TABLE OF CONTENTS

	Pages
ACKNOWLEDGEMENT	iii
ABSTRACT IN ENGLISH	iv
ABSTRACT IN THAI	vii
LIST OF TABLES	xi
LIST OF ILLUSTRATIONS	xiii
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Research Objectives	3
CHAPTER 2 LITERATURE REVIEW	4
2.1 Mango	4
2.2 Chemical composition, nutritive and medicine value	6
2.3 Poshtarvest Storage	7
2.4 Ripening of mangoes	12
2.5 Chilling injury	16
2.6 Temperature management	27
2.7 Thermal properties	33
2.8 Heat transfer theory	38
2.9 Unsteady state heat transfer	40
2.10 Finite Difference method	41
CHAPTER 3 MATERIALS AND METHODS	43
3.1 Determine thermal properties and chemical composition of	43
mango fruit cv Nam Dok Mai Si Thong.	
3.2 Prediction of internal temperature in mango fruit cv. Nam	53
Dok Mai Si Thong using thermal properties.	

	Page
3.3 To determine the relationship between thermal properties of	60
mango and chilling injury during storage at 5 and 13 °C.	
CHAPTER 4 RESULTS AND DISCUSSION	66
4.1 Chemical composition of peel and flesh of Nam Dok Mai Si	66
Thong	
4.2 Thermal properties of Nam Dok Mai Si Thong Variety	69
4.3 The comparison of thermal properties obtained from the	75
experiment to the calculated values from the chemical composition	
4.4 The application of numerical methodology in the prediction of temperature changes within Nam Dok mai Si Thong during thermal processing	80
4.5 Determination of the relationship between the chilling injury and thermal properties of Nam Dok Mai Si Thong during storage at 5 and 13°C	87
CHAPTER 5 CONCLUSION	203
REFERENCES	206
APPENDICES	236
CIRRICULUM VITAE	270

LIST OF TABLES

Tables		Page
2.1	Difference between Nam Dok Mai Si Thong and Nam Dok	5
	Mai No.4.	
2.2	Analysis of the flesh of green & ripe mangoes gave the	6
	following Composition (per 100 gms):	
2.3	Injuries to mango cultivars induced by disinfestation	30
	treatment, applied as hot water, vapor heat or forced hot-air	
	treatments.	
4.1	Chemical compositions of peel and flesh of Nam Dok Mai	65
	Si Thong mango	
4.2	Chemical compositions of green and ripe mangoes of	67
	different variety	
4.3	Nutrition values of the mango flesh between Thai mango	68
	(the variety was not specified) and Haden per 100 g fresh	
	weight	
4.4	Thermal properties of peel and mango flesh of Nam Dok	69
	Mai Si Thong variety at 25.0°C.	
4.5	Effect of moisture on the variation of thermal conductivity of	71
•	some fruits.	
4.6	Effect of temperature on the thermal conductivity of some vegetables and fruits.	72
4.7	The thermal diffusivity of some vegetables and fruits.	74
4.8	The comparison of specific heat capacity of Nam Dok Mai	75
	Si Thong peel at 25.0°C between the experiment and equation.	
4.9	The comparison of specific heat capacity of Nam Dok Mai	76
	Si Thong flesh at 25.0°C between the experiment and	
	equation	

Tables		Page
4.10	The comparison of thermal conductivity of Nam Dok Mai Si	77
	Thong peel at 25.0°C between the experiment and equation.	
4.11	The comparison of thermal conductivity of Nam Dok Mai Si	78
	Thong mango flesh at 25.0°C between the experiment and	
	equation.	
4.12	The comparison of thermal diffusivity of Nam Dok Mai Si	7 9
	Thong peel at 25.0°C between the experiment and equation.	
4.13	The comparison of thermal diffusivity of Nam Dok Mai Si	80
	Thong mango flesh at 25.0°C between the experiment and	
	equation.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

