Chapter 2

PRELIMINARIES

In this chapter, we shall introduce some notations, definitions and theorems
that will be used in our research. The first section is about distributions. Next
section contains the tempered distributions, and the final section contains the basic

concepts.

2.1 Distributions

2.1.1 The space D of Testing Functions

Before we describe distributions, we define the testing functions on which
distributions operate. Throughout this and the next section, the independent real
variable ¢ will be assumed to be one-dimentional. When a function has continuous
derivatives of all orders on some set of points, we shall say that the function is
infinitely smooth on that set. If this is true for all points, we shall merely say that
the function is infinitely smooth. Moreover, whenever we refer to a complez number
or a complez-valued function, it is understood that the number may be real or the
function may be real-valued.

The space of testing functions, which is denoted by D, consists of all complex-
valued function ¢(¢) that are infinitely smooth with compact support, where the
support of continuous function ¢(¢) is now defined as and open set U = {t ¢

R : ¢(t) # 0}. The support of ¢ denoted by supp ¢(t) and definc supp ¢ = U (the



closure of U ).

An example of a testing function in D is

0 t>1
¢t = e
exp(z—7) forlt| <1

It can be shown that every derivative of this function exists and is zero at
t = +1.
More generally, then, this function has continuous derivatives of all orders

for every ¢,and they are all equal to zero for |¢| > 1 and supp ((t) = [-1, 1].

2.1.2 Distributions

A functional is a rule that assigns a number to every member of a certain
set of functions. For our purposes, the set of functions will be taken to be the
space D and we shall consider functionals that assign a complex number to every
member of D. Denoting a functional by the symbol f, we designate the number
that f assign to a particular testing function ¢ by {f, ¢). Distributions, which
we shall describe in this section, are functional on the space D that possess, in
addition, two essential properties. The first of these is linearity. A functional f
on D is said to be linearity if, for any two testing functions ¢, and ¢ in D and

any complex number «, the following conditions are satisfied:

(fs 1+ ) = (f, 1) + (f, ¢2)

(f,ad) = alf, ). (2.1)

The second property is continuity. A functional f on D is said to be
continuous if, for any sequence of testing functions {¢,(t)}°2,that converges in D
to @(t), the sequence of numbers {(f, ¢,)}52.; converges to the number (f, $} in
the ordinary sense. If f is known to be linear, the definition of continuity may be

some what simplified. In this case, f will be continuous if the numerical sequence
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{{f, &) }o2; converges to zero whenever the sequence {¢,}2, converges in D to
ZEero.

Thus, we may state the following definition of a distribution defined over
the one-dimensional real Euclidean R:

A continuous linear function on the space D is a distribution.

The space of all such distributions is denoted by D’ and 7’ is called the of
dual space of D.

We can generate distributions by the regular function as follows. Let f(¢) be
a locally integrable function (i.e., a function that is integrable in the Lebesgue sense
over every finite interval). Corresponding to such f(t), we can define a distribution

f through the convergent integral

(f. ¢y = (£(2), 8(2) f F(t)e(t)de (2.2)

where ¢ is any testing function with compact support.
An example of a distribution that is not a regular distribution is the so

called Dirac delta function §, which is defined by the equation
(6,¢) = ¢(0). (2.3)

Clearly, (2.3) is a continuous linear functional on D. However, this distribution
cannot be obtained from a locally integrable function through the use of (2.2).

Indeed, if there were such a function 6(¢), then we would have

[ s = o(0) (2.4)

for all ¢(¢) in D. Moreover, we conject a new singular distribution, the first

derivative &'(t) of the delta functional, the following definition suggests itself:

(0(2), ¢(2)) = —4'(0).

Next, an example of a distribution is so called Heaviside unit step function

H(t):

0 fort<0
Hit)=4 L fort=0
1 fort>0.
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Then for any continuous function ¢ with compact support we have the result

/_  H)o(0)dt fo ~ o)t (2.5)

We use the symbol H to represent the mapping
o0
H:¢p— ] P(t)dt
0

which is well defined by (2.5) for all continuous testing functions of compact sup-

port. This means that H represents something other than an ordinary function.

2.1.3 Multiplication of Distribution by Infinitely Smooth Function

An operation that would be useful in analysis involving distributions would
be the multiplication of two arbitrary distributions. Unfortunately, it is not pos-
sible to define such an operation in general. It turns out that the product does
not always exist within the system of distributions. As an example, for the one-
dimensional variable ¢, let f(¢t) =1/ \/|t_] . Then, f(t) represents a regular distribu-
tion as well as a locally integrable function. Now,[f(#)]* is a function of ¢ defined
for all nonzero ¢. But it is not integrable over any interval that includes the origin.

