CHAPTER 2
PRELIMINARIES

This chapter is essentially introductory in nature. Its main purpose is to
present some basic concepts from the theory of delay differential equations and
to sketch some preliminary results which will be used throughout the report. In
section 2.1, we are concerned with the statement of the basic initial value problems
and classification of equations with delays. In section 2.2, we provide definition
of oscillation of solutions with or without delays. Section 2.3, 2.4, 2.5, 2.6 and
2.7 state increasing and decreasing functions, the completeness property of R, the
fundamental of calculus, Hélder’s inequality and the Riccati equation which are

important tools in oscillation theory, respectively.

2.1 Initial Value Problems
Let us consider the ordinary differential equation (ODE)
u'(8) = £(t,u) (2.1)
together with the initial condition
u(ly) = up. (2.2)

It is well known that under certain assumptions on f the initial value problem

(2.1) and (2.2) has a unique solution and is equivalent to the integral equation
rt
et dulte) + / J(s,u(s))ds for ¢ > to.
)
Next, we consider a differential equation of the form
W(t) = f(t,u(t),u(t—7)) with 7>0 and t >t (2.3)

in which the right-hand side depends not only on the instantaneous position u(t),

but also on u(t — 7), the position at T units back, that is to say, the equation has



past memory. Such an equation is called an ordinary differential equation with
delay or delay differential equation. Whenever necessary, we shall consider the
integral equation
{.[
w(t) = u(ty) + jm j(s wu(s). u(s — T))ds for<see tg.

which is equivalent to (2.3), we need to have a known function ¢ on [ty — T, t),
instead of just the initial condition u(ly) = wg.

The basic initial value problem for a delay differential equation is posed
as follows: On the interval [y, T],T < oc, we seek a continuous function u that

satisfies (2.3) and initial condition
u(t) = (t) for all t€ By, (2.4)

where 1o is an initial point, £, = [ty — T, o] is initial set; the known function ¢ on
Ly, is called the initial function. Usually, it is assumed that o(ty +0) = p(ty). We
always mean a one-sided derivative when we speak of the derivative at an endpoint
of an interval.

Under general assumptions, the existence and uniqueness of solutions to the
initial value problem (2.3) and (2.4) can be established. The solution sometimes is
denoted by u(t,). In the case of a variable delay 7 = 7(t) > 0 in (2.3), it is also

required to find a solution of this equation for t > tg such that on the initial set
By =toU{t — T(t)et = T1(t) < to; > 1o}s

u coincides with the given initial function . If it is required to determine the

solution on the interval [ty, T'], then the initial set is
Fior = (i} U{t — 7(t) ¥ — ®(t) <s, i<t < TR
Example 2.1.1 Consider the equation
w'(t) = [t u(t), u(t — cos?t)),

to = 0, Eo = [~1,0], and the initial function ¢ must be given on the interval [-1, 0].
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The initial set F,, depends on the initial point t;. Consider from the
equation
y'(t) = ay(L/2),

we have 7(¢) = t/2 so that

Fo = {0} and E;=[1/2,1].

2.2 Definition of Oscillation

Before we define oscillation of solutions, let us consider some examples.
Example 2.2.1 Consider the equation
u’(t) +u(t) =0
has periodic solutions u;(t) = cost and uy(t) = sint.
Example 2.2.2 Consider the equation
11 g g 1 ! 2
u'(t) — U (t) + 4t°u(t) = 0,

whose solution is u(t) = sint?. This solution is not periodic but has an oscillatory

property.

Example 2.2.3 Consider the equation

1 i
u"(t) + §u’(t‘,) = iu(t —7)=0 fort >0,

whose solution u(t) = 1 — sint has an infinite sequence of multiple zeros. This
solution also has an oscillatory property.

Let us now restrict our discussion to those solutions u of the equation
w'(1) + q(t)u(t) =0 (25)

which exist on some ray [T, c0) and satisfy sup{|u(t)| : ¢ > T} > 0 for every
T > T,. In other words, u(t) # 0 for at least one ¢t € [T,00). Such a solution

sometimes is said to be a regular solution.
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Definition 2.2.1 A nontrivial solution u (implying a regular solution always) is said
to be oscillatory if it has arbitrarily large zeros for ¢ > ¢,, that is. there exists a
sequence of zeros {.,} (i.e., u(l,) = 0) of u such that lim,_.,, t, = oo. Otherwise,
u is said to be nonoscillatory.

For nonoscillatory solutions there exists t; such that
W) #0 forall t>1¢,,

Definition 2.2.2 Eq.(2.5) is said to be oscillatory if all of its solution are oscillatory.

2.3 Increasing and Decreasing Functions

In aim of this section is to give some definitions and properties of the

increasing and decreasing functions which refer to book of R. G. Bartle [4].

Definition 2.3.1 Let / C R be an interval and let f : ] — R be continuous function.