LIST OF ILLUSTRATIONS

Figures		Page
2.1	Mango cv. Nam Dok Mai Si Thong at A: maturiy stage and	5
	B: ripening stage.	
2.2	Pathway of ethylene biosynthesis	14
2.3	Constituent of pectin	15
2.4	A sequence of metabolic events leading from a stress-	17
	induced alteration in the properties of membrane to	
	observable macroscopic tissue damage	
2.5	Membrane injury or acclimation resulting from chilling	20
	stress	
3.1	Sample preparation for determined specific heat and thermal	46
	conductivity of mango fruit.	
3.2	Measurement of density by pycnometer.	47
3.3	Protein Analyzer	50
3.4	Muffle furnace	51
3.5	Fat Analyser	52
3.6	Temperature measurement locations.	54
3.7	Heating test with hot water.	54
3.8	Cooling experiment	55
3.9	The distance between plane 0 and plane 1 equaled to half of	58
	the thickness of the seed.	
3.10	Value range in relation to lightness scales	62
3.11	Color chart of natural color system	63
4.1	Schematic cross-section diagram of the mango used in the	81
	investigation of temperature profiling by finite difference	
	method.	

Figures		Page
4.2	The comparison between the temperature obtained from the	82
	experiment (exp) and model (sim) at the surface $(m = 5)$ of	
	Nam Dok Mai Si Thong mango in the incubator (13.0±0.5°c)	
4.3	The comparison between the temperature obtained from the	83
	experiment (exp) and model (sim) at the center of Nam Dok	
	Mai Si Thong mango flesh in the incubator (13.0 \pm 0.5 °C).	
4.4	The comparison between the temperature obtained from the	83
	experiment (exp) and model (sim) at the position of Nam	
	Dok Mai Si Thong mango flesh attached to the seed (m = 1)	
	in the incubator $(13.0 \pm 0.5$ °C).	
4.5	Comparison of temperature profile at the surface of Nam	85
	Dok Mai Si Thong between the experiment (exp) and	
	predicted value from the model (sim) in the temperature	
	controlled water bath at 48.4 ± 0.5 °C.	
4.6	Comparison of temperature profile at the center of Nam Dok	85
	Mai Si Thong flesh $(m = 3)$ between the experiment (exp)	
	and predicted value from the model (sim) in the temperature	
	controlled water bath at 48.4 ± 0.5 °C.	
4.7	The comparison between the temperature obtained from the	86
	experiment (exp) and model (sim) at the position of Nam	
	Dok Mai Si Thong mango flesh attached to the seed (m = 1)	
	in the temperature controlled incubator (48.4 \pm 0.5°C).	
4.8	Chilling index score of the mango kept at 5°C.	87
4.9	The characteristics of chilling injury observed in Nam	89
	DokMai Si Thong mango that was stored at 5°C	
	(1.5× magnification).	
4.10	Chilling index score of the mango kept at 13°C.	90

Figures		Page
4.11	Profile of the electrolyte leakage value at the mango peel of	91
	Nam Dok Mai Si Thong mango being kept at 5, 13, and 25°C.	
4.12	The relationship between the leakage of electrolyte from the	92
	peel of Nam Dok Mai Si Thong mango and the chilling	
	index score when the mango was kept at 5°C	
4.13	The relationship between electrolyte leakage of Nam Dok	94
	Mai Si Thong peel and the chilling index score of electrolyte	
	at 13°C.	
4.14	The profile of luminosity of the mango peel stored at 5,	96
	13and 25°C.	
4.15	The relationship between the chilling index score and L*-	97
	value of Nam Dok Mai Si Thong peel being kept at 5°C.	
4.16	The relationship between L*-value and electrolyte leakage of	97
	the Nam Dok Mai Si Thong peel kept at 5°C.	
4.17	The relationship between the chilling index score and L*-	99
	value of Nam Dok Mai Si Thong peel being stored at 13°C.	
4.18	The relationship between the percentage of electrolyte	99
	leakage and L*-value of Nam Dok Mai Si Thong peel being	
	stored at 13°C.	
4.19	The profile of a* value of Nam Dok Mai Si Thong peel	100
	being kept in the incubator at 5, 13 and 25°C.	
4.20	The profile of b* value of Nam Dok Mai Si Thong peel	101
	being kept in the incubator at 5, 13 and 25°C.	
4.21	The relationship between the chilling index score and b*-	102
	value of Nam Dok Mai Si Thong peel being stored at 5°C.	