This means that it cannot define a distribution through the expression
1 > $(t)
(m, ¢) = ~ Wdt

since the integral does not converge for every ¢ in D In short, the product of 1/1/J¢]
with itself does not exist as a distribution.

It is, however, possible to define the product of distributions in special
cases. For instance, if f and g are locally integrable functions over R™ and if their
product fg is also locally integrable, then the product of the corresponding regular

distributions exists as a regular distribution defined by

(fa.0) = | FOo(e)oe)de seD.

A more important case arises when one of the distributions v is a regular
distribution corresponding to an infinitely smooth function. The product of v with

any distribution f in D’ exists and is defined by

(Wf ¢) = (f,99) ¢ € D. (2.6)
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For every ¢ in D the function ¥¢ is infinitely smooth everywhere and zero whenever
¢ is zero. Hence, ¢ is also in D.Thus (2.6) defines that functional on D which
assigns to each ¢ in D the number {f, ¥¢).

2.1.4 The Differentiation of Distributions

Distribution, on the other hand, always possess derivatives, and these deriva-
tive are again distributions. In order to explain this statement, we must, of course,
define what we mean by the derivative of a distribution. Let us restrict ourselves
for the moment to the case when the independent variable ¢ has only one dimension.
An appropriate definition can be constructed by considering a regular distribution
f(t) generated by a function which is differentiable everywhere and whose deriva-
tive is continuous. The derivative again generates a regular distribution f'(¢) and,

for each ¢ in D, an integration by part yields

o = [ roea

- /w FO )t = (f, ~¢). (2.7)

Note that ¢' is in D whenever ¢ is in D. Thus, a knowledge of f (and, therefore,
of (f, —¢') )determines (f’, #). In other words, (2.7) defines f’ as a functional on
D. This result is generalized in the following definition.

The first derivative f'(t) of any distribution f(t), where t is one-dimensional,

is the functional on D given by

(F0),60) = (f1),~#®)  $ED. (28)

At times, the conventional notation df /dt will also be used for the derivative
of a distribution defined over R.
A simple illustration is provided by the first derivative of the delta functional

¢’, which is defined by the equation

(6’: ¢) = (6: ”d)!) = —QBI(O)
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and in general the p th derivative, §®), of the delta distribution is given by the
mapping

¢ — (0%, ¢) = (=1)"¢"(0).
Example 1 The unit step function H(#) function that equals zero for t < 0, 3 for
t =0, and 1 for ¢t > 0. Its first distributional derivative is §(t). For, with ¢ in D

(H'(D), (1)) = (H(1), - ()

= f & (t)dt

= s $(E)-

On the other hand, the ordinary derivative of H(%) is the function that is zero
everywhere except at the origin, where it does not exist.

When the independent variable ¢ has n dimensions, it is the partial deriva-
tives that are defined in a fashion analogous to (2.8).

The first-order partial derivatives Of/0t; (1 =1,2,3, ...,n) of any distri-
bution f defined over R™ are the functionals on D given by

of . _ a9 L .
<a_ifi, )_<f$ Bt 2_112331'-'!n:¢€D

Theorem 2.1.1 A first-order partial derivative of a distribution is again a distri-

bution.
Proof. See {10, p 48]. | O

Theorem 2.1.2 The order of differentiation of the higher-order partial derivatives

of a distribution defined over R™ can be changed at random. For in stance,

O*f f

oot OOt

Proof. See [10, p 48]. 3
Since the order of differentiation is of no consequence, a given partial dif-
ferential operator . when action on a distribution, is sufficiently specified by

. n P k;
= ,Izll (3tz')

writing
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where the order in which the differentiations 9/8t; are taken need not be stated.

Letting & £ > oo ki, we have
(D'f,6) = (£, (=1)F D).
The delta functional, now defined over R™, provides a simple illustration:
(D',6) = (6.(~1)*DFg)
= (~1*D*$(0)]o.

The rule for the differentiation of the product of a distribution f and a
function 1, which is infinitely smooth, is the same as that for the product of two

differentiable functions:
9, o Of 0%
8_ti("bf) —watz_ +fa_t,-' (2.9)

This is established as follows. For any ¢ in D.

% d¢
<a—t;("r/ff),¢> = <¢f’_6ti>
- (7= 4 (1,630
_/of o
- (Gve) (495

_/.of o

Two important properties of the differentiation of distributions are given by

Theorem 2.1.3 Differentiation is a continuous linear operation in the space D' in
the following sense:

Linearity. For any two distributions f and g and for any number o,
D*f+g) =D f+ Dy
DFaf) = aDFf.
Continuity. For any sequence of distributions {f,}2, that converges in T’ to a

distribution f, the corresponding sequence of partial derivatives {DFf,}2, also

converges in D’ to D f.

