	Chromatogram of cypermethrin in sample	109
G1	General Structure of Carbamate	110
G2	Carbofuran Structure	110
G3	General Structure of Organophosphate	110
G4	Parathion methyl Structure	110
G5	General Structure of Organochlorine	111
G6	DDT Structure	111
G7	Cypermethrin Structure	111

Copyright [©] by Chiang Mai University All rights reserved

XV

ABBREVIATIONS

c	molar concentration
CE	Capillary Electrophorsis
CGE	Capillary Gel Electrophoresis
CZE	Capillary Zone Electrophoresis
CITP	Capillary Isotachophoresis
CIEF	Capillary Isoelectric Focusing
CEC	Capillary Electrochromatogrphy
d _c	diameter of a capillary
d p	particle diameter
Е	electric field strength
EOF	electroosmotic flow
GC	Gas Chromatography
HPLC	High Performance Liquid Chromatography
1	distance from capillary inlet to the detector or the
	effective capillary length
L	column length
LOD	Limit of Detection
LOQ	Limit of Quantitation
MECC	Micellar Electrokinetic Capillary Chromatography
MRL	Maximum Residue Limit
Др С	pressure drop across the column
q	Charge on the ion
r r i g i	Ion radius reserved
SD	Standard Deviation
SDS	Sodium dodisyl sulfate
t _M	Migration time
t _{mc}	The time required for a micelle to tranverse the capillary

xvi

ARREVIATIONS

	ABBREVIATIONS
t _R o	retention time
ΔΤ	temperature excess at the centre of column
UV	Ultra violet
u	linear velocity
V	voltage
δ	thickness of the electrical double layer
3	porosity of a packed bed
0 3 E 0	permitivity of a vacuum
5 г	dielectric constant or relative permitivity of medium
φ	dimension less pressure resistance factor for packed
	columns
η	viscosity of the solvent
ζ	zeta potential
μ_a	apparent electrophoretic mobility
μ_{ϵ}	electrophoretic mobility
υ	ion migration velocity

ลือสิทธิ์มหาวิทยาลัยเชียอไหม่ Copyright © by Chiang Mai University All rights reserved

xvii