Chapter 7

Transition Radiation from Electron Bunches

7.1 Radiation from Electron Bunches

The total electromagnetic radiation emitted from a bunch of N electrons
is the sum of the radiation emitted from each individual electron in the bunch
with an appropriated phase factor. The theoretical discussion of radiation from
an electron bunch in this chapter will be simplified to the longitudinal coordinate
since we are interesting in only longitudinal electron bunch length. However, the

result can be extended to a three dimensional bunch.
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Figure 7.1.  Schematic model of an electron bunch of N electrons showing the
coordinate of the 7% electron referring to the center of the bunch (C) and the

observation point (O).

An electromagnetic radiation field at angular frequency w from a single electron
can be expressed like E_,-(w) = E'oje"(“’t“’;iﬂ, where 7; is the position vector from
center of the bunch to the j* electron and k; = kfi; = (£)7; is the wave number
vector of the electric field from the j** electron with the direction vector 7; to the
observation point. As indicated in Fig.(7.1), Z; is the vector from the j** electron
to the observation point (O) and it can be expressed as T; =z;; = R+ 7. The
total radiation field from a bunch of N electrons at s frequency w can be written
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as the sum of single radiation fields from all electrons in the bunch as

N N Lo
E(w) = Z Ejw) = Y Boj(w)ei=F7), (7.1)

§=1

By use of a far-field approximation as the observation vector R from the bunch
center (O) is very large compared to the position vector 7 (}-f >> 75), it can be
approximated that the unit vector #4; ~ f and k; = kn; =~ kn. This leads to
another approximation of the radiation field of individual electrons as on(w) 7
Ey(w), where Ey(w) is the radiation field at frequency w for an electron at the
bunch center. Hence, the total emitted field in (7.1) becomes

Blw) = Ey(w)e'tt+7%), (7.2)

=1
The total spectral radiation intensity I{w) is proportional to the square of the
absolute value of the total spectral fields I(w) o | E(w) |2 By assuming that all
electrons in the bunch have the same energy, the total radiation intensity emitted

by the electron bunch can be written as

N 2
Z E‘D (w)ei(wt—kﬁ-f-’j)

=1

Iw) =~ (7.3)

To simplify the radiation intensity in (7.3) to be in one dimensional coordinate
along the longitudinal direction, the three dimensional phase difference (k#-7;) in
the exponent of the electromagnetic field can be replaced by the phase difference
@ and the total radiation intensity of the electron bunch

N 2 N
Hw) ~ | Bo(we'®@e)) = N|Ey(w)|? + |Ey(w)[? > gleied (7.4
j=1 Jk=1 (j#k)

The exponential term in (7.4) can be transformed into an electron bunch length
term in the longitudinal z-direction by §z = A(dp; — d¢)/2m, where X is the
wavelength of the radiation at frequency w which corresponds to the wave number
k by M2m =c/w=1/k.

For a case of a short electron bunch length compared to the radiation
wavelength, dz << X (8¢; = d¢y), the total radiation intensity in (7.4) becomes

I(w) = N | Baw) P +N(N = 1) | Byfw) I (7.5)
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Since the single-electron field emission Ejy(w) relates to a radiation intensity J.(w)
from a single electron as I(w) ~| Eo(w) |2, the total radiation intensity emitted
from all electrons in the bunch can be written as

I(w) = NL{w) + N(N — 1) I(w). (7.6)

Hence, for the radiation with wavelength longer than the electron bunch length,
the electromagnetic fields emitting from all electrons are at about the same phase,

and they add up coherently scaling with the number of electron squared as
Leoherent(w) = N2 L(w). (7.7)

On the other hand, for a radiation wavelength shorter than the electron bunch
length, A << 4z or (dp; — dipx) >> ), fields emitted from all electrons in the
bunch are at random phase spreading over more than 27. The second term in
(7.4) vanishes due to cancellation of the random phase and the total intensity for

this case leads to the incoherent radiation as
Iinconerent(w) = N | Ey(w) [>= NIL{(w). (7.8)

It can be summarized from (7.7) and (7.8) that coherent radiation is N time more
intense than incoherent radiation. This coherent enhancement of electron bunch
was originally predicted by Nodvick and Saxon in 1954 [63]. Typically, in our
electron beam there are about 108 — 109 electrons in an electron bunch, resulting
in different intensity of the coherent and the incoherent part by about 8 — 9 orders
of magnitude. This agrees well with the intense FIR, coherent radiation for the
electron bunch length of the sub-picosecond range. Figure 7.2 shows the model
of the radiation from short electron bunch (top) and from long electron bunch
(bottom) compared to the radiation wavelength.