Proof. See [10, p 50]. O
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2.1.5 The Convolution of Distributions

Let f(t) and g(t) be two continuous functions with bounded support. Their
convolution produces a third function ~(¢), which is denoted by f * g and defined
by

hE) 2 @20 2 [ f(0ule -y

Thus the rule that defines the convolution f * g of two distributions f(¢) and g(t)

is suggested by this expression to be

(frg,0) = (f(t) x g(7), é(t + 7))
£ {f(t),(g(7) Bt + T))). (2.10)

Even though the function ¢( + 7) is infinitely smooth, it is not a testing
function, since its support is not bounded in the (t,7) plane. A meaning can still
be assigned to the right-hand side of (2.10) if the supports of f and g are suitably
restricted. In particular, if the support of f(t) x g(v) intersects the support of
@t +7) in a bounded set, say 2, we can replace the right-hand side of (2.10) by

(f(t) x g(r), Mt, T)(t + 7)) (2.11)

where A(t,7) is some testing function in D, , (2.11) and, therefore,(2.10) serve to

define f * g in this case as a functional over all ¢ in D.

Theorem 2.1.4 Let f and g be two distributions over R and let convolution f x g
be defined by (2.10), where the right-hand side of (2.10) is understood to be (2.11).
Then, f * g will exist as a distribution over R under any one of the following con-

ditions:

a. Either f or g have a bounded support.

b. Both f and g have supports bounded on the lefi(i.c. there exists some constant
Ty such that f(t) =g(t) =0 fort < Ty).

¢. Both f and g have supports bounded on the right(i.e., there erists some
constant Ty such that f(t) = g(t) =0 fort > Ty).
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Proof. See [10,p 124]. 0
Since the direct product is commutative, it follows from (2.10) that the

same property holds for convolution. Indeed,

(Frg.d) = (f(t) < g(r),é(t+7))
= (g(r) x f(t),¢(t + 7))
= (g*f o) (2.12)

Corollary 2.1.5 The convolution of two distributions is commutative:
fxg=9gx*f
That is, for every ¢ in D,

(F(®), {g(r) et + 7)) = {g(7), (f(}), p(¢ + T))).

We mention in passing that the linearity of the direct product implies the
linearity of the convolution process. That is, if @ and § are arbitrary constants
and if f,g, and h are distribution such that f can be convolved with both g and £
separately, then

frx(ag+pPh)=af xg+Gf+h
Example 2 The convolution of the delta functional with any distribution yields
that distribution again; the convolution of the m th derivative of the delta func-
tional with any distribution yields the n th derivative of that distribution. In

symbols,
oxf = f
S wf = fm, (2.13)
Note that these convolutions are valid for every distribution f in D’ because 6™

has a bounded support. The more general expression (2.13) may be justified as

follows. For every ¢ in D,

(0™« f,0) = (F*6™,9)
= {f(), ™ (7). 6t +7)))
= {f(1), (-1)"6"™(t))
= (f"™)(1), ¢(1))-
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An important consequence of (2.13) is that every linear differential operator
with constant coefficients can be represented as a convolution. That is, with the

a, being constants, we have
anf(n) + an_lf(n—l) +...+aof = (ané‘(n) + an_15(n—1) F ..+ agh) * f.

Note that this statement could not be made if we restricted ourselves to the ordi-
nary convolution of functions.

For the convolution equation
frxu=g (2.14)

where f and g are known distributions in D}, and v is unknown but required to
be in DY, it is natural to solve (2.14) for v by first finding a distribution that is
an inverse of f in the convolution algebra D%. Such an inverse, which we denote

by f*71, is any element of D} such that
fflef=4 (2.15)
Then we may solve (2.14) by convolving both its sides by f*~1 to obtain
u=dxu=fTxfru=flxg (2.16)

Theorem 2.1.6 Let f be a given distribution in Dy. A necessary and sufficient
condition for (2.14) to have at least one solution in DYy, for every g in D, is that f
possess an inverse f*~1 in D, When f does possess an inverse in DY, this inverse

in unique and (2.14) possess a unique solution in Dy, given by (2.16).

Proof. See [10,p 151].

2.2 Tempered Distributions

2.2.1 The Space S Testing Functions of Rapid Descent

Asusual, let ¢ £ ty,1,, ..., t, be the n-dimensional real variable and let |t| denote

\/t%+t§ +...+ 82
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S is the space of all complex-valued functions ¢(¢) that are infinitely smooth and
are such that, as |t| — oo, they and all their partial derivatives decrease to zero
faster than every power of 1/|¢|.