Then, for z;, 25, € [
(1) f is said to be increasing on I if z; < o, then f(z;) < f(z2),
(2) f is said to be strictly increasing on I if x; < x, then f(z) < f(z2),
(3) [ is said to be decreasing on I if z; < z9, then f(z;) > f(z2),

(4) f is said to be strictly decreasing on I if z; < T, then f(z,) > f(zs).

Theorem 2.3.1 Let f : I — R be differentiable on the interval I. Then
(1) f is increasing on I if and only if f'(z) >0 for allz € I,

(2) f is decreasing on I if and only if f'(z) <0 for all z € I.

Corollary 2.3.1 Let f : I — R be differentiable on the interval I. Then
(1) if f' is positive on [, then f is strictly increasing on I,

(2) if f' is negative on I, then [ is strictly decreasing on I.
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2.4 The Completeness Property of R
In aim of this section is to give the completeness property of R.
Definition 2.4.1 Let S be a nonempty subset of R.
(1) An element u € R is said to be an upper bound of S if s < w for all s € S.

(2) An element w € R is said to be a lower bound of S if w < s for all s € S.

Definition 2.4.2 Let S be a nonempty subset of R.

(1) If S is bounded above, then an upper bound of S is said to be a supremum

(or a least upper bound) of S if it is less than any other upper bound of S.
(2) If S is bounded below, then a lower bound of S is said to be a infimum (or
a greatest lower bound) of S if it is greater than any other lower bound of S.
Theorem 2.4.1 (Supremum Property)

Every nonempty set of real numbers which has an upper bound has a supremum.

Theorem 2.4.2 (Infimum Property)

Every nonempty set of real numbers which has a lower bound has a infimum.

We say that a sequence X = (z,) is bounded if there exists M > 0 such

that ||z,|| < M for all n € N.
Definition 2.4.3 Let X = (z,) be a bounded sequence in R.

(1) The limit superior of X, which we denote by
limsup X, limsup (z,), or lim (z,),

is the infimum of the set V' of v € R such that there are at most a finite

number of n € N such that v < z,,.
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(2) The limit inferior of X, which we denote by
lim inf X, liminf (z,), or inf (z,),

is the supremum of the set W of w € R such that there are at most a finite

number of m € N such that z,, < w.

Theorem 2.4.3 If X = (z,) is bounded sequence in R, then the following statements

are equivalent for a real number ™.
(1) =* = limd'sup(z,)-

(2) Ife > 0, then there are at most a finite number of n € N such that z°+¢ < .,

but there are an finite number such that x* — € < z,,.
(3) If vm = sup{z, : n > m}, then =" = inf{v,, : n € N}.
(4) If vm = sup{z, : n > m}, then " = lim(v,,).
(5) If L is the set of v € R such that there exists a subsequence of X which

converges to v, then x* = sup L.

Theorem 2.4.4 Let X = (x,) and Y = (y,) be bounded sequences of real numbers.

Then the following relations holds.
(1) liminf(z,) < limsup(z,).
(2) If ¢ 20, then liminf(cr,) = climinf(z,) and limsup(cz,) = climsup(z,).
(3) If ¢ <0, then liminf(cr,) = climsup(z,) and limsup(cs,) = c¢liminf(x,).
(4) liminf(z,) + liminf(y,) < liminf(z, +v,).
(5) limsup(z, + y.) < limsup(z,) + lim sup(y,).

(6) If z, < yn, then liminf(z,) < liminf(y,) and limsup(z,) < lim sup(yn)-
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Theorem 2.4.5 (Monotone Convergence Theorem)

(1) Let X = (xn) be a sequence of real numbers which is monotone increasing in
the sense that

B ST < LS

Then the sequence X converges if and only if it is bounded, in which case
lim(z,) = sup{z,}.

(2) Let X = (z,) be a sequence of real numbers which is monotone decreasing in
the sense that

I pof e I

Then the sequence X converges if and only if it is bounded, in which case

lim{w,,) = TR {ZH

2.5 The Fundamental Theorem of Calculus

Theorem 2.5.1 (The First Fundamental Theorem of Calculus)
Let f : [a,b] — R be integrable on [a.b] and let F : [a,b] — R satisfy the conditions:

(1) F is continuous on [a,b],
(2) the derivative F' exists and F'(z) = f(z) for all z € (a,b).

Then :
/ f dx = F(b) — F(a). (2.6)

Corollary 2.5.1 Let F : [a,b] — R satisfy the conditions:

(1) the derivative F' exists on [a, b],

(2) the function F' is integrable on [a,b].
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Then equation (2.6) holds with f = F’.

Theorem 2.5.2 (The Second Fundamental Theorem of Calculus)
Let f : [a.b] — R be integrable on [a,b] and let

Bfy= fzf dz  for z € [a,b];

then I is continuous on [a.b]. Moreover, if f is continuous at a point ¢ € [a, b],

then F' is differentiable at ¢ and

Corollary 2.5.2 Let f : [a,b] — R be integrable on [a,b] and let
F(z) =/ fdx  for z € [a,b].
Then F is differentiable on [a,b] and F'(z) = f(z) for all z € [a, b].