Figures		Page
4.22	The relationship between the percentage of electrolyte	103
	leakage and b*-value of Nam Dok Mai Si Thong peel being	
	stored at 5°C.	
4.23	The relationship between the chilling index score and b*	104
	value of Nam Dok Mai Si Thong peel maintained at 13°C.	
4.24	The relationship between the electrolyte leakage and b*	104
	value of Nam Dok Mai Si Thong peel maintained at 13°C.	
4.25	The profile of chroma (C*) value for Nam Dok Mai Si	105
	Thong peel maintained in the incubator at 5, 13 and 25°C.	
4.26	The hue angle profile of Nam Dok Mai Si Thong peel being	106
	kept in the incubator at 5, 13 and 25°C.	
4.27	The color change of Nam Dok Mai Si Thong peel being kept	107
	at A:5°C, B:13°C. And C:25°C.	
4.28	The respiratory rate of Nam Dok Mai Si Thong mango	109
	being kept in the incubator at 5, 13 and 25°C.	
4.29	The change of L*-value of Nam Dok Mai Si Thong mango	112
	flesh storedin a temperature controlled incubator at 5, 13 and	
	25°C.	
4.30	The change in a* value of Nam Dok Mai Si Thong mango	113
	flesh being stored at 5, 13 and 25°C in the temperature	
	controlled incubator.	
4.31	The profile of b* value of Nam Dok Mai Si Thong mango	114
	flesh stored in the temperature controlled incubator at 5, 13	
	and 25°C.	
4.32	The profile of C* value for Nam Dok Mai Si Thong mango	115
	stored in the incubator at 5, 13 and 25°C.	
4.33	The profile of hue angle value of Nam Dok Mai Si Thong	116
	mango flesh stored in the incubator at 5, 13 and 25°C.	

Figures		Page
4.34	The change in hue angle value of Nam Dok Mai Si Thong	118
	mango flesh stored in the incubator at A:5, B: 13andC: 25 °C.	
4.35	The change of Nam Dok Mai Si Thong's pericarp and	119
	mango flesh stored in a temperature controlled cabinet at	
	5±0.5°C.	
4.36	The change of Nam Dok Mai Si Thong's pericarp and	120
	mango flesh stored in a temperature controlled cabinet at	
	13±0.5°C.	
4.37	The change of Nam Dok Mai Si Thong's pericarp and	121
	mango flesh stored in a temperature controlled cabinet at	
	25±0.5°C.	
4.38	Firmness profile of Nam Dok Mai Si Thong mango flesh in	122
	the incubator at 5, 13 and 25°C.	
4.39	The relationship between the change in firmness of mango	124
	flesh and the respiratory rate of Nam Dok Mai Si Thong	
	mango stored in the incubator at 5°C.	
4.40	The relationship between the change in firmness of mango	125
	flesh and the respiratory rate of Nam Dok Mai Si Thong	
	mango stored in the incubator at 13°C.	
4.41	The relationship between the change in firmness of mango	125
	flesh and the respiratory rate of Nam Dok Mai Si Thong	
	mango stored in the incubator at 25°C.	
4.42	The weight loss profile of Nam Dok Mai Si Thong mango	126
	stored in the incubator at 5, 13 and 25 ± 0.5 °C.	
4.43	The moisture content profile of Nam Dok Mai Si Thong peel	128
	being maintained in the incubator at 5, 13 and 25°C.	
4.44	The moisture content profile of Nam Dok Mai Si Thong	129
	mango flesh being maintained in the incubator at 5, 13 and	
	25°C.	