This required behavior as |[{| — oo can also be stated in the following
alternative way. When ¢ is one-dimensional, every function ¢(¢) in & satisfies the

infinite set of inequalities
t"¢® ()] < Cpu, —o0 <t <00 (2.17)

where m and & run through all nonnegative integers. Here the C,,; are constants
(with respect to t) which depend upon m and k. When ¢ is n-dimensional, the

requirement is that, for every set of nonnegative integers m, ki, ko, .. ., kn,
Gk1+ka+.thn

e otk | tkn

2™

Cb(tl, t2, L. :tn) S Cm,kl,kz,...,kn (2'18)

over all of R, where the quantity on the right-hand side of (2.18) is a constant
with respect tot but depends upon the choices of the m, k1, ks, . . . , k,. Because of
the continuity of all the partial derivatives of ¢{¢), the order of differentiation in
(2.18) may be changed in any fashion.

For the sake of simplicity, we shall use symbolism
kékhk%' --;kn
ak1+k2+...+kn

Ot10ts ... Oty
and we shall replace (2.18)} by the shorthand notation

DA

"1 DFo(t)] < Crm- (2.19)

The elements of S are called testing functions of rapid descent. S is a linear
space. If ¢ is in &, every one of its partial derivatives is again in §. Furthermore,
all the testing functions in D are also in &. However, there are testing functions

in & that are not in D as, for example,
exp(—t2 — 2 — ... —¢2).

Thus, D is a proper subspace of S.
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2.2.2 The Space &’ of Distributions of Slow Growth

A distribution f is said to be of slow growth if is a continuous linear func-
tional on the space S of testing functions of rapid descent. (Such distributions are
also called temperate or tempered distributions.) That is, a distribution f of slow
growth is a rule that assigns a number {f, ¢} to each ¢ in S in such away that the
following conditions are fulfilled.

Linearity: If ¢, and ¢» are in & and if « is a number, then

(fyd1+d2) = {f, 1) +{f, ¢2)
and
(frat) = a(f, ¢1).

Continuity: If {¢,}22, is any sequence that converges in S to zero, then
lim (f, ¢,) = 0.
(As usual, in this continuity requirement we may replace the sequences {$,}32, by
nondenumerable directed sets that converge in S to zero.)

The space of all distributions of slow growth is denoted by &'. &' is also
called the dual (or conjugate) space of S.

Assume still that f denotes a distribution of slow growth. Since D is a
subspace of S, {f, ¢} is defined whenever ¢ is in D. f is clearly linear as a functional
on D. Also, convergence in D implies converges in & and {(f, ¢.)}2, therefore
converges to zero whenever {¢,}%2, converges in D to zero. Thus, f is also a
distribution in D'. Furthermore, a knowledge of (f, ¢), as ¢ traverses only the
space D, uniquely determines {f, ¢) for all ¢ in S. This is because D is dense in S
and each (f,¢) (¢ € S} is the limit of ever sequence {{f, ¢,)}?2, where the ¢ are
all in D and converge in S to ¢. In summary, &’ is subspace of D'; moreover, if f;
and fo are both inS’ and if {3, @) = (f2, ¢) for every ¢ in D, then (f1, ¢} = (f2, ¢)
for every ¢ in S.

&’ is a proper subspace of D'; that is, there are distributions in D’ that are
not in &'. For in stance, the series

o) = > 5(t — 1) 2:20)

u=1
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defines a distribution in 7. Indeed, given any ¢ in D,
(9:0) = e (). (2.21)
=1
The last series possesses only a finite number of nonzero terms and therefore
converges. On the other hand, there are testing functions in &, such as ¢(t) =
exp(—t?), for which the series (2.21) does not converge. Hence, (2.20) is not a
distribution of slow growth.
In order for a locally integrable function f(t) to assign a finite number {f, ¢)

to every testing function ¢ in & through the expression

g2 [ s (2.22)

the behavior of f(t) as || — oo must be restricted that the integral converges for

all ¢ in 8. This is certainly assured if f(¢) satisfies the condition
Jim [t~ f(£) =0 (2.23)

for some integer N. Functions that satisfy (2.23) are said to be functions of slow
growth. Every locally integrable function of slow growth defines a regular distribu-
tion of slow growth through (2.22).

Since each testing function in & certainly satisfies (2.23), it generates a
regular distribution of slow growth.

Another fact, which can be readily proved, is that every distribution in
D' with a bounded support is of slow growth. Thus, the delta functional and its

derivatives are distributions of slow growth.

