Chapter 1

Introduction

In this chapter, we shall introduce the statement of the problem, the idea and the objectives of our research.

The operator \oplus^k has been studied first by A.Kananthai, S.Suantai and V.Longani [6] and is defined by

$$\bigoplus^{k} = \left[\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} \right)^{2} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{2} \right]^{k} \times \left[\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} + i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right]^{k} \\
\times \left[\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} - i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right]^{k} = \left[\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} \right)^{4} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{4} \right]^{k} (1.1)$$

where p+q=n is the dimension of \mathbb{R}^n , $i=\sqrt{-1}$ and k is a nonnegative integer. The diamond operator is denoted by

$$\diamond = \left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2}\right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right)^2. \tag{1.2}$$

The operators L_1 and L_2 are defined by

$$L_{1} = \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} + i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}$$
 (1.3)

and

$$L_2 = \sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} - i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}.$$
 (1.4)

Thus the equation (1.1) can be written as

$$\oplus^k = \Diamond^k L_1^k L_2^k.$$

The operator \Diamond can also be expressed in the form $\Diamond = \Box \triangle = \triangle \Box$, where \Box^k is the ultra-hyperbolic operator iterated k times defined by

$$\Box^{k} = \left[\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}} \right]^{k}$$
(1.5)

where p+q=n and \triangle^k is the Laplacian operator iterated k times defined by

$$\Delta^k = \left[\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \ldots + \frac{\partial^2}{\partial x_n^2} \right]^k. \tag{1.6}$$

In 1994 Aguirre [9] studied the elementary solution of the ultra-hyperbolic and Laplacian operator, which iterates k-times. We obtain the elementary solution $R_{2k}^H(u)$ and $(-1)^k R_{2k}^e(v)$ defined by (2.25) and (2.26) respectively.

In 2002, A. Kananthai, S. Suantai and V. Longani [6] have studied the elementary solution or Green function of the operator \bigoplus^k which is related to the solution of wave equation and Laplace equation. They found that the relationships of such solutions depending on the conditions of p, q and k.

In 2004, G. Sritanratana and A. Kananthai [7] have studied the solution of nonlinear equation

$$\Diamond_{c_1}^k \Diamond_{c_2}^k u(x) = f\left(x, \triangle_{c_1}^{k-1} \square_{c_2}^k \Diamond_{c_2}^k u(x)\right)$$

where $\lozenge_{c_1}^k \lozenge_{c_2}^k$ is the product of the Diamond operators defined by

$$\Diamond_{c_1}^k = \left[\frac{1}{c_1^4} \left(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} \right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^2 \right]^k$$

and

$$\diamondsuit_{c_2}^k = \left[\frac{1}{c_2^4} \bigg(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2}\bigg)^2 - \bigg(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\bigg)^2\right]^k$$

where c_1 and c_2 are positive constants. They found that the existence of the solution u(x) of such equation depending on the conditions of f and $\triangle_{c_1}^{k-1} \square_{c_2}^k \lozenge_{c_2}^k u(x)$. Moreover such solution u(x) related to the elastic wave equation depending on the conditions of p, q and k.

Lastly, in 2006 J. Tariboon and A. Kananthai [10] have show that $Y_{2k,2k,2k,2k}(u,v,w,z,m)$ defined by (2.29) is the Green function of the operator $(\oplus + m^2)^k$ and was defined by

$$(\oplus + m^2)^k = \left[\left(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} \right)^4 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^4 + m^2 \right]^k$$
 (1.7)

where m is a positive real number and p + q = n is the dimension of the n-dimensional Euclidean space \mathbb{R}^n .

In this research, we find the solution of the equation

$$\bigoplus^{k} (\bigoplus + m^{2})^{k} u(x) = f(x, \triangle^{k-1} \square^{k} L_{1}^{k} L_{2}^{k} (\bigoplus + m^{2})^{k} u(x))$$
(1.8)

with f is continuous and bounded for all $x=(x_1,x_2,\ldots,x_n)\in\Omega\cup\partial\Omega$ where Ω is an open subset of \mathbb{R}^n and $\partial\Omega$ denotes the boundary of Ω , that is $|f|\leq N$, N is constant. We can find the solution u(x) of (1.8) and is unique under the boundary condition $\Delta^{k-1}\Box^k L_1^k L_2^k (\oplus + m^2)^k u(x) = 0$ for $x\in\partial\Omega$. By $[1,\ p.\ 369]$ there exists the unique solution W(x) of the equation $\Delta W(x) = f(x,W(x))$ for all $x\in\Omega$ with the boundary condition W(x)=0 for all $x\in\partial\Omega$ where $W(x)=\Delta^{k-1}\Box^k L_1^k L_2^k (\oplus + m^2)^k u(x)$.