xviii

Figures		Page
4.45	The profile of total soluble solid of Nam Dok Mai Si	130
	Thong mango stored in the incubator at 5, 13 and 25°C.	
4.46	The relationship between the total soluble solid and the	131
	respiratory rate of Nam Si Thong mango being stored at 13°C.	
4.47	The relationship between the total soluble solid and the	132
	respiratory rate of Nam Si Thong mango being stored at 25°C.	
4.48	The relationship between the total soluble solid and the	133
	respiratory rate of Nam Si Thong mango being stored at 5°C.	
4.49	The profile of titable acidity content of Nam Dok Mai Si	133
	Thong mango stored in the incubator at 5, 13 and 25°C.	
4.50	The pH profile of Nam Dok Mai Si Thong mango stored in	134
	the incubator at 5, 13 and 25°C.	
4.51	The relationship between the titratable citric acid content and	135
	the pH of Nam Dok Mai Si Thong mango being stored at 25°C.	
4.52	The relationship between the titratable citric acid content and	136
	the pH of Nam Dok Mai Si Thong mango being stored at	
	13°C.	
4.53	The relationship between the titratable citric acid content and	137
	the pH of Nam Si Thong mango being stored at 5°C.	
4.54	The electrolyte leakage profile of Nam Dok Mai Si Thong	138
	mango flesh stored in the temperature controlled incubator at	
	5, 13 and 25°C.	
4.55	The relationship between the respiratory rate and electrolyte	139
	leakage of Nam Si Thong mango flesh being stored at 5°C.	

Figures		Page
4.56	The relationship between the profile of b* value and	139
	electrolyte leakage of Nam Si Thong mango flesh being	
	stored at 5°C.	
4.57	The relationship between the profile of firmness and	140
	electrolyte leakage of Nam Si Thong mango flesh being	
	stored at 5°C.	
4.58	The relationship between the profile of total soluble solid	140
	(TSS) and electrolyte leakage of Nam Si Thong mango	
	flesh being stored at 5°C.	
4.59	The relationship between the profile of b* value and	141
	electrolyte leakage of Nam Si Thong mango flesh being	
	stored at 25°C.	
4.60	The relationship between the profile of b* value and	142
	electrolyte leakage of Nam Si Thong mango flesh being	
	stored at 13°C.	
4.61	The relationship between the profile of firmness and	143
	electrolyte leakage of Nam Si Thong mango flesh being	
	stored at 25°C.	
4.62	The relationship between the profile of firmness and	143
	electrolyte leakage of Nam Si Thong mango flesh being	
	stored at 13°C.	
4.63	The relationship between the profile of respiratory rate and	144
	electrolyte leakage of Nam Si Thong mango flesh being	
	stored at 25°C.	
4.64	The relationship between the profile of respiratory rate and	145
	electrolyte leakage of Nam Si Thong mango flesh being	
	stored at 13°C.	
4.65	The relationship between the profile of total soluble solid	146
	(TSS) and electrolyte leakage of Nam Si Thong mango	
	flesh being stored at 25°C.	

Figures		Page
4.66	The relationship between the profile of total soluble solid	146
	(TSS) and electrolyte leakage of Nam Si Thong mango flesh	
	being stored at 13°C.	
4.67	The profile of specific heat capacity of Nam Dok Mai Si	147
	Thong peel stored in the incubator at 5, 13 and 25°C.	
4.68	The relationship between the specific heat capacity and b*	148
	value of Nam Dok Mai Si Thong peel being stored at 13°C.	
4.69	The relationship between the specific heat capacity (Cp) and	149
	b* value of Nam Dok Mai Si Thong peel being stored at	
	25°C.	
4.70	The relationship between the specific heat capacity (Cp)of	149
	the peel and the respiration rate of Nam Dok Mai Si Thong	
	peel being stored at 13°C.	
4.71	The relationship between the specific heat capacity (Cp) of	150
	the peel and the respiration rate of Nam Dok Mai Si Thong	
	peel being stored at 25°C.	
4.72	The relationship between the specific heat capacity (Cp) of	151
	the peel and the chilling index score of Nam Si Thong peel	
	being stored at 13°C.	
4.73	The relationship between the specific heat capacity (C _p) of	151
	the peel and the electrolyte leakage of Nam Si Thong peel	hų
	being stored at 13°C.	
4.74	The relationship between the specific heat capacity (C _p) of	152
	the peel and the electrolyte leakage of Nam Si Thong peel	
	being stored at 25°C.	
4.75	The relationship between the specific heat capacity (Cp) of	153
	the peel and the chilling index score of Nam Si Thong peel	
	being stored at 5°C.	