2.2.3 A Boundedness Property for Distributions of Slow Growth

For any given finite closed interval I there exist a nonnegative integer r and

a constant C such that for all testing functions ¢ in D,

(£, )] < Csup 167 ()]

Here, C and r depend only on f and I and not on ¢. This result in no longer true

for all f in D' if we allow I to be an infinite interval. However, all distributions
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of slow growth do possess a boundedness property of this sort that holds over the
infinite interval, moreover, in this case ¢ may be a testing function in & and not

merely in D. Namely, for a given f in & and for all ¢ in S

[(£,9)] < Csup|(L+ 60 0) (2:24)
where the constant C and the nonnegative integer r depend only on f.

Theorem 2.2.1 For each distribution f of slow growth there exist a constant C and
a nonnegative integer T such that the in equality (2.24) is fulfilled for every ¢ in
S. C and r depend only on f and not on ¢.

Proof. See [10]. ‘ O

2.3 Basic Concepts

Definition 2.3.1 Let z = (21, %2, ..., Z,) € R™ and write

— 2 2 2_ .2 .2 2 " _
U=+ T+ T I, — Ty — X0 — o T Tpggs pr+g=mn.

Denote by T’y = {o € R® : z; > 0 and u > 0} the interior of forward cone and T’y
denote its closure.

For any complex number «, we define the function

&, forz el
RE(u) = *® * (2.25)
0, forz &y

where the constant K, («) is given by the formula

7T D(Ag=2)I(152)T (o)
D(Z58)T(52)

Kala) =

The function RY is called the ultra-hyperbolic Kernel of Marcel Riesz and was
introduced by Y. Nozaki | 8, p72 ].

It is well known that R¥ is an ordinary function if Re{e) > n and is a
distribution of « if Re(cr) < n. Let supp R (u) denote the support of R (u) and
suppose supp R (u) C Ty, that is supp RZ (u) is compact.
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Definition 2.3.2 Let z = (x4, o, ..., ) € R™ and write
v =m%+a:§+ e b T2,

For any complex number 3, define
_ 3.

B =2 o S D)

(2.26)

The function R§(v) is called the elliptic Kernel of Marcel Riesz and is ordinary
function if Re() > n and is a distribution of g if Re(8) < n.

Definition 2.3.3 Let z = (z,%,...,z,) be a point of the space R" of the n-

dimensional complex space and write
w=2]+25+ .. + 3, — 1 (Tp + Tppa + o+ Tpy)

where p + ¢ = n is the dimension of R™ and ¢ = /—1.

For any complex number -y, define the function

|

n—-’y)w

S, (w) = 27" F (- TRL (2.27)

ok
p—

The function S, (w) is an ordinary function if Re(y) > n and is a distribution of v
if Re{y) < n.

Definition 2.3.4 For any complex number v; define the function

T,(2) = 2" n 7 T(Z

(2.28)

where

2 2 2 - 2 2
z=ai4ah+o o Hi(el F oD,

z = (%1,%Z2, ..., ¥n) € R™, p+ ¢ = n is the dimension of R™ and i = +/—1.

Definition 2.3.5 Let z = (z1, Z2, ..., :vn) be a point of the space R™ and the function
Ya 8.0 (%, v, w, z,m) is defined by

Y(n/2+7r
Y ﬂgﬁ'a (u U w z m Z( 5)'"F Z;z) )( 2) AC\!+2T;’3+2T ")‘+27 U+2T(u v w z)

(2.29)
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where Ko ior grorysorpsar (4, U, w, 2) is defined by

Ka+2r,ﬂ+2f,'¥+2r,u+2r (’U., v, w, z) = (_1)6/2+T R¥+2r (u) * R,;+2r (U) * S’)’+2r (w) * Tv+2'f‘ (2:)
(2.30)

77 is any complex number and m is a nonnegative real number.

Definition 2.3.6 Let x = (21, 22,...,%,) be a point of R* and the function RE(x)

be defined by
ey _ 2%
Ra(x) - Wn(a)

&"/229T( %)
M(®3%)

where W, (a) = , & is a complex parameter and |z} = (z3+z3+. . .+x2)1/2,

Lemma 2.3.7 The functions R (u) and (—1)*RE.(v) are the elementary solutions
of the operators (0 and A*, respectively, where the operators [0* and A* are defined
by (1.5) and (1.6) respectively , RE.(u) and RE.(v) are defined by (2.25) and (2.26),
respectively, with o = 3 = 2k. That 1s,

O (RE () = 6 (2.31)

and
AF((-1)*Rgu(v)) =6 (2.32)

where 0 is a Dirac-delta distribution.