Considering the transition regime of the two limits between the coherent
and incoherent radiation fields, where the electron bunch length is about equal to
the radiation wavelength, 6z = X or (6¢p; — §¢p) & 2m. Then the total radiation

intensity in (7.5) may be written in terms of individual electron intensity I, (w) as
I(w) = NI (w) + N(N — 1) e(w) f(w), (7.9)

where the factor f(w) is called the bunch form factor that depends greatly on the
electron distribution in the bunch. It can be concluded from (7.9) that between
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Figure 7.2. Schematic model of the radiation from short electron bunch (top)
and long electron bunch {bottom) compared to the radiation wavelength.

the two limits of dz >> A and dz << A, the total intensity depends on the number

of electrons in the bunch and positions of individual electrons.

Typically, an electron bunch contains a large number of electrons in a
very small volume in the order of mm?®. We can describe positions and distribution
of electrons in the bunch by using the electron continuous distribution, which is
the probability of finding electrons at the position vector 7. Assume that electrons
in the volume element d37 located at the position vector 7. The bunch distribution
S(7) satisfies the normalized probability function condition for three dimensional

bunch form factor as \

flw) = (7.10)

f e*7S(2)dz

If we assume that the transverse and longitudinal distribution are independent,

we can express the three dimensional bunch distribution by S(¥) = S{z,y,2) =
S1{z,y)Sa(z) for cartesian coordinates or S(7) = S{p,8,z) = Si(p, 8)S2(z) for
cylindrical coordinates. Since we are interesting only in the longitudinal bunch
length lets assume that all electrons in the bunch are distributed azimuthally
symmetric about the direction of the beam propagation along the z-direction.
Then, the contribution from the transverse bunch distribution become unity for
all frequencies because [* [% Si(z,y)dzdy =1 or f;° 027r S1(p, 0)dpdf = 1 and
the bunch form factor will be reduced to be the simplest form of the longitudinal
bunch distribution S,(z). Then, the bunch form factor in one dimension along

the longitudinal direction can be written as

2

flw)= ’/e"sz(z)dz 2 = '/eQWi(w/c)zS(z)dz . (7.11)
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and the one-dimensional total radiation intensity becomes
2

(W) = / NBy(w)e*S(2)dz]| . (7.12)

The enhancement of coherent radiation over incorrect radiation can be seen in
(7.11) and (7.12) that at low frequency where w — 0 and the electron bunch
length is much shorter compared to the radiation wavelength, the form factor
is close to unity and the coherent contribution will be N times larger than the
incoherent part. On the other hand, at high frequencies, where the radiation
wavelength approaches zero, the form factor vanishes leaving only the incoherent
contribution. From this coherent enhancement it becomes clear why coherent ra-
diation can be used to measure the electron bunch length, where the incoherent
radiation does not have the bunch form factor containing the information of the
bunch distribution. The bunch form factor contains information on the longitu-
dinal electron distribution and measurement of the coherent radiation spectrum
(intensity vs. frequency) gives immediately by a Fourier transform the bunch

length: or vice versa.

To calculate the radiation intensity in (7.9) and (7.11), one needs to de-
rive the Fourier transform of the normalized bunch distribution. Typical example
of the bunch distribution is the uniform distribution, where the bunch is symmet-
ric about the z-direction with rectangular longitudinal distribution of length 20, |
where electrons only distribute along z = —0o, to z = +0, as shown in Fig.7.3(a)
and described by

S(z) = for|z|< o, (7.13)

20,
The bunch form factor is then

sw=|[ e*"“(i-)dz[g - [=52] K¢ {M] (719

oy 20, 0.k wo,/c

where k = w/c. Another typical example is a Gaussian distribution, which is a
good representation of the longitudinal distribution for most electron bunches. A
Gaussian longitudinal distribution of the equivalent length +/27¢, as shown in
Fig.7.3(b) is defined by

| o
S(z) = Wor /2% (7.15)
and the bunch form factor can be evaluated as
0 Lz% (22 2,272
f(w) = e** f/%o- dzl = [ek_'z‘] — e—(wozlf-‘)z_ (7.16)
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Figure 7.3. Typical bunch distributions: (a). a uniform distribution with rect-
angular longitudinal distribution of length 20, and (b). a Gaussian distribution
with the FWHM of length +/270,.