Figures		Page
4.76	The relationship between the specific heat capacity (Cp) of	153
	the peel and b* value of Nam Dok Mai Si Thong peel being	
	stored at 5°C.	
4.77	The relationship between the specific heat capacity (Cp) of	154
	the peel and respiratory rate of Nam Dok Mai Si Thong peel	
	being stored at 5°C.	
4.78	The relationship between the specific heat capacity (Cp) of	155
	the peel and the electrolyte leakage of Nam Dok Mai Si	
	Thong peel being stored at 5°C.	
4.79	The profile of specific heat capacity of Nam Dok Mai Si	156
	Thong mango flesh stored in the incubator at 5, 13 and 25°C.	
4.80	The relationship between the specific heat capacity and	157
	moisture content of Nam Dok Mai Si Thong mango flesh	
	being stored at 5°C.	
4.81	The relationship between the specific heat capacity and b*	158
	value of Nam Dok Mai Si Thong mango flesh being stored	
	at 5°C.	
4.82	The relationship between the specific heat capacity and	158
	respiratory rate of Nam Dok Mai Si Thong mango flesh	
	being stored at 5°C.	
4.83	The relationship between the specific heat capacity and total	159
	soluble solid content of Nam Dok Mai Si Thong mango	
	flesh being stored at 5°C.	
4.84	The relationship between the specific heat capacity and	159
A	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
`	being stored at 5°C.	
4.85	The relationship between the specific heat capacity and	160
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 5°C.	

xxii

Figures		Page
4.86	The relationship between the specific heat capacity and b*	161
	value of Nam Dok Mai Si Thong mango flesh being stored at	
	13°C.	
4.87	The relationship between the specific heat capacity and b*	161
	value of Nam Dok Mai Si Thong mango flesh being stored at	
	25°C,	
4.88	The relationship between the specific heat capacity and	162
	respiratory rate of Nam Dok Mai Si Thong mango flesh	
	being stored at 13°C.	
4.89	The relationship between the specific heat capacity and	162
	respiratory rate of Nam Dok Mai Si Thong mango flesh	
	being stored at 25°C.	
4.90	The relationship between the specific heat capacity and total	163
	soluble solid of Nam Dok Mai Si Thong mango flesh being	
	stored at 13°C.	
4.91	The relationship between the specific heat capacity and total	163
	soluble solid of Nam Dok Mai Si Thong mango flesh being	
	stored at 25°C.	
4.92	The relationship between the specific heat capacity and	164
	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
	being stored at 13°C.	
4.93	The relationship between the specific heat capacity and	164
	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
	being stored at 25°C.	
4.94	The relationship between the specific heat capacity and	165
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 13°C.	