Proof. See [9, p.147; 4, p.31] O

Lemma 2.3.8 The convolution R (u) * (—1)*R5,(v) is an elementary solution of

the operator OF iterated k-times and is defined by equation (1.2).
Proof. See [4, p. 33] O

Lemma 2.3.9 1. The functions (—1)*(—1)92So(w) and (—=1)*(1)¥*Ty(2) are the
elementary solutions of the operators L¥ and L%, respectively, where Sox(w) and
Tox(2z) are defined by (2.27) and (2.28), respectively, with v = 1 = 2k. The opera-
tors LY and L% are defined by (1.3) and (1.4), respectively. That is,

LE((—1)*(=0) " San(w)) = 6 (2.33)
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and

LE((—1)F(8)*Tor(2)) = & (2.34)

where & is a Dirac-delta distribution.
2. The functions (—1)F(—i)¥25_s(w) and (—=1)*()?T_gi(2) are the inverses in
the convolution algebras of (—1)F(—4)¥2Sa(w) and (—1)%(3)9/2Ty(2) respectively.

Proof. (i) ‘[cf. [6]] We need to show that
LY (= 1) (=) S (w)) =

and
LE((~ D)2 Toa(2)) = 5

At first we have to show that

L3S, (w) = (=1)*S;_ax(w), (2.35)

LET,(2) = (= 1)*T, _an(2), (2.36)
and also

S_gn(w) = (—1)’“(2’)‘1/2L’f6, (2.37)

T_gn(z) = —1)*(—1)¥/2LEs. (2.38)

Now, for k =1,

ptq
L Sy(w) = (Z 5 +1 Z 5z 2) ()

J=p+1
where S, (w) is defined by (2.27) By computing directly, we obtain
—y—ns2 L CFT) o
L1Sy(w) = 2IEprasmy — m)(y = 2002
(=42
r(%3?)

(_ 1)2—(':"—2) wr—2-n)/2

by the properties of Gamma function. Thus LS, (w) = —S,_2(w). By repeating

k-times in operating L; to S,_ox(w), we obtain

LyS,(w) = (=1)"Sy_ax(w).
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Similarly,
LgTy(Z) = (— 1)k'T,,_2k(Z).

Thus we obtain (2.35) and (2.36) as required. Now consider
w=a]+ 25+ . + 25— i (2o + Toga o Toy,) p+g=n

by changing the variable

T1=Y1,%2 = Y2, Tp = Yp, Tp1 = i"}’—j;,zpﬂ = et = ij;_{—iz"
Thus we have
w:yf—!—y%-[—...+y§+'y§+1+...+y§+q.
Denote w = 7° = y? +y2 +... +y2 and consider the generalized function w* = 52*

where X is any complex number. Now (w?, ¢) = [¢. w*¢(z)dz, where ¢ € D the

space of infinitely differentiable functions with compact supports. Thus

A 2 1 &2, ybn
w”, = r dindys . . . dy,
( QO) /n {Pa(yh'yZa---,yn) 1A% Y

1 S
g e
1 2M
= (__Z)Q/z (T ,W)

By Gelfand and Shilov [3,p.271], the functional r?* have simple poles at
A = (—n/2) — k, k is nonnegative and for & = 0 we can find the residue of r?* at
A= —n/2 and by {6, p.73], we obtain

2,“.—71/2
2= ().
N TR

Thus

n/2 :
A \2a2) T
\res w (2) l_‘(n/z)é(a:). (2.39)

we next find the residues of w* at A = (—n/2) — k. Now, by computing directly

we have

Liw’ =20 + D) 2A 4+ n)u?,

where w is defined by Definition 2.3.3 and L; is defined by (1.3). By k-fold iteration,

we obtain

(2]

LEwM* = 5O+ 1A +2)... (A + )\ + 32‘-)(/\+§+1)...(/\+2

+k—Dw
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or

w = - LEytk
FA+DA+2) ... A+RA+DA+Z2+D) .. (A+2+E-1) 1 '

Thus

1
A k. A
sy T FEE TR D@ 1 k-2).. 8 artsY

By (2.39) and the properties of Gamma functions, we obtain

A 2(i)Q/27rn/2 k

,\=(.7.f}5:2)_kw -4’“1_'(12‘-—}—]1:) 19(z). (2.40)

Now we consider S.ox(w) we have

S_op(w) = lim S{w)

r——2k
lim.,_, _op wlT—™)/2 n— "
_  -nf2 ¥——2k li o-r !
S e ey et AR )
— lmy——ax(y + 2k) w2 - (-n. + 2k)
T —on (7 1 2E)T(D) 3
Hr—n}/2
S n+ 2k

= fgn/20=2 F( ) 7
X
7:(352’}‘( 3) 2

Since

2(—1)*
Kt

res  w = res w2 and res F(z) =
A=(—n/2)—k y=—2k - r=—2k 2

by (2.40) and the properties of Gamma function we obtain
S_ae(w) = (=1)*(2)*Li5(z).