Theorem 2.5.3 (The Combined Fundamental Theorem of Calculus)
Let F' and f be continuous functions on [a,b] and let F(a) = 0. Then the following

statements are equivalent:
(1) F'(z) = f(z) for all x € [a,b],

(2) F(z) = /xf dz for all z € [a,b].

Definition 2.5.1 Let | = [a, b] be an interval in R.

(1) If f: I — R, then an antiderivative of f on [ is a function F : I — R such

that F'(z) = f(z) for all z € I.

(2) If f: 1 — R is integrable on I, then the function F : I — R defined by
F(I}:/fd:r for z eI

is called the indefinite integral of f on I.
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Theorem 2.5.4 (Integration by Parts)

If f.g : [a,b] — R are integrable on [a,b] and have antiderivatives F.G on |a.b],
then

/bF(I)g(ﬂ»‘) dz = (F(b)G’(b) = F(ft)G(a)) = /bf(if)G(I) dz.

@

Theorem 2.5.5 (First Substitution Theorem)
Let J = [, ] and let ¢ : J — R have a continuous derivative on J. If [ is
continuous on an interval I containing ¢(J), then

8 ) ©(8)

| s a= [ j@ as

@ w(a)
Theorem 2.5.6 (Second Substitution Theorem)
Let J = [a, 8] and let ¢ : J — R have a continuous derivative such that &'(t) # 0

fort e J. Let I be an interval containing o(J), and let 1 : [ — R be the function

wverse to w. If f: I — R is continuous on I, then

@(8)

/j f(iﬁ(t)) dt = / Flz)'(z) dz.

w(a)

Theorem 2.5.7 Let a < b and let [ and g be two real and piecewise continuous
functions on [a,b] such that f(z) < g(z) for all the points of continuity of f and g

(except, perhaps, in a finite number of points). Then

b

b
f(;c)d;rﬁ/ g(z)dz.

a

Equality holds if and only if f(z) = g(z) in all the points of continuity of f and g.

2.6 Holder’s Inequality

N
Theorem 2.6.1 Let p > 1 and —+ — = 1. If f and g are functions defined on [a. b
P q

and if | f|P and |g|9 are integrable functions on [a,b]. Then

/ab!f(:c)g(:c)ldsc < ([|f(x)]sz)"l’(/:,Q(I”qdr)é

with equality holding if and only if A|f(z)|P = Blg(z)|? almost everywhere, where

A and B are constants.
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2.7 The Riccati Equation

t)u'(t
If the substitution z = — )(U;)( ) is made in the self-adjoint differential
u(!
equation
(r(t)u' (1)) + g(t)u(t) =0 (2.7)

where r(t) and ¢(t) are continuous on an interval [a, b], we obtain

(z(t,)u(t:))’ + q(t)u(t) =0,

or

Pl 1 T
2'(t) + ;(t—)zz(t) + g{t) =0. (2.8)

Equation (2.8) is a Riccati Equation. The general Riccati equation is usually
written as

2'(t) + a(t)z(t) + b(t)22(t) + ¢(t) = 0, (2.9)

where we shall suppose a(t). b(t). and ¢(t) are continuous on the interval [a,b].
Equation (2.9) is only apparently more general than equation (2.8), since the sub-
stitution in (2.9) of

w(t) = elaalolds(p) (2.10)

reduces this equation to
w' () + q(t)w?(t) + p(t) =0, (2.11)

where  q(t) = b(t)e=Ja2()Ms  ang p(t) = c(l,)ef: i,

If b(t) = 0, equation (2.9) is, of course, linear and it is immediately integrable.
If b(t) # 0 on any subinteval of [a,b], to study the solutions of (2.9) we may
employ the substitution (2.10) to reduce (2.9) to the form (2.11). The substitution

a t
g(tw(t) = ‘ﬁ then reduces (2.11) to the form (2.7), where r(t) = . The

u(t) q(t)
zeros of g(t) are then singular points of the differential equation (2.7). It will be
observed that these successive substitutions may be replaced by the substitution

u'(t)

M=) = o

Example 2.7.1 Study the solutions of the Riccati equation

w(t) - w?(t) —1=0. (2.12)
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This equation is already in the form (2.11), where ¢(t) = —1 and p(t) = —1.
o f,

The substitution —w(t) = u_((% leads then to the linear self-adjoint differential
UL

equation.

w'(t) +u(t) =0,

the general solution of which is ¢; sint + ¢; cost. The null solution (g1 2=B=10)

leads to no solution w. All other solutions w provide solutions

; ¢ycost — ¢psint
w(t) = — 2 (c1 and ¢ not both zero).
i ¢18int + g cost

of (2.12). The choice ¢; = 0 leads to the particular solution w(t) = tant.