In reality, when the electron bunch radiates, the radiation is emitted
from a three dimensional source. The longitudinal contribution of the form factor
represents the spectral degree of temporal coherence and the transverse contribu-
tion of the form factor plays an important role to the spectral degree of spatial
coherence. The concepts of temporal and spatial coherence are important in dis-
cussion about the phase characteristics of the radiation from electron bunches.
The temporal coherence describes the correlation between signals observed at dif-
ferent moments in time while the spatial coherence is described as a function of
distance, which is correlated between signals at difference points in space. Theo-
retical derivation of the bunch form factor for three dimensional distribution can
be found in reference [18] and [64].

7.2 Transition Radiation

When electron passes through an interface between two media of different
dielectric constants, its emits electromagnetic fields due to the sudden transition
of the dielectric constant of the media along the electron path and causes a dis-
continuity in the electric fields at the interface. This electromagnetic radiation is
called transition radiation (TR) due to its property that is emitted at the media
transition. The transition radiation was first predicted by Ginsburg and Frank

[65]. Lets consider a simple picture of the transition radiation from an electron
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Figure 7.4. The two-charged-particle collision problem represents the transi-
tion radiation (dashed-arrow) emitted when an electron moves from vacuum to a

perfect conductor in a direction normal to the interface [18].

of constant velocity travels in a direction normal to the interface between vacuum
with the dielectric constant of unity (¢ = 1) and a perfect conductor with infinite
dielectric constant (¢ — co). Since the surface boundary is a perfect conductor,
the method of image charge can be applied to this problem, which introduces
a positive image charge of the electron located on the other side of the surface
boundary at the same distance as the electron {as shown in Fig.7.4). Then, the
problem reduces to a simple two-charged-particle collision system. The radiation
of frequency w is emitted when the two charges collide with a very short colli-
sion time (7 << 27w) or we can say that their velocities change instantaneously.
Then, the radiation energy W emitted in the frequency range dw into a solid angle
ddmay be written as [18]

daw 1 17‘12)(?’_5 17',1Xﬁ
> a(— ’ )

dwdQ ~ 47?3 - ’ (717)

~ T 1—R-fi, 1—7-fi
where ¢; is the charge of % particle, ;1 is the initial velocity before the sudden
change, ¥ is the final velocity after the sudden change, 7 is the unit vector in
the emitted radiation direction and g = /c. Lets consider the electron of charge
e moving with velocity ¥ collides with a position of charge —e moving with a
velocity —i' at the interface. Then, the components U1,2 = Vo = 0,7, = ¥ and

Up1 = ~%. The radiation energy per unit angular frequency per unit solid angle
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for the backward transition radiation becomes

aw e?(3?sin6
dwd)  w2c(1 — F2cos?d)?’

(7.18)

where § is the angle between —¥ and the normal direction 7 to the interface
(emitted angle). Results in (7.18) can be extended to a more general case of
an electron moving across an interface between a vacuum and a finite dielectrics
constant £ in the normal direction and the backward transition radiation angular

spectral energy density will be

dW  e2FPsin?fcosd (e — 1)1 — B% + /e — sin?d)
dwdf)  w2e(l — B2cos?0)? | (1 + fv/e — sin?0)(ecosh + e — sin?8) |

Equation (7.19) will be reduced to be (7.18) when the dielectric constant is set
for the perfect conductor as ¢ — oo. It can be seen from (7.18) and (7.19) that

(7.19)

the spectral energy depends on velocity (3) and the emitted angle 6.

vacuum

(e=1)

Figure 7.5. An electron moves from vacuum to a perfect conductor in at an

incident angle v with respect to the z-axis.

Since in our experimental setup the transition radiation will be gener-
ated when an electron beam collides on the 45° tilted aluminum foil the transition
radiation spectrum for oblique incidence will be introduced. Lets consider an elec-
tron moving from vacuum (¢ = 1) to aluminum foil with an incident angle of 9 as
shown in Fig.7.5. To simplify the problem let us consider that the aluminum foil is
a perfect conductor since its dielectric constant is much more than that of vacuum

in the far infrared regime [18] and we can set its dielectric constant e — co. For
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oblique incident, the backward transition radiation may have two polarizations: a
parallel polarization (W)) with electric field field lies in the radiation plane and a
perpendicular polarization (W, ) with electric field perpendicular to the radiation
plane [18]. Hence, the total backward transition radiation intensitjr including both

‘planes becomes
AW __ dWy | W,
dwdQ  dwdQ ' dwdQ’

for transition from vacuum to a perfect conductor medium, the parallel and per-

(7.20)

ﬁendjcular polarization are

dW,  e*fcos®y sinf — B cos¢siny 2 (7.21)
dwdQ 72 (1 — Bsinfcos ¢psiny)2 — B2cos? Hcos? e | '
dW,  e2f%cos®y B cos Bsin ¢sinzp 2 (7.22)
dwdQ 7% (1~ Bsinfcos¢sinyp)? — B2cos2fcos? | '

where 0 is the angle between the emitted radiation direction 7 and the -z axis
while ¢ is the azimuthal angle defined in the zy-plane with respect to the -z
axis and 9 is the incident angle of electron with respect to the -z axis. For our
case where the electron collides with the aluminum surface at 45° () = 45°), the

parallel and perpendicular polarization becomes

_ =52

aw, @ 2sin 6 — /28 cos ¢

_ P : : (7.23)
dwdQ 272 (\/5 — Bsinf cos ¢)2 — f2 cos® 4 |
dW, _ ép? [ V28 cosfsin ¢ 1° (7.24)
dwdl  2n%c (\/L_) — Bsin 6 cos ¢)2 — 52 cos? 8 .

7.3 Transition Radiation Acceptance

The angular spectral distribution of the transition radiation in case of
normal incidence can be explained by (7.18) and it reveals that there is no ra-
diation in the forward direction since § = 0 and it is azimuthally symmetric
since it has no ¢ dependence. The maximum radiation intensity is e?y2/(4n%c) at
sind = 1/(B), where v is the Lorentz factor with v = (/1 — #%)~’. In case of
relativistic electrons (8 — 1 and v >> 1) we can approximate siné =~ 6 and the
maximum radiation intensity can be obtained at = 1/. It can be concluded
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that the radiation distribution becomes more collimated for higher electron ener-
gies. A linear accelerator was installed for post acceleration to higher collimation
since a 15 MeV electron has the maximum intensity at an expected angle of +34.1
mrad compared to 4170 mrad for a 3 MeV electron beam from the RF-gun. Thus,
adding the linac to accelerate electron to about 15 MeV after bunch compression

is a reasonable way to generate a more confined beam of transition radiation.

The angular distribution in the case of oblique incidence has an az-
imuthal asymmetry since it has the azimuthal ¢ dependence. This leads to the
maximum radiation intensity for the case of 45° incidence to be located at an an-
gle larger than +1/~. However, for the highly relativistic electron like in our case
the angular distribution asymmetry vanishes. Hence, we can use the radiation
distribution for normal incidence to consider the transition radiation in our case
(18]. Generally, much of the transition radiation is emitted larger than its max-
imum intensity angle of 1/-y due to its angular distribution property. To collect
the radiation in experiments, an acceptance angle must be considered. The total
radiation emitted within an acceptance angle 6, can be obtained by integrating
the angular distribution in (7.18) over solid angles to the limit determined by the

acceptance angle as

dWw g
E(Ga) = /(; L‘ dwdQ s1n 9d9d¢ (725)

Lets consider only the backward radiation into the left half space in the vacuum
side in Fig.7.4, the integration of the radiation energy over the left half space

becomes

dW o/t gw e [1+5°. 1+7
— j = —21. 2
dw fo ,/; dwdq >t Bfiedqb 2mc | B In{ 1-74 )2 (7.26)