Similarly
T_ok(2) = (—1)¥(—0)7*L56(z).
Thus we have
So(w) = ()Y2Lid(x),

Tylw) = (—8)72L53(). (2.41)

Now, from (2.35) L¥Sa{w) = (—1)*Sy(w) for v = 2k. Thus, by (2.41) we obtain
LE(—1)*(—1)9/2 g (w) = &(). It follows that (—1)*(—%)¥/2Sy(w) is an elementary
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solution of the operator L¥. Similarly (—1)%(i)9/2Ty.(z) is also an elementary so-

lution of Lf.

(#) We need to show that
[(=1)*(=8)"28an(w)] * [(=1)H(=)"2S_sn(w)] = §

and

[(—1)* @)Y Tor(2)] # [(—=1)* () *T_ax(2)] = 6.
Now, from (2.37) we have (—1)%¥(~4)¥25_s(w) = L% convolving both side by
(—=1)*(—4)9/25, (w) we obtain

[(—1)*(—8)2*San(w)] * (=1 (=) S_ae(w)] = [(—1)*(~4)"/?Say(w)] » L6
= L{[(=1)"(—2)/* Sy (w)]  §
= 0x0
= 0

by Lemma, 2.3.9(1).
Similarly [(—1)*(2)%*Tox(2)] * [(—1)*()7/*T_2x(2)] = 6. O

Lemma 2.3.10 Given P is a hyper-surface then
P§®)(P) + ks*D(P) =0
where 6% is the Dirac-delta distribution with k derivatives.
Proof. See [2, p. 233] W
Lemma 2.3.11 Given the equation
NFu(z) =0 (2.42)

where A* is defined by (1.6) and x = (z1, T3, .- .,%,) € R™ then

(m)
u(z) = (=1)¢-1 (R;(k—l) (:c)) is a solution of (2.42) where m is a nonnegative
integer withm = 2%, n > 4 and n is even and (Rze(k_l)(:v))(m) is a function defined

by Definition 2.3.6 or (2.26) with m derivatives and o = 2(k ~ 1)
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Proof. [cf.[5]] We first show that the generalized function u(z) = 6™ (r?) where

r?=|zf* =2} + 22 +... + 22 is a solution of
Au(z) =0 (2.43)

where A =" —2' is a Laplace operator. Now

- 5(r) = 28 7
8 (m) (m+1)r,.2 2e(m+2)r.2
o =6V (r?) = 26 (r®) + 4z70 (r°).

Thus

§(m) (r

A§™ (72 Z

i=1

= 2n(5(m+1)(1"2) + 4r28mtA(r?)

= 28I () — 4(m 4 2)6 D (72)
by Lemma 2.3.10 with P = r?. We have
AT (r?) = [2n — 4(m + 2)] §lm ) (2

= 0 if2n—4(m+2)=0

orm = %% n > 4 and n is even. Thus 6(™(r?) is a solution of (2.43) with
m =24 n >4 and n is even. Now Afu(z) = A(A*1u(z)) = 0 then from the
above proof A*~tu(z) = 6™ (r?) with m = 25%,n > 4 and n is even.

Convolving both sides of the above equation by the function (—1)(%=1) ( (k1) (:L))

we obtain

(—1)(k_1)R26(k—1)($) « A lu(z) = (—1)("“_1)1?5(1:-1) (z) * 67 (r?)
or AFTH(-1)*RE, (@) *u(z) = (“U)%VRE,(z)* 5™(r?)

or6xu(z) = u(z) = (=1)*VRg, _, (2)%6™ (r?) by (2.32). Now from De finition 2.3.6
le:z(k— 1)—n

Ryy_y(z) = Wila)
(Jz?)

W, (a)

G I

n(a’)
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where r = |z| = (z} + 23 + ... 4 £2)Y/2. Hence

I =7

()"

Wn(a) @ |
(@ el
Wn(o:)

N [R;(k—l) (1')] (m)-

R2e(k—1)($) * &) (r?) = % 5™ (r?)

It follows that u(z) = (—1)*! [Rf(k_l)(:c)] ™ is a solution of (2.42) with m =

24 n > 4 and n is even dimension of R™. O

Lemma 2.3.12 Given the equation
Au(z) = f(z, u(z)) (2.44)

where f 1s defined and has continuous first derivatives for all z € QUEQ, Q is an
open subset of R” and 052 is the boundary of Q. Assume that f is bounded, that
is |f(z,u(z)] < N and the boundary condition u(z) = 0 for ¢ € 8Q. Then the

equation (2.44) has a unique solution u(x).
Proof.  See[1,P.369 — 372 O

Theorem 2.3.13 Given the equation
(@ + m?)rG(z) = §(2) (2.45)

where (® 4 m?)* is the operator iterated k-times defined by (1.7), & s the Dirac-
delta distribution, z = (21, Za, ..., %) € R and k is a nonnegative integer. Then

we obtain G(x) = Yor or ok 2 (u, v, w, 2, m),

—)'C(k+r -
Yok 2k 2k 20 (0, v, w, 2, M) = Z ( i T Ek) )(m ) Kakyar k42 2+ 2m 26420 (8, U, W, 2)

r=0
(2.46)

as an elementary solution of (2.45) where m is a nonnegative real number and

Kok orakvor2k+or2k+2r (U, v, w, 2) is defined by (2.30) witha=f=vy=v = n = 2k,

Proof.[cf.[10]] At first,

(3 -3+ G-l
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Equivalently,

(~1y =0 (Z4r) = -3 (3+1) --;!(% +r-1)T(3)
_H (-1 1)"'[—(%’+T—1)]F(g)_
2

rl

Now we put, by definition,

Then, we obtain the function Y, g, (u, v, w, z,m) is defined by (2.29) become

. ' o , g
Ya;ﬂ.’r;v (u1 v,w, z, m) = Z ( 2) (m2)TKa+2r,[3+2r,')f+2r,V+2r ('u: v, w, Z). (247)

r=0 T
Putting n = 2k and a = f = v = v = 2k in (2.47), we have
2. =k
Yor 2k,26,26 (4, v, w, 2,1M0) =Z ( )(m2)?K2k+2’r,2k+27',2k+2r,2k+2r(u:'Uy'wa z)

r

™=
oQ

—k T i e
= ()0 U R ) * Rt
% Sgk+2,.(’LU) * T2k+2.,-(z). (248)

Since, the operator {, L1, Lz,0 and A are defined by (1.2), (1.3), (1.4), (1.5) and
(1.6) respectively, are linearly continuous and 1-1 mapping. Then all of them

possess their own inverses. From Lemma 2.3.7,Lemma 2.3.8 and Lemma 2.3.9, we

obtain
= [—k . .
Yo 2k.2k. 26 (12, v, w0, 2,m0) = Z ( ) 2)’"I:I"'“"'é * AT Ll_k'ré ® Lg‘k_"é
r=0

2)7‘<>—k—rL-—k—r5

[\"43

\___./

( k
(e

=(d + m*)7*4. (2.49)

r

I
Ma

Il
o

By applying the operator (&) + m?)* to both sides of (2.49), we obtain

(@ + mz)kl"gk,gk,gk,%(u, v, w, z, m) = (@ + m2)‘“.(€B + 7n2)"’“6. (250)
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Thus
(® + m®)*Yor 2k 20 2% (w, v, W, 2, M) = 4.
Moreover, by putting = vy = v = —2r in equation (2.30) we obtain
Kotoro00(t, v, w,2) = Rg+2r(u) * RS(U) * So(w) * Ty(z)
= Rf—i—?r(u) *Q %0 %= Rf+2,. (’U.).

Then (2.47) become

o0
Ya,—2r,—2r,—2r(uavaw?za m) = E : (

r=0

P

Dy R, @)

Now, putting & = 1 = 2k to obtain

= (O + m?)7*6. (2.52)
By applying the operator ([0 + m?)* to both sides of (2.52), we obtain
(O 4+ m*)*Yar —or—2r—ar (W, 0,w, 2,m) = (A+ M2 (O +mA) "6 =45 (2.53)

Then Yok o5 -2, —2r(u, v, w,2,m) = WH(u,m) as an elementary solution of the
ultra-hyperbolic Klein-Gordon operator iterated k-times defined by Wi (u, m) =
e %&ﬂ(m%"flﬁ +o-(w). In particular, putting & = v = v = —2r and
B =n = 2k of (2.47), we obtain
= [—k
Y orok,-2r,—2r (W, v, W, 2, M) =Z ( )(7n2)r(_1)k+ngk+2r(’U)

r
=0

_ f: (':”) (m2)T A

=0

=(A +m?)7ke. (2.54)
By applying the operator (A + m?)* to both sides of (2.54), we obtain that
Y_or 2k —or —2-(u, v, w, 2, m) is an elementary solution of Helmholtz operator k-times.
Similarly,

> (—k
Yok 2k, ~2r,—2r = Z ( )(77?‘2)7‘(—1)‘6+TR£I+2T(U) * R§k+2r('v)

r=0 T
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is the Green function of the operator ({ + m?)*. O

Lemma 2.3.14 The function RE,,(v) is the inverse of the convolution algebra of

Rg, (v), that is
R2y(v) * R5(v) = REopon(v) = R5(v) =6

Proof. See [2, P. 158). O