xxiii

Figures		Page
4.95	The relationship between the specific heat capacity and	165
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 25°C.	
4.96	The profile of thermal conductivity of Nam Dok Mai Si	166
	Thong peel stored in the temperature controlled incubator at	
	5, 13 and 25°C	
4.97	The relationship between the thermal conductivity (k) and	168
	chilling injury of Nam Dok Mai Si Thong peel being stored	
	at 5°C.	
4.98	The relationship between the thermal conductivity (k) and	168
	electrolyte leakage of Nam Dok Mai Si Thong peel being	
	stored at 5°C.	
4.99	The relationship between the thermal conductivity (k) and	169
	b* value of Nam Dok Mai Si Thong peel being stored at 5°C	
4.100	The relationship between the thermal conductivity (k) of the	169
	peel and respiratory rate of Nam Dok Mai Si Thong being	
	stored at 5°C.	
4.101	The relationship between the thermal conductivity (k) and	170
	b* value of Nam Dok Mai Si Thong peel being stored at	
	13°C.	
4.102	The relationship between the thermal conductivity (k) and	171
	b*value of Nam Dok Mai Si Thong peel being stored at	
	25°C.	
1.103	The relationship between the thermal conductivity (k) and	171
	respiratory rate of Nam Dok Mai Si Thong peel being stored	
	at 13°C.	

xxiv

Figures		Page
4.104	The relationship between the thermal conductivity (k) and	172
	respiratory rate of Nam Dok Mai Si Thong peel being stored	
	at 25°C.	
4.105	The relationship between the thermal conductivity (k) and	173
	chilling injury of Nam Dok Mai Si Thong peel being stored	
	at 13°C.	
4.106	The relationship between the thermal conductivity (k) and	173
	electrolyte leakage of Nam Dok Mai Si Thong peel being	
	stored at 13°C.	
4.107	The relationship between the thermal conductivity (k) and	174
	electrolyte leakage of Nam Dok Mai Si Thong peel being	
	stored at 25°C.	
4.108	The profile of thermal conductivity of Nam Dok Mai Si	175
	Thong of mango peel stored in the incubator at 5, 13 and	
	25°C.	
4.109	The relationship between the thermal conductivity (k) and	176
	b* value of Nam Dok Mai Si Thong mango flesh being	
	stored at 5°C.	
4.110	The relationship between the thermal conductivity (k) and	176
	respiratory rate of Nam Dok Mai Si Thong mango flesh	
	being stored at 5°C.	
4.111	The relationship between the thermal conductivity (k) and	177
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 5°C.	
4.112	The relationship between the thermal conductivity and total	177
	soluble solid content of Nam Dok Mai Si Thong mango	
	flesh being stored at 5°C.	

Figures		Page
4.113	The relationship between the thermal conductivity and	178
	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
	being stored at 5°C.	
4.114	The relationship between the thermal conductivity and b*	179
	value of Nam Dok Mai Si Thong mango flesh being stored	
	at 13°C.	
4.115	The relationship between the thermal conductivity and b*	179
	value of Nam Dok Mai Si Thong mango flesh being stored	
	at 25°C.	
4.116	The relationship between the thermal conductivity and	180
	respiratory rate of Nam Dok Mai Si Thong mango flesh	
	being stored at 13°C.	
4.117	The relationship between the thermal conductivity and	180
	respiratory rate of Nam Dok Mai Si Thong mango flesh	
	being stored at 25°C.	
4.118	The relationship between the thermal conductivity and	181
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 13°C.	
4.119	The relationship between the thermal conductivity and	181
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 25°C.	
4.120	The relationship between the thermal conductivity and total	182
	soluble solid content of Nam Dok Mai Si Thong mango	
	fleshbeing stored at 13°C.	
1.121	The relationship between the thermal conductivity and total	182
	soluble solid content of Nam Dok Mai Si Thong mango	
	flesh being stored at 25°C.	