It can be seen in (7.26) that for highly relativistic electrons with # — 1 and
v >> 1, the term (1 — 8)~! — 292 and the total radiation energy in the fre-
quency range dw for high energy electrons is proportional to In-y. The radiation
collection efficiency depends greatly on the acceptance angle 6, which is specified
by an experimental setup. In our experiments, so far the electron beam can be
accelerated to reach about 11 MeV leading to the maximum acceptance angle for
the transition radiation at about 34/«.
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7.4 Coherent Transition Radiation Spectrum

According to the fact that at wavelengths much longer than the bunch
length, radiation fields add up coherently and a shorter bunch length provides a
broader spectrum. The radiation brightness versus wave number of far-infrared
radiation (FIR) spectrum in Fig.7.6 shows that sub-picosecond electron bunches
can provide broadband radiation in the far-infrared regime with intensity much
higher than black body radiation and synchrotron radiation and shorter bunches

provide broader spectrum.
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Figure 7.6. Radiation brightness B (ph/s/mm?/100%BW) vs. wave number
for coherent transition radiation for 16 pm and 35 um compared to synchrotron

radiation and black body radiation.

Comparison of the electron bunch length of about 120 fs (35 us) produced
at SUNSHINE facility [18] and the expected bunch length of about 53 fs (16ys)
at SURIYA facility is illustrated in Fig.7.6. It reveals that the shorter bunch of
about a factor of two at the SURIYA facility gives a spectrum twice as broad than
the SUNSHINE bunch. With electron bunch length of about 53 fs the far infrared
radiation from transition radiation is expected to cover the wave number range

from 5 cm™" to 400 cm~!. The intensity is greater by 4 to 8 orders of magnitude
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compared to a conventional black body sources and by 2 or 3 order of magnitude

greater than synchrotron light sources.

7.5 Transition Radiation Generation and Observation

Far-infrared radiation is generated by transition radiation method. A
radiator made of aluminum foil (Al-foil) is placed in the electron path, represent-
ing transition between vacuum and Al-foil. At SURIYA, the transition radiation
station where the measurements were taken for this thesis was located at about
2 m from the linac exit (see Fig.5.1). A 25.4-pm-thick aluminum foil of 24 mm
diameter was support on an aluminum ring using the drumhead stretching tech-
nique. The radiator is tilted by 45° facing the electron beam direction. The back-
ward transition radiation is emitted perpendicular to the beam axis and transmits
through a high density polyethylene (HDPE) window of 1.25-mm-thick and 32-
mm diameter. The polyethylene window allows 87% transmission of the radiation
in the far-infrared regime [66]. A 14-cm long copper light cone is used to collect
the radiation into a room-temperature pyroelectric detector. A cross-sectional di-
agram of the experimental set up for measuring the transition radiation is shown
in Fig.7.7.

HDPE window

Light cone

Detector

Figure 7.7. Transition radiation measurement setup.
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The far-infrared detector consists of a Molectron P1-65 LiTaOj3 pyroelec-
tric sensor of 5-mm diameter and a pre-amplifier. Its sensitivity is uniform over a
spectral range from visible light to millimeter waves which covers more than the
full range of the expected transition radiation. The detector was calibrated by
using a Scientech thermopile power meter which gives an energy responsivity of
0.97 mJ/V [67).
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Figure 7.8. The transition radiation (TR) signal at SURIYA facility (March 21,
2006). The top curve shows the TR signal observed with the pyroelectric detector
and the bottom curve shows the TR, signal when an Al-foil is placed between the

source and the detector.

Far-infrared radiation signal from short electron bunches generating as
transition radiation was observed and verified for the first .time at SURIYA on
March 21, 2006. We verified whether the radiation was indeed far-infrared radia-
tion by placing an Al-foil at the entrance of the detector. Aluminum foil is well
known as an excellent far-infrared radiant barrier since it has a low emissivity
of 0.05. It eliminates 95% of the radiation transfer by reflection [68]. The mea-
surement result shows that almost 100% of the detector signal vanishes after the
detector was blocked by the Al-foil as shown in Fig.7.8. This is verification that
the detector signal that we observed is indeed far-infrared radiation and not high
energy lonizing radiation. The detector signal was observed at 3.5 mV results in
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a total measured energy of the transition radiation from each macropulse of 3.4
pJ or a peak power of 4.2 W.