xxvi

Figures		Page
4.122	The relationship between the thermal conductivity and	183
	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
	being stored at 13°C.	
4.123	The relationship between the thermal conductivity and	183
	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
	being stored at 25°C.	
4.124	The density profile of Nam Dok Mai Si Thong peel stored in	184
	the incubator at 5, 13 and 25°C.	
4.125	The density profile of Nam Dok Mai Si Thong mango	185
	flesh stored in the incubator at 5, 13 and 25°C.	
4.126	The profile of thermal diffusivity of Nam Dok Mai Si Thong	186
	pericarp stored in the temperature controlled incubator at 5,	
	13 and 25°C.	
4.127	The relationship between the thermal diffusivity and chilling	187
	injury score of Nam Dok Mai Si Thong of mango peel being	
	stored at 5°C.	
4.128	The relationship between the thermal diffusivity and	187
	electrolyte leakage of Nam Dok Mai Si Thong of mango	
	peel being stored at 5°C.	
4.129	The relationship between the thermal diffusivity and chilling	189
	injury score of Nam Dok Mai Si Thong of mango peel being	
	stored at 13°C.	
4.130	The relationship between the thermal diffusivity and chilling	189
	injury score of Nam Dok Mai Si Thong of mango peel being	
	stored at 25°C.	
4.131	The relationship between the thermal diffusivity and b*	190
	value of Nam Dok Mai Si Thong of mango peel being stored	
	at 13°C.	

xxvii

Figures		Page
4.132	The relationship between the thermal diffusivity and b*	190
	value of Nam Dok Mai Si Thong of mango peel being stored	
	at 25°C.	
4.133	The relationship between the thermal diffusivity and	191
	respiratory rate of Nam Dok Mai Si Thong mango fruit	
	being stored at 13°C.	
4.134	The relationship between the thermal diffusivity and	191
	respiratory rate of Nam Dok Mai Si Thong mango fruit	
	being stored at 25°C.	
4.135	The relationship between the thermal diffusivity and	192
	electrolyte leakage of Nam Dok Mai Si Thong of mango	
	peel being stored at 13°C.	
4.136	The relationship between the thermal diffusivity and	192
	electrolyte leakage of Nam Dok Mai Si Thong of mango	
	peel being stored at 25°C.	
4.137	The profile of thermal diffusivity of Nam Dok Mai Si Thong	193
	mango flesh stored in the temperature controlled incubator at	
	5, 13 and 25°C.	
4.138	The relationship between the thermal diffusivity and	194
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 5°C.	
4.139	The relationship between the thermal diffusivity and	195
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 13°C.	
4.140	The relationship between the thermal diffusivity and	195
	firmness of Nam Dok Mai Si Thong mango flesh being	
	stored at 25°C.	

xxviii

Figures		Page
4.141	The relationship between the thermal diffusivity and b*	196
	value of Nam Dok Mai Si Thong mango flesh being stored	
	at 5°C.	
4.142	The relationship between the thermal diffusivity and b*	196
	value of Nam Dok Mai Si Thong mango flesh being stored	
	at 13°C.	
4.143	The relationship between the thermal diffusivity and b*	197
	value of Nam Dok Mai Si Thong mango flesh being stored	
	at 25°C.	
4.144	The relationship between the thermal diffusivity and total	197
	soluble solid content of Nam Dok Mai Si Thong mango	
	flesh being stored at 5°C.	
4.145	The relationship between the thermal diffusivity and total	198
	soluble solid content of Nam Dok Mai Si Thong mango	
	flesh being stored at 13°C.	
4.146	The relationship between the thermal diffusivity and total	198
	soluble solid content of Nam Dok Mai Si Thong mango	
	flesh being stored at 25°C.	
4.147	The relationship between the thermal diffusivity and	199
	respiratory rate of Nam Dok Mai Si Thong mango fruit	
	being stored at 5°C.	
4.148	The relationship between the thermal diffusivity and	199
	respiratory rate of Nam Dok Mai Si Thong mango fruit	
	being stored at 13°C.	
1.149	The relationship between the thermal diffusivity and	200
	respiratory rate of Nam Dok Mai Si Thong mango fruit	
	being stored at 25°C.	

xxix

Figures		Page
4.150	The relationship between the thermal diffusivity and	201
	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
	being stored at 5°C.	
4.151	The relationship between the thermal diffusivity and	201
	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
	being stored at 13°C.	
4.152	The relationship between the thermal diffusivity and	202
	electrolyte leakage of Nam Dok Mai Si Thong mango flesh	
	being stored at 25°C.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved